KR100936016B1 - Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby - Google Patents
Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby Download PDFInfo
- Publication number
- KR100936016B1 KR100936016B1 KR1020070120255A KR20070120255A KR100936016B1 KR 100936016 B1 KR100936016 B1 KR 100936016B1 KR 1020070120255 A KR1020070120255 A KR 1020070120255A KR 20070120255 A KR20070120255 A KR 20070120255A KR 100936016 B1 KR100936016 B1 KR 100936016B1
- Authority
- KR
- South Korea
- Prior art keywords
- sputtering target
- grain
- powder
- producing
- ultrafine
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 초미세 결정립 Mo 스퍼터링 타겟의 제조방법, 및 이로써 얻어진 Mo 스퍼터링 타겟에 관한 것으로, 더욱 상세하게는 원료 분말로 나노 크기의 Mo 분말을 이용하여 스퍼터링 타겟을 제조시, 고온에서 단시간 및 저온에서 장시간에 걸친 2단 소결 공정을 수행하는 초미세 결정립 Mo 스퍼터링 타겟의 제조방법, 및 이로써 얻어진 Mo 스퍼터링 타겟에 관한 것이다.The present invention relates to a method for producing an ultra-fine grain Mo sputtering target, and to a Mo sputtering target thus obtained, and more particularly, to producing a sputtering target using nano-sized Mo powder as a raw material powder, at a high temperature for a short time and at a low temperature. The present invention relates to a method for producing an ultrafine grain Mo sputtering target that performs a two-stage sintering process for a long time, and a Mo sputtering target obtained thereby.
상기 방법은 나노 분말 소결 시 발생하는 급격한 입자 성장을 억제하여 500 nm 이하의 초미세 결정립을 가지는 스퍼터링 타겟의 제조를 가능케 한다.The method inhibits rapid grain growth that occurs during sintering of nanopowders, thereby enabling the production of sputtering targets having ultrafine grains of 500 nm or less.
스퍼터링 타겟, 초미세 결정립, 2단 소결 Sputtering Target, Ultra Fine Grain, Two Stage Sintering
Description
본 발명은 나노 분말의 소결 시 급격한 입자의 성장을 억제하여 초미세 결정립을 가지는 스퍼터링 타겟의 제조를 가능케 하는 초미세 결정립 Mo 스퍼터링 타겟의 제조방법, 및 이로써 얻어진 Mo 스퍼터링 타겟에 관한 것이다.The present invention relates to a method for producing an ultrafine grain Mo sputtering target, which suppresses rapid growth of particles during sintering of a nanopowder and enables the production of a sputtering target having ultrafine grains, and a Mo sputtering target obtained thereby.
몰리브덴(Mo)은 고온 고강도 구조재, 전기접점재 등의 산업 소재로 다양하게 적용되고 있다. 상기 몰리브덴의 소결은 분말 야금법의 경우 1800∼2000 ℃의 높은 온도와 장시간 동안 수행하고 있다 (P. Garg, S. J. Park, R.M. German, Int . J. Refract . Met . Hard Mater. 25 (2007) 16).Molybdenum (Mo) has been applied to a variety of industrial materials such as high temperature high strength structural materials, electrical contact materials. Sintering of the molybdenum in the case of powder metallurgy has been performed for a long time and high temperature of 1800~2000 ℃ (P. Garg, Park SJ, German RM, Int. J. Refract. Met. Hard Mater . 25 (2007) 16).
대한민국 특허공개 제2007-57225호는 몰리브덴 스퍼터링 타겟의 제조를 제시하고 있으며, 구체적으로 몰리브덴 분말을 성형 후 1780∼2175 ℃의 고온에서 소결한 후, 815∼1375 ℃의 온도에서 열처리하여 관형 스퍼터링 타겟을 제조하고 있다.Republic of Korea Patent Publication No. 2007-57225 proposes the production of molybdenum sputtering target, specifically, after molding the molybdenum powder at a high temperature of 1780 ~ 2175 ℃, heat treatment at a temperature of 815 ~ 1375 ℃ to form a tubular sputtering target Manufacture.
이러한 마이크로 크기 수준의 몰리브덴 분말을 이용한 고온 소결은 입자성장에 의한 기계적 특성 저하의 문제뿐만 아니라 결정 입도가 큰 경우, 이의 타겟을 이용하여 스퍼터링하여 형성된 박막은 원하는 균일 집합조직 및/또는 막 두께를 갖지 않게 된다.The high-temperature sintering using such a micro-sized molybdenum powder is not only a problem of deterioration of mechanical properties due to grain growth, but also when the crystal grain size is large, the thin film formed by sputtering using the target does not have a desired uniform texture and / or film thickness. Will not.
