KR100428948B1 - A production method of tungsten nano powder without impurities and its sintered part - Google Patents

A production method of tungsten nano powder without impurities and its sintered part Download PDF

Info

Publication number
KR100428948B1
KR100428948B1 KR10-2001-0065506A KR20010065506A KR100428948B1 KR 100428948 B1 KR100428948 B1 KR 100428948B1 KR 20010065506 A KR20010065506 A KR 20010065506A KR 100428948 B1 KR100428948 B1 KR 100428948B1
Authority
KR
South Korea
Prior art keywords
tungsten
powder
tungsten oxide
ball mill
sintering
Prior art date
Application number
KR10-2001-0065506A
Other languages
Korean (ko)
Other versions
KR20030033503A (en
Inventor
이재성
윤의식
안효상
오승탁
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2001-0065506A priority Critical patent/KR100428948B1/en
Publication of KR20030033503A publication Critical patent/KR20030033503A/en
Application granted granted Critical
Publication of KR100428948B1 publication Critical patent/KR100428948B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen

Abstract

텅스텐 산화물을 10 내지 100 시간 동안 초음파 볼밀링하고, 이렇게 분쇄된 텅스텐 분말을 650 ~ 1000℃의 온도 범위에서 30 분 내지 5 시간 동안 수소환원하는 것을 포함하는, 텅스텐 나노금속분말의 제조 방법이 제공된다.Provided is a method for producing tungsten nanometal powder, which comprises ultrasonically ball milling tungsten oxide for 10 to 100 hours and hydrogen reducing the tungsten powder thus ground in a temperature range of 650 to 1000 ° C. for 30 minutes to 5 hours. .

또한, 상기 수득된 텅스텐 나노금속분말을 성형하여 1250 ~ 1450℃의 온도에서 소결하는 것을 특징으로 하는, 텅스텐 소결체의 제조 방법이 제공된다.In addition, there is provided a method for producing a tungsten sintered compact, wherein the obtained tungsten nanometal powder is molded and sintered at a temperature of 1250 to 1450 ° C.

본 발명의 방법에 따르면, 성형체 밀도 52%에서 95% 이상의 치밀화가 가능해졌으므로, 본 발명의 텅스텐 나노분말은 복잡한 형상의 제품을 제조하기 위한 분말사출 성형용 원료분말로 적용될 수 있다. 또한, 상기 나노분말은 92 ~ 94%의 소결밀도를 요구하는 스웨이징용 텅스텐 소결체로도 사용될 수 있으며, 더욱이, 소결 후 대부분의 기공들이 계면에 잔류하므로, 스웨이징용 텅스텐 소결체를 제조하기 위한 원료분말로서 극히 바람직하다.According to the method of the present invention, since densification of 95% or more is possible at 52% of the compact density, the tungsten nanopowder of the present invention can be applied as a raw powder for powder injection molding for producing a product having a complicated shape. In addition, the nanopowder may be used as a tungsten sintered body for swaging that requires a sintering density of 92 to 94%. Furthermore, since most pores remain at the interface after sintering, the nanopowder is used as a raw material powder for producing the tungsten sintered body for swaging. Extremely preferred.

Description

불순물이 없는 텅스텐 나노 금속분말의 제조 방법 및 상기 분말을 이용한 소결체의 제조 방법{A production method of tungsten nano powder without impurities and its sintered part}A production method of tungsten nano powder without impurities and its sintered part}

본 발명은 기능성 텅스텐 벌크제품용 원료분말로서 불순물이 없는 텅스텐 나노금속분말을 제조하는 방법에 관한 것이다. 또한, 본 발명은 이와 같이 제조된텅스텐 나노금속분말을 비교적 낮은 온도에서 소결하여 소결체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a tungsten nanometal powder free of impurities as a raw material powder for functional tungsten bulk products. The present invention also relates to a method for producing a sintered body by sintering the tungsten nanometal powder thus prepared at a relatively low temperature.