일반적으로 나노 크기의 분말은 마이크론 크기의 분말에 비해 상당히 증가된 비표면적을 가지며, 이러한 증가는 곧 소결 구동력의 증대를 의미한다. 이러한 점에서 나노 분말의 사용은 낮은 에너지에서 소결할 수 있는 장점이 있다. 그러나 일반적으로 소결의 구동력은 분말 입자의 표면적 크기에 비례하기 때문에 나노 분말의 경우 소결시 급격한 입자 성장이 일어날 가능성이 높다 (Cameron, C. P. & Raj, R. Grain growth transition during sintering of colloidally prepared alumina powder compacts. J. Am . Ceram . Soc. 71, 1031∼1035 (1988); Brook, R. J. in Treatise on Materials Science and Technology Vol. 9 (ed. Wang, F. F. Y.) 331∼363 (Academic, New York, 1976)). 이러한 입자 성장은 결정립의 성장을 의미하고, 그 결과 최종 소결체의 미세조직은 나노 미터급으로 미세하게 유지하는 것은 대단히 어렵다 (J. Horvath, R. Birringer, and H. Gleiter, Solid State Comm., 62(5) (1987) 319; R. S. Averback, H. J. Hofler, and Tao, Mater. Sci. & Eng., A166 (1993) 169.)Generally, nano-sized powders have a significantly increased specific surface area compared to micron-sized powders, which means an increase in sintering drive. In this regard, the use of nanopowders has the advantage of being able to sinter at low energy. However, in general, the driving force of sintering is proportional to the size of the surface area of the powder particles, so that the nanoparticles have a high possibility of rapid grain growth during sintering (Cameron, CP & Raj, R. Grain growth transition during sintering of colloidally prepared alumina powder compacts J. Am . Ceram . Soc . 71, 1031-1035 (1988); Brook, RJ in Treatise on Materials Science and Technology Vol. 9 (ed. Wang, FFY) 331-363 (Academic, New York, 1976)). . This grain growth implies grain growth, and as a result, it is very difficult to keep the microstructure of the final sintered compact in nanometer scale (J. Horvath, R. Birringer, and H. Gleiter, Solid State Comm. , 62 (5) (1987) 319; RS Averback, HJ Hofler, and Tao, M ater.Sci . & Eng ., A166 (1993) 169.)
부연하면, 나노 분말을 통한 소결은 나노 분말의 임의적으로 증가된 계면과 이 계면내에 위치한 많은 원자들 때문에 같은 조성의 일반적인 다결정 (ploycrystalline) 재료의 평형상태 (equilibrium state)에서 벗어나게 된다. 이러한 이유로 일반적인 분말에 비하여 확산계수 (diffusivity)와 소결성 (sinterability)은 향상되지만 열적 안정성은 감소하게 된다. 이러한 열적 안정성 의 감소는 소결 중에 급격한 입자성장 및 비정상 입자성장을 야기하여 초미세 결정립을 가지는 소결체의 제조에 어려움을 가진다. 따라서 일반 소결법으로는 단상(single phase) 금속계 재료에서 초미세결정립을 가지는 소결체를 제조할 수 없다.In other words, sintering through the nanopowder deviates from the equilibrium state of a typical polycrystalline material of the same composition due to the randomly increased interface of the nanopowder and the many atoms located within the interface. For this reason, the diffusivity and sinterability are improved compared to the general powder, but the thermal stability is decreased. This decrease in thermal stability causes rapid grain growth and abnormal grain growth during sintering, which makes it difficult to produce sintered bodies having ultrafine grains. Therefore, the general sintering method cannot produce a sintered body having ultrafine grains in a single phase metal-based material.
이에 나노 분말의 특성을 벌크화된 소재에도 계속 유지시키기 위해서는 입자 성장이 억제된 소결 공정이 필요하다. Therefore, in order to maintain the properties of the nano-powder even in the bulk material, a sintering process in which grain growth is suppressed is required.
2단 소결 공정 (Two-Step sintering)은 Y2O3와 같은 세라믹 재료 등에 적용되어 결정립 성장이 억제된 조밀체의 제조가 가능하다고 보고되고 있다 (Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000;404:168∼171.; Lee YI, Kim YW, Mitomo M, Kim DY. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc. 2003;86(10):1803∼1805)Two-step sintering has been reported to be applicable to ceramic materials such as Y 2 O 3 to produce dense bodies with reduced grain growth (Chen IW, Wang XH.Sintering dense nanocrystalline ceramics without final -stage grain growth Nature 2000; 404: ...... 168~171 .; Lee YI, Kim YW, Mitomo M, Kim DY Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering J. Am Ceram Soc 2003; 86 (10): 1803-1805)
이에 본 발명자들은 급격한 입자 성장을 야기하는 몰리브덴 나노 분말의 문제점을 해결하기 위해 2단 소결 방법을 적용하였다. The present inventors applied a two-stage sintering method to solve the problem of the molybdenum nano-powder that causes rapid grain growth.
본 발명의 목적은 나노 크기의 Mo 원료 분말을 이용하여 고밀도와 초미세 결정립을 가지는 Mo 스퍼터링 타겟의 제조방법과 이로써 제조된 Mo 스퍼터링 타겟을 제공하는 것이다.An object of the present invention is to provide a method for producing a Mo sputtering target having a high density and ultrafine grains using a nano-size Mo raw material powder and the Mo sputtering target produced thereby.
상기 목적을 달성하기 위해, 본 발명은 원료 분말로 나노 크기의 Mo 분말을 이용하여 스퍼터링 타겟을 제조시,In order to achieve the above object, the present invention when manufacturing a sputtering target using a nano-size Mo powder as a raw material powder,
고온에서 단시간 및 저온에서 장시간에 걸친 2단 소결 공정을 수행하는 초미세 결정립 Mo 스퍼터링 타겟의 제조방법을 제공한다.Provided is a method for producing an ultrafine grain Mo sputtering target that performs a two-stage sintering process for a short time at a high temperature and a long time at a low temperature.
또한 본 발명은 상기 방법으로 제조된 Mo 스퍼터링 타겟을 제공한다.The present invention also provides a Mo sputtering target prepared by the above method.
본 발명에 따른 2단 소결법은 원료 분말로 입자 크기가 나노 사이즈인 분말을 사용하는 경우 소결 공정에서 결정립이 성장하는 문제를 해소하여 비교적 높은밀도의 초미세 결정립을 가지는 스퍼터링 타겟의 제조를 가능케 한다. The two-stage sintering method according to the present invention solves the problem of grain growth in the sintering process when using a powder having a particle size of nano size as a raw material powder, thereby enabling the production of a sputtering target having a relatively high density of ultrafine grains.
이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서는 원료 분말로 입자 크기가 나노 수준인 Mo 분말을 이용하여 스퍼터링 타겟을 제조시, 고온에서 단시간 및 저온에서 장시간에 걸친 2단 소결 공정을 통해 Mo 스퍼터링 타겟을 제조한다.In the present invention, when producing a sputtering target using a Mo powder having a nanoparticle size as a raw material powder, Mo sputtering target is manufactured through a two-sinter sintering process for a short time at a high temperature and a long time at a low temperature.
구체적으로, Mo 스퍼터링 타겟은 Specifically, the Mo sputtering target
ⅰ) Mo 나노 분말을 성형하여 성형체를 제조하고, Iii) molding the Mo nanopowder to prepare a molded article,
ⅱ) 상기 성형체를 5∼15 ℃/min의 승온 속도로 1000∼1100 ℃까지 1차 소결하고,Ii) The molded product is first sintered to 1000 to 1100 ° C at a heating rate of 5 to 15 ° C / min,
ⅲ) 1차 소결된 소결체를 900∼950 ℃ 에서 2차 소결하는 단계를 거쳐 제조된다.Iii) The first sintered sintered body is produced through a second sintering process at 900 to 950 ° C.
먼저, Mo 나노 분말을 성형하여 성형체를 제조한다.First, a molded article is manufactured by molding Mo nanopowder.
상기 Mo 나노 분말은 입자 크기가 20∼200 nm인 나노 크기의 분말을 사용한다. 이러한 나노 크기의 원료 분말은 마이크론 크기의 분말에 비해 다양한 분야에 적용 가능하다.The Mo nano powder uses a nano size powder having a particle size of 20 to 200 nm. These nano-sized raw powders can be applied to various fields compared to micron-sized powders.
상기 Mo 나노 분말은 시판되는 것을 구입하여 사용하거나, 마이크론 수준의 분말을 직접 볼밀 공정을 거쳐 제조하여 사용할 수 있다. 일예로 직접 제조하는 경우, MoO3 원료 분말을 볼과 볼밀장치에 주입한 후 아르곤 분위기 하에 볼밀링한 후 환원하는 단계를 거쳐 제조된다.The Mo nano powder may be purchased and used commercially, or may be prepared by using a micron-level powder through a direct ball mill process. In the case of direct production as an example, the MoO 3 raw material powder is injected into a ball and a ball mill, followed by ball milling under an argon atmosphere, followed by reduction.