종전의 텅스텐 원료분말의 제조 방법에 따르면, 조대한 텅스텐 분말을 성형하여 1250 - 1400℃에서 소결한 후, 쿨리지(coolidge) 법으로 2500℃ 이상 가열하여 이론 밀도의 90% 이상의 텅스텐 소결체를 제조하였다. 텅스텐은 고융점 금속이기 때문에 주조공정에 의한 제품의 제조가 불가능하며, 소결 공정에 의한 제조시 텅스텐 분말의 90% 이상의 치밀화를 위해서 2500℃ 이상의 가열이 요구된다. 따라서, 이 방법에서처럼 텅스텐 분말을 1차 소결한 후 2500℃ 이상의 온도로 가열하기 위해 통전시키는 쿨리지 법을 이용하는데, 이렇게 제조된 텅스텐 소결체는 일반적으로 스웨이징 공정에 적용할 수 있는 92 ~ 94%의 치밀화율을 나타낸다. 그러나, 전류에 의해 고온으로 승온해야 하기 때문에 많은 전기에너지가 소모되고 따라서 제조 비용이 높아지게 된다.According to the conventional production method of tungsten raw powder, coarse tungsten powder was molded and sintered at 1250-1400 ° C., and then heated to 2500 ° C. or more by a coolidge method to produce a tungsten sintered body of 90% or more of theoretical density. Since tungsten is a high melting point metal, it is impossible to manufacture a product by a casting process, and heating at 2500 ° C. or more is required for densification of 90% or more of tungsten powder when manufacturing by a sintering process. Therefore, as in this method, the first method of sintering tungsten powder and then using a Coolidge method, which is energized to heat to a temperature of 2500 ° C. or higher, the tungsten sintered body thus produced is generally 92-94% that can be applied to the swaging process. Densification rate is shown. However, because of the need to increase the temperature to a high temperature by the current, a lot of electrical energy is consumed, and thus the manufacturing cost is high.

위와 같은 종래 기술의 문제점을 개선하기 위해 제시된 방법이 텅스텐 분말의 소결성을 높이기 위해 소결활성제를 첨가하는 방법인데, 이 방법의 일례에 따르면, 조대한 텅스텐 분말에 니켈을 1 중량% 이하로 첨가한 후, 1400℃ 이하의 온도에서 소결하여 95% 이상의 텅스텐 소결체를 제조한다. 니켈과 같은 천이금속을 소량 첨가하면 텅스텐 분말은 1500℃ 이하의 온도에서 95% 이상의 치밀화율을 나타낸다. 그러나, 첨가된 니켈은 텅스텐의 결정립 계면에 합금상을 형성하여 연성을 저하시킨다. 따라서, 텅스텐 필라멘트를 제조하기 위한 스웨이징 공정 시, 텅스텐 소결체는 파괴가 일어나게 된다. 또한, 니켈은 텅스텐의 입자 성장을 초래하여강도와 같은 기계적 성질을 급격히 저하시킨다.The method proposed to improve the problems of the prior art as described above is a method of adding a sintering activator to increase the sinterability of the tungsten powder, according to one example of this method, after adding nickel to the coarse tungsten powder to 1% by weight or less , And sintered at a temperature of 1400 ℃ or less to produce a tungsten sintered body of 95% or more. When a small amount of a transition metal such as nickel is added, the tungsten powder exhibits a densification rate of 95% or more at a temperature of 1500 ° C or lower. However, the added nickel forms an alloy phase at the grain boundary of tungsten and lowers the ductility. Therefore, in the swaging process for producing tungsten filament, the tungsten sintered body is destroyed. In addition, nickel causes grain growth of tungsten, which dramatically lowers mechanical properties such as strength.

위의 종래 기술을 종합적으로 검토하여 볼 때, 텅스텐 금속을 효과적으로 제조하기 위해서는 첨가제 없이 저온에서 소결하는 방법이 이상적임을 알 수 있다. 그러기 위해서는 텅스텐 분말의 소결구동력을 극대화시켜야 한다. 즉, 비표면적이 극대화된 텅스텐 나노분말의 합성이 요구된다.In a comprehensive review of the prior art, it can be seen that the method of sintering at low temperature without additives is ideal for effectively producing tungsten metal. To this end, it is necessary to maximize the sintering driving force of the tungsten powder. That is, the synthesis of tungsten nanopowders with a maximum specific surface area is required.