상기 볼은 본 발명에서 특별히 한정하지 않으며, 공지된 바의 스테인레스 강철볼이 사용되고, 이때 볼은 원료 분말과 14:1∼:18:1의 장입비 (중량비), 바람직하기로 16:1의 중량비로 혼입하여 볼밀을 원활히 수행한다.The ball is not particularly limited in the present invention, a known stainless steel ball is used, wherein the ball is a raw material powder and a loading ratio (weight ratio) of 14: 1 to: 18: 1, preferably a weight ratio of 16: 1. The ball mill is performed smoothly by mixing with.
이때 사용가능한 볼밀 장치는 본 발명에서 특별히 한정하지 않으며, 대표적으로 어트리터 (attritor), 3-D mixer, 유성형볼밀 (planetary ball-mill),진동볼 밀 (vibratory ball-mill), 수평식 볼밀 (horizontal ball-mill) 등 다양한 볼밀 장치가 가능하다.At this time, the ball mill apparatus that can be used is not particularly limited in the present invention, typically an attritor, a 3-D mixer, a planetary ball mill, a vibratory ball mill, a horizontal ball mill ( Various ball mill devices such as horizontal ball mills are possible.
상기 MoO3 원료 분말은 전술한 볼밀 장치 내에서 100∼500 rpm의 속도로 1∼24 시간 동안 수행하고, 볼밀 공정 후 얻어진 분말을 수소분위기에서 700∼900℃ 온도까지 승온시킨 후, 유지시간 없이 그대로 냉각되어 Mo 나노 분말이 제조된다.The MoO 3 raw material powder was carried out in the above-described ball mill apparatus at a speed of 100 to 500 rpm for 1 to 24 hours, and the powder obtained after the ball mill process was heated up to a temperature of 700 to 900 ° C. in a hydrogen atmosphere, without being maintained. Cooling produces Mo nanopowders.
이러한 Mo 나노 분말은 스퍼터링 타겟을 제조하기 위한 통상의 성형 공정을 수행한다. 상기 성형 공정은 본 발명에서 한정하지 않으며, 통상적으로 사용되는 공정이 가능하며, 바람직하기로 Mo 나노 분말을 200∼300 MPa의 압력 하에 등방 일축 성형하여 성형체를 제조한다.Such Mo nano powder performs a conventional molding process for producing a sputtering target. The molding process is not limited in the present invention, a process that is commonly used is possible, and preferably isoaxial uniaxial molding of the Mo nanopowder under a pressure of 200 to 300 MPa to prepare a molded body.
다음으로, 상기에서 제조된 성형체를 5∼15 ℃/min의 승온 속도로 1000∼1100 ℃까지 1차 소결 공정을 수행한다.Next, the molded article prepared above is subjected to a primary sintering process up to 1000 to 1100 ° C. at a temperature increase rate of 5 to 15 ° C./min.
이때 승온 속도가 상기보다 낮으면 승온 도중 입자가 성장하는 문제가 발생하고, 반대로 상기를 초과하면 밀도 저하의 문제가 발생하므로, 상기 범위 내에서 수행한다. 또한 소결 온도가 상기 범위 미만이면 낮은 소결밀도에 의해 2차 소결 공정 중 치밀화가 어려운 문제가 발생하고, 상기를 초과하면 입자성장의 문제가 발생하므로, 상기 범위 내에서 수행한다.At this time, if the temperature increase rate is lower than the above problem occurs that the particles grow during the temperature rise, on the contrary, if the problem exceeds the above, the problem of density decrease occurs, it is carried out within the above range. In addition, when the sintering temperature is less than the above range, it is difficult to achieve densification during the secondary sintering process due to the low sintering density, and when the sintering temperature is exceeded, the problem of grain growth occurs.
다음으로, 상기에서 1차 소결된 소결체를 900∼950 ℃ 에서 2차 소결하는 단계를 거쳐 Mo 스퍼터링 타겟을 제조한다.Next, Mo sputtering target is manufactured through the second sintering of the first sintered sintered body at 900 to 950 ° C.
이때 2차 소결 온도가 상기보다 낮으면 밀도가 저하되는 문제가 발생하고, 반대로 상기를 초과하면 입자가 성장하는 문제가 발생하므로, 상기 범위 내에서 수행한다.At this time, when the secondary sintering temperature is lower than the above problem occurs that the density is lowered, on the contrary, if it exceeds the above problem occurs that the particles grow, it is carried out within the above range.
이러한 2차 소결은 3∼20 시간 동안 수행한다. 이때 소결 시간이 상기 범위 미만이면 입자크기는 미세하나 밀도가 저하될 우려가 있고, 상기를 초과하면 입자성장의 문제가 발생하므로, 상기 범위 내에서 수행한다.This secondary sintering is carried out for 3 to 20 hours. At this time, if the sintering time is less than the above range, the particle size is fine, but there is a fear that the density may be lowered.
본 발명의 실험예 1에 따르면, 상기 Mo 스퍼터링 타겟은 밀도가 80% 이상, 바람직하기로 84∼95%를 가지고, 비커스 경도가 2.0 GPa 이상, 바람직하기로 2.5∼3.5 GPa를 가진다. 또한 결정립의 크기가 500 nm 이하, 바람직하기로 200∼500 nm의 초미세 결정립을 가진다.According to Experimental Example 1 of the present invention, the Mo sputtering target has a density of 80% or more, preferably 84 to 95%, and a Vickers hardness of 2.0 GPa or more, preferably 2.5 to 3.5 GPa. In addition, the crystal grains have ultrafine grains of 500 nm or less, preferably 200 to 500 nm.
상기 Mo 스퍼터링 타겟은 Mo가 사용될 수 있는 모든 분야에 사용가능하며, 각종 스퍼터링 방법을 통해 박막 형태로 적용가능하다.The Mo sputtering target can be used in all fields where Mo can be used, and can be applied in the form of a thin film through various sputtering methods.
일예로, Mo 스퍼터링 타겟은 초미세 결정립을 가지는 몰리브덴 소결 제품을 제조하는 모든 분야, 즉, 고온 고강도 구조재, 전기접점재, 미사일의 shaped charge liner, 전자관의 양극 (Anode) 그리드 및 지지물 (支持物), 전기회로의 접점, 내열재료 고온 부분품, 특수합금, 전구의 전극 자재, 전열선(電熱線),수소 첨가의 촉매, 유리 전기 용광로의 전극봉 (glass melting electrode), 각종 필라멘트 제작을 위한 mandrel용 등으로도 사용된다.For example, Mo sputtering targets are used in all fields of manufacturing molybdenum sintered products having ultrafine grains, that is, high-temperature high-strength structural materials, electrical contact materials, shaped charge liners of missiles, anode grids and supports of electron tubes. , Electrical circuit contacts, high-temperature parts of heat-resistant materials, special alloys, electrode materials for electric bulbs, heating wires, hydrogenated catalysts, glass melting electrodes for glass electric furnaces, and mandrel for the manufacture of various filaments. Is also used.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
제조예 1: 나노 몰리브덴 (Mo) 분말의 제조Preparation Example 1 Preparation of Nano Molybdenum (Mo) Powder
몰리브덴 산화물(MoO3) 분말을 Attrittor장비에 스테인레스 볼 (Stainless Ball, 4.5 mm)과 함께 1:16 중량비로 장입하고, 400 rpm의 속도로 20시간 동안 밀링하였다. 상기 밀링 후 얻어진 분말을 알루미나 포트에 담아 로 (furnace)내에서 수소 분위기 하에서 800 ℃까지 승온시키고 유지시간 없이 냉각시켜 나노 Mo 분말을 얻었다. Molybdenum oxide (MoO 3 ) powder was charged to the Attrittor equipment with a stainless ball (Stainless Ball, 4.5 mm) in a 1:16 weight ratio, and milled for 20 hours at a speed of 400 rpm. The powder obtained after milling was put in an alumina pot, heated to 800 ° C. in a hydrogen atmosphere in a furnace, and cooled without holding time. A powder was obtained.
도 1은 제조예 1에서 제조된 나노 Mo 분말의 주사전자현미경 (SEM) 사진이다. 도 1을 참조하면, 상기 제조된 Mo 분말은 입자 크기가 100 nm 이하 수준의 입자 크기를 가짐을 확인하였다.1 is a scanning electron microscope (SEM) photograph of the nano Mo powder prepared in Preparation Example 1. Referring to Figure 1, the prepared Mo powder was confirmed that the particle size has a particle size of less than 100 nm level.