텅스텐 나노분말은 텅스텐 산화물을 환원하여 얻을 수 있다고 알려져 있는데, 이 경우 텅스텐 나노 분말의 입자 크기는 산화물 응집체(agglomerate)의 기공 구조에 의존한다. 그 이유는 수증기가 기공을 통해 효과적으로 방출되면 환원반응 영역에서의 수증기 분압이 낮아지면서 생성되는 텅스텐 입자크기가 작아지기 때문이다. 따라서, 일반적으로 조밀한 미세구조를 갖는 텅스텐 염으로부터 제조한 텅스텐 산화물 분말은 수소환원공정시 수증기방출이 어려워 수증기분압을 상승시키고 텅스텐 입자성장을 초래하게 되어, 나노크기의 텅스텐 분말을 제조할 수 없다.Tungsten nanopowders are known to be obtained by reducing tungsten oxide, in which case the particle size of the tungsten nanopowders depends on the pore structure of the oxide agglomerates. The reason for this is that when the water vapor is effectively released through the pores, the partial pressure of tungsten is reduced as the water vapor partial pressure in the reduction reaction region is lowered. Therefore, in general, tungsten oxide powder prepared from tungsten salt having a dense microstructure is difficult to release steam during the hydrogen reduction process, thereby increasing the water vapor partial pressure and causing tungsten grain growth, and thus nano-tungsten powder cannot be prepared. .

따라서, 본 발명은 불순물이 없는 텅스텐 나노분말을 제조하는 방법으로, 상압소결공정으로 비교적 낮은 온도에서 저가의 설비와 제조비용으로 완전 치밀화에 가까운 소결체를 제조할 수 있는 방법을 제공하고자 하는 것이다.Accordingly, the present invention is to provide a method for producing a tungsten nano-powder free of impurities, a method capable of producing a sintered compact close to the perfect densification at a relatively low temperature and a low cost equipment and manufacturing costs by the atmospheric pressure sintering process.

도 1은 실시예 1에서 제조된 텅스텐 산화물의 주사전자 현미경 사진이다.1 is a scanning electron micrograph of the tungsten oxide prepared in Example 1.

도 2은 실시예 1에서 제조된 텅스텐 나노금속분말의 주사전자 현미경 사진이다.2 is a scanning electron micrograph of the tungsten nanometal powder prepared in Example 1.

도 3는 실시예 1과 비교예 1의 소결 온도에 따른 소결 상대밀도를 나타낸 그래프이다.3 is a graph showing the sintering relative density according to the sintering temperature of Example 1 and Comparative Example 1.

도 4은 실시예 1의 텅스텐 나노금속분말을 1350℃에서 1 시간 동안 소결한 소결체의 주사전자현미경 사진이다.4 is a scanning electron micrograph of a sintered body obtained by sintering the tungsten nanometal powder of Example 1 at 1350 ° C. for 1 hour.

도 5는 실시예 1의 텅스텐 나노금속분말을 1450℃에서 1 시간 동안 소결한 소결체의 주사전자현미경 사진이다.5 is a scanning electron micrograph of a sintered body obtained by sintering the tungsten nanometal powder of Example 1 at 1450 ° C. for 1 hour.

본 발명은 텅스텐 산화물을 미세하게 분쇄한 후 수소환원함으로써 불순물의 혼입됨이 없이 텅스텐 나노분말을 제조하는 방법을 제공한다.The present invention provides a method for producing a tungsten nanopowder without finely crushed tungsten oxide and hydrogen reduction to avoid the incorporation of impurities.