실시예 1∼6: 초미세 결정립 MoExamples 1 to 6: Ultrafine Grain Mo 스퍼터링 타겟의 제조Preparation of Sputtering Target
상기 실시예 1에서 제조된 나노 Mo 분말을 9 mm 다이에서 2.5g을 주입하고 250 MPa로 등방 일축 성형하여 성형체를 제조하였다. 상기 성형체를 수소 분위기의 고온용 로에서 첫 번째 스텝의 온도를 1050 ℃로 하고, 두 번째 스텝의 온도를 900 ℃와 950 ℃의 서로 다른 온도 조건으로 나누고 각 온도별로 3시간, 10시간, 20시간 유지하여 2단 소결을 수행하였다. 이때 각 2단 소결 공정의 조건을 하기 표 1 및 도 2에 나타내었다.Nano Mo prepared in Example 1 A molded body was prepared by injecting 2.5 g of powder in a 9 mm die and isotropically uniaxially molding at 250 MPa. In the high temperature furnace of hydrogen atmosphere, the molded body is divided into the temperature of the first step to 1050 ° C., and the temperature of the second step to different temperature conditions of 900 ° C. and 950 ° C., respectively, for 3 hours, 10 hours, and 20 hours. The two stage sintering was carried out by holding. In this case, the conditions of each two-stage sintering process are shown in Table 1 and FIG. 2.
비교예 1: MoComparative Example 1: Mo 스퍼터링 타겟의 제조Preparation of Sputtering Target
소결 시 1200 ℃로 온도를 상승시킨 후 별도의 유지시간 없이 그대로 냉각한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 스퍼터링 타겟을 제조하였다.A sputtering target was prepared in the same manner as in Example 1 except that the temperature was raised to 1200 ° C. during sintering and then cooled as it is without additional holding time.
비교예 2: MoComparative Example 2: Mo 스퍼터링 타겟의 제조Preparation of Sputtering Target
소결 시 1300 ℃로 온도를 상승시킨 후 별도의 유지시간 없이 그대로 냉각한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 스퍼터링 타겟을 제조하였다.A sputtering target was prepared in the same manner as in Example 1 except that the temperature was increased to 1300 ° C. during sintering and then cooled as it is without a separate holding time.
실험예 1: 특성 측정Experimental Example 1: Characterization
밀도 측정Density measurement
상기 실시예 1∼6, 및 비교예 1, 2에서 제조된 스퍼터링 타겟 (소결체)의 상대 밀도를 아르키메데스법(Archimedes' principle)에 의해 측정하였고, 그 결과를 하기 표 2 및 도 3에 나타내었다.The relative densities of the sputtering targets (sintered bodies) prepared in Examples 1 to 6 and Comparative Examples 1 and 2 were measured by the Archimedes method (Archimedes' principle), and the results are shown in Table 2 and FIG. 3.
상기 표 2에서 실시예 1,3 및 실시예 4,6을 각각 비교하여 보면 2단 소결 공정에서 2차 소결 시 유지 시간이 증가할수록 상대 밀도가 증가함을 알 수 있다.Comparing Examples 1, 3 and 4 and 6 in Table 2, it can be seen that the relative density increases as the holding time increases in the second sintering process in the two-sintering process.
또한 실시예 1,4, 실시예 2,5 및 실시예 3,6을 각각 비교하여 보면 2단 소결시 2차 소결의 온도가 증가할수록 상대 밀도 또한 증가함을 알 수 있다.In addition, when comparing the Examples 1, 4, Examples 2, 5 and Examples 3, 6, it can be seen that the relative density also increases as the temperature of the secondary sintering increases during the two-stage sintering.
미세조직 관찰Microstructure Observation
상기 실시예 3 및 6과 비교예 1 및 2에서 제조된 스퍼터링 타겟의 미세 조직을 주사전자현미경으로 측정하여 도 4 내지 도 7에 나타내었다.The microstructures of the sputtering targets prepared in Examples 3 and 6 and Comparative Examples 1 and 2 were measured by scanning electron microscopy and are shown in FIGS. 4 to 7.
도 4는 실시예 3에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이고, 도 5는 비교예 1에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.4 is a scanning electron micrograph of the sputtering target prepared in Example 3, Figure 5 is a scanning electron micrograph of the sputtering target prepared in Comparative Example 1.
도 4 및 도 5를 참조하면, 본 발명에 의해 2단 소결 공정을 거친 스퍼터링 타겟의 입자가 비교예 1의 스퍼터링 타겟에 비해 더욱 미세함을 알 수 있다. 4 and 5, it can be seen that the particles of the sputtering target subjected to the two-sinter sintering process according to the present invention are more fine than the sputtering target of Comparative Example 1.