즉, 본 발명에 따르면, 텅스텐 산화물을 합금/복합 나노금속분말 제조기술인 본 발명자의 선행 특허출원(대한민국 특허 출원 10-2000-64779)의 초음파 밀링법을 이용하여 불순물 혼입없이 분쇄한다. 구체적으로, 상기 특허출원에는 금속산화물, 상기 금속산화물에 충격 및 전단력을 가하는 볼밀용 볼메디아, 상기 금속산화물에 유동성을 제공하는 볼밀용 용매를 하나의 용기에 장입한 후, 상기 용기를 초음파 발생기에 넣어 상기 볼메디아의 진동에 의한 초음파 볼밀을 행함으로써, 상기 금속산화물을 분쇄혼합하는 단계와; 상기 분쇄혼합된 금속산화물을 건조한후 수소환원하는 단계로 이루어진 고순도 합금 및 복합상 나노금속분말의 제조방법이 제시되어 있다.본 발명은 이러한 초음파 볼밀링법으로 단상의 텅스텐산화물을 미분쇄한후 수소환원열처리를 통하여 텅스텐나노분말을 제조함을 특징으로 하며, 이러한 초음파 볼밀링에 의한 분쇄 공정에 의해 산화물 응집체(agglomerate) 내부의 기공량이 증가되어 수소 환원시 발생되는 수증기가 효과적으로 방출된다. 그리고 효과적인 수증기 방출은 환원반응 영역에서의 수증기 분압을 낮추는 결과를 초래하여 합성되는 텅스텐 입자의 나노화를 가능케 한다.That is, according to the present invention, tungsten oxide is pulverized without incorporation of impurities using the ultrasonic milling method of the prior patent application of the inventor (Korean Patent Application No. 10-2000-64779), which is an alloy / composite nanometal powder production technology. Specifically, the patent application includes a metal oxide, a ball mill ball media for applying impact and shear forces to the metal oxide, a ball mill solvent for providing fluidity to the metal oxide in one container, and then placing the container in an ultrasonic generator. Pulverizing and mixing the metal oxide by putting an ultrasonic ball mill by vibration of the ball media; A method for producing a high purity alloy and a composite nanometal powder comprising the steps of drying the pulverized mixed metal oxide and then hydrogen reduction is disclosed. Tungsten nano-powder is produced through reduction heat treatment, and the pore amount in the oxide aggregate is increased by the pulverization process by ultrasonic ball milling to effectively release water vapor generated during hydrogen reduction. And the effective vapor release results in lowering the partial pressure of water vapor in the reduction zone, enabling the nanotization of the synthesized tungsten particles.

텅스텐 산화물은 10 내지 100 시간 동안의 초음파 밀링 공정에 의해 미세하고 균일하게 분쇄된다. 분쇄된 텅스텐 산화물을 650 내지 1000℃의 온도 범위에서 30 분 ~ 5 시간 동안 수소환원시켜 텅스텐 나노 분말을 수득한다. 만일 환원온도가 650℃미만이면 환원시간이 늘어나 생산성이 나빠지며, 1000℃를 초과하면 입자가 성장 및 응집되기 때문에 후속하는 소결공정에서 소결구동력을 주지 못하여 치밀화된 입자를 얻기 힘들다.Tungsten oxide is finely and uniformly crushed by an ultrasonic milling process for 10 to 100 hours. The ground tungsten oxide is hydrogen reduced in a temperature range of 650 to 1000 ° C. for 30 minutes to 5 hours to obtain tungsten nanopowders. If the reduction temperature is less than 650 ℃ the reduction time is increased to increase the productivity, and if it exceeds 1000 ℃ because the particles are grown and aggregated, it is difficult to obtain densified particles due to the sintering driving force in the subsequent sintering process.

이와 더불어, 수득된 텅스텐 나노 분말은 1250 ~ 1700℃ 온도의 수소분위기에서 소결될 수 있다. 이러한 온도범위에서 결정입크기를 가능한 작게하면서 92%이상 치밀화된 소결체를 빠른 시간내에 얻을 수 있다.In addition, the obtained tungsten nano powder may be sintered in a hydrogen atmosphere of 1250 ~ 1700 ℃ temperature. In this temperature range, the sintered compact densified by 92% or more can be obtained in a short time while making the grain size as small as possible.

<실시예><Example>

이하에, 본 발명을 실시예 및 도면을 통하여 보다 상세히 설명하지만, 본 발명은 이들 실시예에 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and drawings, but the present invention is not limited to these examples.

<실시예 1><Example 1>

20 ㎛의 평균 입도를 가지는 청색(blue) 텅스텐 산화물을 대한민국 특허출원 제 10-2000-64779 호에 개시된 방법을 이용하여 20 시간 동안 초음파 볼밀링하였다. 사용된 초음파 발생기의 용기는 400 mm(가로) x 390 mm(너비) x 200 mm(높이)의 크기를 가지며, 출력은 1200 W 였다.Blue tungsten oxide having an average particle size of 20 μm was ultrasonically ball milled for 20 hours using the method disclosed in Korean Patent Application No. 10-2000-64779. The vessel of the ultrasonic generator used had a size of 400 mm (width) x 390 mm (width) x 200 mm (height) and the output was 1200 W.

초음파에 의해 볼밀링된 텅스텐 산화물 분말은 건조 후 스폰지 케이크의 형태를 가지고 있으며, 이를 100 메쉬의 체로 체질하여 분말상태로 만들었다. 도 1은이와 같이 분쇄된 텅스텐 산화물의 형상을 주사전자현미경(배율: 150,000 배)으로 관찰한 사진이다. 사진에서 보듯이 텅스텐 산화물은 성공적으로 50 nm 이하 크기로 분쇄되었으며 또한 미세한 입자들이 미세한 기공을 형성하고 있는 것을 알 수 있다.Tungsten oxide powder ball milled by ultrasonication has a form of a sponge cake after drying, which is sieved in a 100 mesh sieve to a powder state. 1 is a photograph observing the shape of the tungsten oxide pulverized in this manner with a scanning electron microscope (magnification: 150,000 times). As shown in the photo, tungsten oxide was successfully crushed to 50 nm or less, and it can be seen that fine particles form fine pores.

수득된 산화물 분말의 수소환원을 800℃에서 1 시간 동안 수행하여 텅스텐 나노금속분말을 제조하였다. 수득된 텅스텐 나노금속 분말을 주사전자현미경으로 관찰한 사진은 도 1과 같다(배율: 50,000 배). 관찰 결과, 300 nm 이하의 텅스텐 입자들이 관찰되었다. BET 장비를 사용하여 측정한 상기 분말의 비표면적은 4.0 m2/g 이었다. 이 값으로 계산된 텅스텐의 입자 크기는 78 nm 였다. 즉, 사진에서 관찰되는 텅스텐 나노금속 분말의 평균 입도는 78 nm 인 것으로 확인되었다.Hydrogen reduction of the obtained oxide powder was performed at 800 ° C. for 1 hour to prepare tungsten nanometal powder. The photograph of observing the obtained tungsten nanometal powder with a scanning electron microscope is shown in Figure 1 (magnification: 50,000 times). As a result, tungsten particles of less than 300 nm were observed. The specific surface area of the powder measured using a BET instrument was 4.0 m 2 / g. The particle size of tungsten, calculated from this value, was 78 nm. That is, the average particle size of the tungsten nanometal powder observed in the photograph was confirmed to be 78 nm.

제조된 텅스텐 나노금속 분말을 250 MPa의 압력 하에 직경 15 mm, 높이 10 mm의 원통형 성형체로 제조하였다. 이 때의 성형 밀도는 52% 였다. 수득된 성형체를 1250 ~ 1450℃에서 1 시간 동안 수소 분위기에서 유지하여 소결하였다.The prepared tungsten nanometal powder was made into a cylindrical molded body having a diameter of 15 mm and a height of 10 mm under a pressure of 250 MPa. The molding density at this time was 52%. The obtained molded product was sintered at 1250 to 1450 ° C. for 1 hour in a hydrogen atmosphere.

도 2는 온도에 따른 소결밀도의 변화를 나타내는 그래프이다. 1350℃ 및 1450℃에서 1 시간 소결 후, 각각 92% 및 95%의 소결 상대밀도를 나타내었다.2 is a graph showing a change in sintered density with temperature. After 1 hour of sintering at 1350 ° C. and 1450 ° C., sintering relative densities of 92% and 95% were shown, respectively.

도 3과 도 4는 1350℃와 1450℃에서 각각 1 시간 소결한 상기 시편의 미세구조를 주사전자현미경(배율: 7,000)으로 관찰한 사진이다. 1350℃와 1450℃에서 소결한 시편의 텅스텐 입자 크기는 각각 2-3 ㎛, 3-4 ㎛의 범위를 나타내어, 매우 균일한 것을 알 수 있다. 또한, 소결 상대밀도와 기공들의 미세구조 상의 비율을비교해보면, 대부분의 기공들이 텅스텐 입자의 계면에 존재하고 있다.3 and 4 are photographs of the microstructure of the specimen sintered at 1350 ° C. and 1450 ° C. for 1 hour, respectively, using a scanning electron microscope (magnification: 7,000). The tungsten particle sizes of the specimens sintered at 1350 ° C. and 1450 ° C. were in the range of 2-3 μm and 3-4 μm, respectively, indicating that they were very uniform. In addition, when comparing the sintered relative density and the ratio of pores on the microstructure, most of the pores exist at the interface of the tungsten particles.

<비교예 1>Comparative Example 1

평균 입도 2.0 ㎛의 텅스텐 분말을 사용하여 상대밀도 60%의 성형체를 제조하였다. 제조된 성형체를 1200 ~ 1500℃에서 1 시간 동안 유지하여 소결시켰다.Using a tungsten powder having an average particle size of 2.0 μm, a molded body having a relative density of 60% was prepared. The molded product was sintered by maintaining at 1200 ~ 1500 ℃ for 1 hour.

1500℃에서 1 시간 소결 후 소결밀도는 불과 74% 였다(도 2).After sintering at 1500 ° C. for 1 hour, the sintered density was only 74% (FIG. 2).

본 발명의 방법에 따라 제조된 텅스텐 나노분말은 완전치밀화에 도달할 수 있는 우수한 소결특성을 나타내므로, 높은 비중을 요구하는 소재를 순수 텅스텐으로 제조하는 것이 가능하다. 특히, 성형밀도 52%의 텅스텐 성형체가 1450℃ 의 낮은 소결온도에서 95% 이상의 진밀도에 가까운 치밀화를 이루었다. (도 3) 따라서, 높은 소결특성을 갖는 본 발명의 텅스텐 나노분말은 복잡한 형상의 제품을 제조하기 위한 분말사출 성형용 원료분말로 적합하다. 또한, 상기 나노분말은 92 ~ 94%의 소결밀도를 요구하는 스웨이징용 텅스텐 소결체로도 사용될 수 있으며, 더욱이, 소결 후 대부분의 기공들이 계면에 잔류하므로, 스웨이징용 텅스텐 소결체를 제조하기 위한 원료분말로서 극히 바람직하다.Since the tungsten nanopowder prepared according to the method of the present invention exhibits excellent sintering characteristics that can reach full densification, it is possible to produce a material requiring high specific gravity from pure tungsten. In particular, a tungsten molded body having a molding density of 52% achieved densification close to 95% or more at a low sintering temperature of 1450 ° C. Therefore, the tungsten nanopowder of the present invention having high sintering characteristics is suitable as a raw powder for powder injection molding for producing a product having a complicated shape. In addition, the nanopowder may be used as a tungsten sintered body for swaging that requires a sintering density of 92 to 94%. Furthermore, since most pores remain at the interface after sintering, the nanopowder is used as a raw material powder for producing the tungsten sintered body for swaging. Extremely preferred.

본 발명의 텅스텐 나노분말을 사용하여, 복잡한 형상을 갖는 순수한 텅스텐 제품의 제조가 가능해졌으며, 1450℃ 이하의 저온 상압소결이라는 단순한 공정 조건과 저가의 설비로 스웨이징용 텅스텐 소결체의 제조가 가능하다.By using the tungsten nanopowder of the present invention, it is possible to manufacture a pure tungsten product having a complicated shape, and it is possible to manufacture a tungsten sintered body for swaging using a simple process condition of low temperature atmospheric pressure sintering at 1450 ° C. and a low cost facility.

필라멘트 제조용 텅스텐 와이어를 주로 수입에 의존하는 국내의 산업 실정에서 본 발명의 기술에 의한 텅스텐 나노 분말의 제조는 수입대체의 효과가 클 것으로 기대된다.In the domestic industrial situation in which the tungsten wire for filament production mainly depends on the import, the production of tungsten nano powder by the technology of the present invention is expected to have a great effect of import substitution.

또한, 본 발명은 순수 텅스텐 산화물을 미세하게 분쇄한후 수소환원하면 텅스텐 나노분말을 제조할 수 있다는 것을 나타낸다. 따라서 0.1 중량% 이하의 극소량의 불순물이 혼입되지만 효과적으로 산화물을 분쇄할 수 있어 텅스텐-구리 나노복합분말제조에 사용된 고에너지 볼밀링과 같은 기계적 방법(대한민국 특허 공고 제 97-1558)이 순수 텅스텐 나노분말제조에 사용될 수 있다. 이렇게 제조된 분말은 극소량의 불순물이 허용되는 제품에 사용될 것으로 기대된다. 일례로, 휴대폰의 진동자와 같은 높은 비중을 요구하는 제품이 있다.In addition, the present invention shows that the tungsten nanopowder can be prepared by finely pulverizing pure tungsten oxide and then hydrogen reduction. Therefore, a small amount of impurities of less than 0.1% by weight is mixed, but the oxide can be crushed effectively, so that mechanical methods such as high-energy ball milling used in the production of tungsten-copper nanocomposite powder (Korean Patent Publication No. 97-1558) are pure tungsten nano It can be used for powder production. The powders thus prepared are expected to be used in products that allow a small amount of impurities. For example, there is a product that requires a high specific gravity such as a vibrator of a mobile phone.

Claims (5)

텅스텐 산화물, 상기 텅스텐산화물에 충격 및 전단력을 가하는 볼밀용 볼메디아, 상기 텅스텐산화물에 유동성을 제공하는 볼밀용 용매를 하나의 용기에 장입한 후, 상기 용기를 초음파 발생기에 넣어 상기 볼메디아의 진동에 의한 초음파 볼밀을 행함으로써 상기 텅스텐산화물을 미분쇄하는 단계와;After charging tungsten oxide, a ball mill ball media for applying the impact and shear force to the tungsten oxide, and a ball mill solvent for providing fluidity to the tungsten oxide in one container, the container is placed in an ultrasonic generator for vibration of the ball media. Pulverizing the tungsten oxide by performing an ultrasonic ball mill; 상기 초음파 볼밀에 의해 미분쇄된 텅스텐산화물을 건조한 후, 650~1000℃ 온도범위에서 수소환원시키는 단계;를 포함하는 텅스텐 나노금속 분말 제조방법.Tungsten nanometal powder manufacturing method comprising the step of drying the finely ground tungsten oxide by the ultrasonic ball mill, hydrogen reduction at a temperature range of 650 ~ 1000 ℃. 삭제delete 삭제delete 삭제delete 텅스텐 산화물, 상기 텅스텐산화물에 충격 및 전단력을 가하는 볼밀용 볼메디아, 상기 텅스텐산화물에 유동성을 제공하는 볼밀용 용매를 하나의 용기에 장입한 후, 상기 용기를 초음파 발생기에 넣어 상기 볼메디아의 진동에 의한 초음파 볼밀을 행함으로써, 상기 금속산화물을 미분쇄하는 단계;After charging tungsten oxide, a ball mill ball media for applying the impact and shear force to the tungsten oxide, and a ball mill solvent for providing fluidity to the tungsten oxide in one container, the container is placed in an ultrasonic generator for vibration of the ball media. Pulverizing the metal oxide by performing an ultrasonic ball mill; 상기 초음파 볼밀에 의해 미분쇄된 텅스텐산화물을 건조한 후, 650~1000℃ 온도범위에서 수소환원열처리시키는 단계;및Drying the finely ground tungsten oxide by the ultrasonic ball mill and then performing hydrogen reduction heat treatment at a temperature range of 650 to 1000 ° C .; and 상기 수소환원열처리에 의해 형성된 텅스텐나노금속분말을 성형한후, 1250 ~ 1700℃ 온도의 수소분위기에서 소결하는 단계;를 포함하는 텅스텐 소결체의 제조 방법.Forming the tungsten nano-metal powder formed by the hydrogen reduction heat treatment, and sintering in a hydrogen atmosphere of 1250 ~ 1700 ℃ temperature; manufacturing method of a tungsten sintered body comprising a.
KR10-2001-0065506A 2001-10-23 2001-10-23 A production method of tungsten nano powder without impurities and its sintered part KR100428948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065506A KR100428948B1 (en) 2001-10-23 2001-10-23 A production method of tungsten nano powder without impurities and its sintered part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065506A KR100428948B1 (en) 2001-10-23 2001-10-23 A production method of tungsten nano powder without impurities and its sintered part

Publications (2)

Publication Number Publication Date
KR20030033503A KR20030033503A (en) 2003-05-01
KR100428948B1 true KR100428948B1 (en) 2004-04-29

Family

ID=29566044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0065506A KR100428948B1 (en) 2001-10-23 2001-10-23 A production method of tungsten nano powder without impurities and its sintered part

Country Status (1)

Country Link
KR (1) KR100428948B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040020B1 (en) 2018-08-29 2019-11-04 주식회사 영동테크 Metal nano powder including solid solution of Ag and Cu
KR20220057248A (en) 2020-10-29 2022-05-09 주식회사 영동테크 Metal nanopowder comprising dandelion extract and method for preparing thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936016B1 (en) * 2007-11-23 2010-01-11 한양대학교 산학협력단 Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby
KR101019503B1 (en) * 2008-06-26 2011-03-07 충남대학교산학협력단 Low Temperature Fabrication Method of Nano-size Tungsten Powders by Zinc Reduction
KR101241746B1 (en) * 2012-03-21 2013-03-15 주식회사 이맥머트리얼솔루션 Tungsten powder product method using waste tungsten
CN104388724B (en) * 2014-11-24 2016-08-24 中南大学 A kind of process for dispersing of ultrafine WC powder
KR102295783B1 (en) 2020-03-25 2021-08-30 동의대학교 산학협력단 Method for manufacturing high strength tungsten using low temperature compression sintering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923805A (en) * 1982-07-30 1984-02-07 Nippon Tungsten Co Ltd Manufacture of fine tungsten powder
JPS613612A (en) * 1984-06-16 1986-01-09 Hokkai Tungsten Kogyo Kk Manufacture of tungsten pipe
JPS6173801A (en) * 1984-09-17 1986-04-16 Toshiba Corp Tungsten powder and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923805A (en) * 1982-07-30 1984-02-07 Nippon Tungsten Co Ltd Manufacture of fine tungsten powder
JPS613612A (en) * 1984-06-16 1986-01-09 Hokkai Tungsten Kogyo Kk Manufacture of tungsten pipe
JPS6173801A (en) * 1984-09-17 1986-04-16 Toshiba Corp Tungsten powder and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040020B1 (en) 2018-08-29 2019-11-04 주식회사 영동테크 Metal nano powder including solid solution of Ag and Cu
WO2020045728A1 (en) 2018-08-29 2020-03-05 주식회사 영동테크 Metal nanopowder comprising solid solution of silver and copper
KR20220057248A (en) 2020-10-29 2022-05-09 주식회사 영동테크 Metal nanopowder comprising dandelion extract and method for preparing thereof

Also Published As

Publication number Publication date
KR20030033503A (en) 2003-05-01

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP2003193116A (en) Method of producing tungsten-copper composite powder and method of producing sintered alloy for heat- radiation using the same
JP4063151B2 (en) Porous spherical nickel powder and method for producing the same
CN1329955A (en) Tungsten-copper composite powder
RU2718723C1 (en) Sintering method in discharge plasma for making composite with metal matrix reinforced with single-wall carbon nanotubes, and composite material obtained by such method
KR20060098784A (en) Fabrication method of nanocomposite powders consisted of carbon nanotubes with metal
KR100840742B1 (en) Manufacturing method of carbon nano tube/metal composite powder
CN110408833A (en) A kind of preparation method of NbTaTiZr high-entropy alloy and its powder
CN107473237A (en) A kind of preparation method of binary tungsten boride superhard material
KR100428948B1 (en) A production method of tungsten nano powder without impurities and its sintered part
KR101144884B1 (en) Tungsten Nanocomposites Reinforced with Nitride Ceramic Nanoparticles and Fabrication Process Thereof
CN108178636B (en) Si3N4/SiC composite wave-absorbing ceramic and preparation method thereof
JP2007320802A (en) SiC CERAMIC AND METHOD FOR PRODUCING THE SAME
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
KR101195066B1 (en) Tungsten Nanocomposites Reinforced with Nitride Ceramic Nanoparticles and Fabrication Process Thereof
KR100408647B1 (en) Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
KR100446985B1 (en) A PREPARATION OF W-Cu COMPOSITE POWDER
JP4375948B2 (en) Nano SiC sintered body and manufacturing method thereof
KR970001558B1 (en) Method for composite powder
KR20090056242A (en) Method to produce sintering powder by grinding process with carbon nano tube
KR20140061014A (en) Carbide-dispersed metal matrix composites by liquid reactive sintering and method thereof
JP3032818B2 (en) Titanium boride dispersed hard material
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body
JP2005325451A (en) Sintered compact of zinc-antimony compound

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150513

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 16