한편, 도 6은 실시예 6에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이고, 도 7은 비교예 2에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.6 is a scanning electron microscope photograph of the sputtering target prepared in Example 6, and FIG. 7 is a scanning electron microscope photograph of the sputtering target prepared in Comparative Example 2. FIG.
도 6 및 도 7을 참조하면, 상기 도 4 및 도 5의 결과와 마찬가지로, 본 발명에 의해 2단 소결 공정을 거친 스퍼터링 타겟의 입자가 비교예 2의 스퍼터링 타겟에 비해 더욱 미세함을 알 수 있다. 6 and 7, as in the results of FIGS. 4 and 5, it can be seen that the particles of the sputtering target subjected to the two-sinter sintering process according to the present invention are more fine than the sputtering target of Comparative Example 2.
경도 측정Hardness measurement
상기 실시예 3 및 6과 비교예 1 및 2에서 제조된 스퍼터링 타겟의 경도를 측정하였으며, 얻은 결과를 하기 표 3에 나타내었다. 이때 비교를 위해, 공정 조건, 결정립의 크기를 나타내었다.The hardness of the sputtering targets prepared in Examples 3 and 6 and Comparative Examples 1 and 2 was measured, and the results obtained are shown in Table 3 below. At this time, the process conditions, the size of the grains are shown for comparison.
상기 표 3을 참조하면, 비교예 1, 2의 경우 실시예와 동일한 원료 분말을 사용하였음에도 불구하고 결정립의 크기가 커, 소결 공정에서 입자가 크게 성장함을 알 수 있다.Referring to Table 3, it can be seen that in the case of Comparative Examples 1 and 2, although the same raw material powder as in Example was used, the grain size was large, and the grains were greatly grown in the sintering process.
즉, 동일한 상대밀도를 가진 비교예 1과 실시예 3의 경우 결정립의 크기가 2배 이상 차이가 나고, 이러한 결정립의 크기 뿐만 아니라 경도에 있어서도 2단 소결을 수행하는 경우 2.06 GPa (비교예 1)보다 2.58 GPa (실시예 3)로 기계적 물성 또한 크게 향상됨을 알 수 있다. 이는 일반적인 상용 몰리브덴의 경도 값이 2.4 GPa인 것을 고려하면 상당히 우수한 기계적 특성으로, 2단 소결 공정을 통해 Mo 소결체의 물성 또한 증가시킴을 알 수 있다.That is, in the case of Comparative Example 1 and Example 3 having the same relative density, the size of the crystal grains differ by more than two times, and in the case of performing two-stage sintering not only in the size of the grain but also in the hardness, 2.06 GPa (Comparative Example 1) It can be seen that the mechanical properties are also significantly improved to 2.58 GPa (Example 3). This is a very good mechanical property considering the hardness value of general commercial molybdenum is 2.4 GPa. It can be seen that the physical properties of the sintered body are also increased.
도 1은 제조예 1에서 제조된 몰리브덴 나노 분말의 주사전자현미경(SEM) 사진이다.1 is a scanning electron microscope (SEM) photograph of the molybdenum nano powder prepared in Preparation Example 1.
도 2는 실시예 1∼6의 2단 소결 공정 조건을 보여주는 그래프이다.2 is a graph showing the two-step sintering process conditions of Examples 1 to 6.
도 3은 실시예 1∼6 및 비교예 1∼2의 밀도를 보여주는 그래프이다.3 is a graph showing the densities of Examples 1 to 6 and Comparative Examples 1 and 2. FIG.
도 4는 실시예 3에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.4 is a scanning electron micrograph of the sputtering target prepared in Example 3.
도 5는 비교예 1에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.5 is a scanning electron micrograph of the sputtering target prepared in Comparative Example 1.
도 6은 실시예 6에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.6 is a scanning electron micrograph of the sputtering target prepared in Example 6.
도 7은 비교예 2에서 제조된 스퍼터링 타겟의 주사전자현미경 사진이다.7 is a scanning electron micrograph of the sputtering target prepared in Comparative Example 2.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070120255A KR100936016B1 (en) | 2007-11-23 | 2007-11-23 | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070120255A KR100936016B1 (en) | 2007-11-23 | 2007-11-23 | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090053410A KR20090053410A (en) | 2009-05-27 |
KR100936016B1 true KR100936016B1 (en) | 2010-01-11 |
Family
ID=40860921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070120255A KR100936016B1 (en) | 2007-11-23 | 2007-11-23 | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100936016B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210019170A (en) | 2019-08-12 | 2021-02-22 | 주식회사 리딩유아이 | Molybdem alloy sputtering target and manufacturing method thereof |
US11286172B2 (en) | 2017-02-24 | 2022-03-29 | BWXT Isotope Technology Group, Inc. | Metal-molybdate and method for making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104561914A (en) * | 2015-01-22 | 2015-04-29 | 烟台希尔德新材料有限公司 | Method for preparing molybdenum target |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154004A (en) | 1983-02-22 | 1984-09-03 | Daido Steel Co Ltd | Manufacture of permanent magnet |
KR20030033503A (en) * | 2001-10-23 | 2003-05-01 | 이재성 | A production method of tungsten nano powder without impurities and its sintered part |
KR20060066660A (en) * | 2004-12-13 | 2006-06-16 | 히타치 긴조쿠 가부시키가이샤 | Manufacturing method of metallic powder having a high melting point and manufacturing method of target material |
KR20070057225A (en) * | 2004-08-31 | 2007-06-04 | 에이치. 씨. 스타아크 아이앤씨 | Molybdenum sputtering targets |
-
2007
- 2007-11-23 KR KR1020070120255A patent/KR100936016B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154004A (en) | 1983-02-22 | 1984-09-03 | Daido Steel Co Ltd | Manufacture of permanent magnet |
KR20030033503A (en) * | 2001-10-23 | 2003-05-01 | 이재성 | A production method of tungsten nano powder without impurities and its sintered part |
KR20070057225A (en) * | 2004-08-31 | 2007-06-04 | 에이치. 씨. 스타아크 아이앤씨 | Molybdenum sputtering targets |
KR20060066660A (en) * | 2004-12-13 | 2006-06-16 | 히타치 긴조쿠 가부시키가이샤 | Manufacturing method of metallic powder having a high melting point and manufacturing method of target material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11286172B2 (en) | 2017-02-24 | 2022-03-29 | BWXT Isotope Technology Group, Inc. | Metal-molybdate and method for making the same |
KR20210019170A (en) | 2019-08-12 | 2021-02-22 | 주식회사 리딩유아이 | Molybdem alloy sputtering target and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20090053410A (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6914032B2 (en) | Method of producing tungsten-copper based composite powder and sintered alloys for heat-sink using said composite powder | |
Groza et al. | Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes | |
Moshtaghioun et al. | Densification of B4C nanopowder with nanograin retention by spark-plasma sintering | |
JP5930317B2 (en) | Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics | |
JP5444384B2 (en) | High thermal conductivity aluminum nitride sintered body | |
Khalil | Advanced sintering of nano-ceramic materials | |
KR100840742B1 (en) | Manufacturing method of carbon nano tube/metal composite powder | |
KR100936016B1 (en) | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby | |
KR101144884B1 (en) | Tungsten Nanocomposites Reinforced with Nitride Ceramic Nanoparticles and Fabrication Process Thereof | |
EP2189431B1 (en) | Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same | |
CN112174645B (en) | Method for preparing compact nano-crystalline ceramic | |
KR20120068116A (en) | Manufacturing method of tungsten-copper nano composite powder and manufacturing method of tungsten-copper composite product using the same | |
JP2007191339A (en) | Hexagonal boron nitride sintered compact and its manufacturing method | |
KR102112725B1 (en) | Method for manufacturing dispersion-strengthened metal sintered body | |
KR100428948B1 (en) | A production method of tungsten nano powder without impurities and its sintered part | |
JP2016132612A (en) | Die for sintering, and manufacturing method thereof | |
Li et al. | Preparation of dense nanostructured titania ceramic using two step sintering | |
KR20110093504A (en) | Tungsten nanocomposites reinforced with nitride ceramic nanoparticles and fabrication process thereof | |
JP2004035327A (en) | Nanostructured silicon carbide sintered compact and its production method | |
Swiderska-Sroda et al. | SiC nano-ceramics sintered under high-pressure | |
Mansourirad et al. | Synthesis and characterization of Ag-8% wt Cr2O3 composites prepared by different densification processes | |
JP5648178B2 (en) | Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body | |
JP5408591B2 (en) | Method for producing high-density metal boride | |
KR100606328B1 (en) | Nanopowder treatment for high density cermet sintered body | |
Tao et al. | Properties, phases and microstructure of microwave sintered W-20Cu composites from spray pyrolysiscontinuous reduction processed powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20130930 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20141008 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20151012 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |