JPH01125907A - High intensity rare earth based cobalt magnet and manufacture thereof - Google Patents
High intensity rare earth based cobalt magnet and manufacture thereofInfo
- Publication number
- JPH01125907A JPH01125907A JP62284770A JP28477087A JPH01125907A JP H01125907 A JPH01125907 A JP H01125907A JP 62284770 A JP62284770 A JP 62284770A JP 28477087 A JP28477087 A JP 28477087A JP H01125907 A JPH01125907 A JP H01125907A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- particle size
- earth based
- based cobalt
- cobalt magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 20
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 19
- 239000010941 cobalt Substances 0.000 title claims abstract description 19
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012298 atmosphere Substances 0.000 abstract description 6
- 239000002904 solvent Substances 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 238000005452 bending Methods 0.000 abstract 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract 2
- 238000005266 casting Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、VCM、ステッピングモータ等に用いられる
希土類コバルト磁石に関し、特に高信頼性の用途に好適
の抗折力が高いもの及びその製造方法に関するものであ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to rare earth cobalt magnets used in VCMs, stepping motors, etc., and particularly those with a high transverse rupture strength suitable for high reliability applications, and a method for manufacturing the same. It is related to.
永久磁石合金の一つである希土類コバルト磁石は、その
優れた磁気特性のためKVCM(ボイスコイルモータ)
、ステッピングモータ等に多用されておシ今中高信頼性
を要求される情報処理機器の中枢部品の1つである。Rare earth cobalt magnets, which are one of the permanent magnet alloys, are used in KVCMs (voice coil motors) due to their excellent magnetic properties.
It is widely used in stepping motors, etc., and is now one of the central components of information processing equipment that requires high reliability.
そして、磁気特性に関する研究は盛んである反面、その
機械的性質に関する研究はあまシなされておらず、それ
に言及した公開公報等も、我々が知シ得る@シではない
。その理由性、機械的性質が従来は第二次的な因子にす
ぎなかつたことによると思われる。And while research on magnetic properties is active, research on its mechanical properties has not been done extensively, and there are no published publications that mention it that we can know about. The reason for this seems to be that mechanical properties were conventionally only a secondary factor.
しかし、近年の希土類コバルト磁石の用途は、従来に比
して、高信頼性を要求されるようになり、例えばこれら
機器の中で、何らかの原因〔ヒートン1ツク(熱衝撃)
など〕で磁石が破損した場合は大事故となり得る。また
、製造の自動化、いわゆるFA化が急速に進展する現代
においては、磁石のこれら機器への組込みも人手からロ
ボットへと移行しつつある。特に着磁された磁石を組込
む場合にはワレ、カケが生じ易かった。従って、こうし
た点からも磁石の機械的強度への要求が増大していた。However, in recent years, the use of rare earth cobalt magnets has required higher reliability than in the past.
etc.] If the magnet is damaged, it could result in a serious accident. Furthermore, in the modern era where manufacturing automation, so-called FA, is rapidly progressing, the integration of magnets into these devices is also shifting from manual labor to robots. Particularly when a magnetized magnet is incorporated, cracks and chips are likely to occur. Therefore, from this point of view as well, the demand for the mechanical strength of magnets has increased.
しかし、従来の製造方法によって製造された希土類コバ
ルト磁石では10 kf/−以上の抗折力が安定して得
られ難く、機器のへ頼性向上2組立のロボット化(%に
着磁後組立をする場合)へのニーズに十分応え得るもの
ではなかった。そのためには抗折力が101#/−以上
が要求されているからである。However, with rare earth cobalt magnets manufactured using conventional manufacturing methods, it is difficult to stably obtain a transverse rupture force of 10 kf/- or more. It was not possible to sufficiently meet the needs of This is because a transverse rupture strength of 101#/- or more is required for this purpose.
なお、従来の製造方法が不十分だった理由は、この合金
の硬くて粉砕しにくい性質にありた。すなわち、そのた
めに粒度分布は非常にバラツキが大きくなることにある
と解する。The reason why conventional manufacturing methods were unsatisfactory was that this alloy was hard and difficult to crush. In other words, it is understood that this is why the particle size distribution varies greatly.
そこで、本発明は抗折力低下の原因を究明することによ
って抗折力10に/−以上の希土類コバルト礎石及びそ
の製造方法を提供するものである。Therefore, the present invention provides a rare earth cobalt foundation stone having a transverse rupture strength of 10/- or more by investigating the cause of the decrease in transverse rupture strength, and a method for producing the same.
本発明は、平均粒度3〜6μm1粒度分布の標準偏差δ
≦2.60であシ、抗折力が10 V−以上の高強度希
土類コバルト磁石及び、希土類元素が1種以上とコバル
ト及びその他の遷移金属の1種以上からなる合金粉末を
磁場中成形、焼結、熱処理等の工程で永久磁石を製造す
る方法において、粉末を分級し粉末粒度分布を調整する
工程を入れて製造することを特徴とする高強度希土類コ
バルト磁石の製造方法である。The present invention has an average particle size of 3 to 6 μm, a standard deviation of particle size distribution δ
≦2.60, a high-strength rare earth cobalt magnet with a transverse rupture strength of 10 V or more, and an alloy powder consisting of one or more rare earth elements and one or more cobalt and other transition metals in a magnetic field, This is a method of manufacturing a high-strength rare earth cobalt magnet, which is characterized by including a step of classifying powder and adjusting the powder particle size distribution in a method of manufacturing a permanent magnet through processes such as sintering and heat treatment.
希土類元素とは、Sm * Ce * Pr * Sc
、 Y a La*Nd。Rare earth elements are Sm * Ce * Pr * Sc
, Y a La * Nd.
Pm * Eu * Gd a Tb t Dy l
Er s Yb 、 Lu 、 Tm + Hoあるい
は二徨以上の混合物(いわゆるミツシュメタル)であシ
、遷移金属とはFe * Zr * Cu * Hf
+ Ti 、 Nb 。Pm * Eu * Gd a Tb t Dy l
Er s Yb, Lu, Tm + Ho, or a mixture of two or more of them (so-called Mitsushmetal). Transition metals are Fe * Zr * Cu * Hf
+ Ti, Nb.
V + Ta等である。V + Ta etc.
この合金は、溶解鋳造法によってインゴットを粉砕して
得られるか、超急冷法によって得られたフレークを粉砕
するか直接粉末を作成するかの方法によって粉砕される
。This alloy is obtained by crushing an ingot by a melt casting process, or by crushing flakes obtained by an ultra-quenching process, or by directly creating a powder.
溶解鋳造法による場合を例にとって本発明を説明すると
、インゴットはハンマーミルやブラウンミル等の機械的
手段により粗粉砕される。この時の粒度は数十μである
。これを更に非酸化性雰囲気(不活性ガスg Ar e
Nt a又は溶媒のトルエン。To explain the present invention using a melting and casting method as an example, an ingot is roughly pulverized by mechanical means such as a hammer mill or a Brown mill. The particle size at this time is several tens of microns. This is further heated in a non-oxidizing atmosphere (inert gas
Nta or solvent toluene.
アルコール等)の中で微粉砕する。例えば、ボールミル
、ジェットミル、振動ミル等で微粉砕して平均粒度を6
μ以下にする。(alcohol, etc.). For example, finely pulverize with a ball mill, jet mill, vibration mill, etc. to reduce the average particle size to 6.
Make it less than μ.
次に公知の空気分級機を用いて粒度分布を調整する。粒
度分布を調整して粉体性状を改善しない場合は粗粒が混
入し、焼結後にもこれが残存する。Next, the particle size distribution is adjusted using a known air classifier. If the powder properties are not improved by adjusting the particle size distribution, coarse particles will be mixed in and remain even after sintering.
そのために、これが応力を加えた場合に切欠き部として
作用して抗折力を低下させることを見出した。すなわち
、最終製造工程を経て希土類コバルト磁石としてのPJ
r望の永久磁石特性が付与された状態で、平均粒径が3
〜6μm1粒度分布の標準偏差δn≦2.60のときに
抗折力が向上することを見出し左ものである。Therefore, it has been found that when stress is applied, this acts as a notch and reduces transverse rupture strength. In other words, PJ as a rare earth cobalt magnet after the final manufacturing process.
With the desired permanent magnetic properties, the average particle size is 3.
It was found that the transverse rupture strength was improved when the standard deviation of particle size distribution δn≦2.60.
なお、分級には前述の空気分級機(例えばターボクラシ
ファイヤー等)方式以外の他の方法でもよく、例えばメ
ツシュによる篩い方式、ジェット粉砕分級機、ジグザグ
分級機、ベントプレックス分級機等により粒度分布の調
整を図ってもよい。In addition, other methods than the above-mentioned air classifier (for example, turbo classifier) may be used for classification, such as mesh sieving, jet crushing classifier, zigzag classifier, ventplex classifier, etc. to control the particle size distribution. Adjustments may be made.
また有機溶媒中での湿式分級を実施しても良い。Wet classification may also be carried out in an organic solvent.
その後、脱ガス、脱溶媒工程を経たのち磁石粉末に対し
て0.05wt%のステアリン酸カルシウムを添加して
、ミキサーで均一化混合を行なう。その後磁場中、ある
いは無磁場中で金型に入れて圧縮成形する。その後、k
g/mm35糸磁石の場合は焼結。Thereafter, after degassing and solvent removal steps, 0.05 wt % of calcium stearate is added to the magnet powder, and homogenized mixing is performed using a mixer. Thereafter, it is placed in a mold and compression molded in a magnetic field or in the absence of a magnetic field. Then k
Sintered for g/mm35 thread magnets.
熱処理を実施する。また2−17系磁石の場合は焼結、
f#体化・時効を実施する。Perform heat treatment. In addition, in the case of 2-17 series magnets, sintering,
f# implementation and statute of limitations.
以下、実施例によって本発明を具体的に説明する0
(実施例)
it百分率でSm15.04%、Ce13.46%、c
。Hereinafter, the present invention will be specifically explained with reference to examples.
.
50.75%、Fe14−17%、Cu4.38%、
Zr 2 、20チを秤量し、アルゴン雰囲気下で溶解
して鋳造した合金インゴットを作成した。これをブラウ
ンミルで50μm程度に粗粉砕し、N2雰囲気にてジェ
ットミルで平均粒径2.1.2.8.4.5,5.6.
6.5μIIIK微粉砕した。この粉末を本発明の方法
(分級)Kよりて粒度調整した場合と、比較例として分
級しないままのものとを準備したのち、これらにそれぞ
れ0.05重t%のステアリン酸カルシウムを添加して
Ar雰囲気内で20分間Vコン混合した。50.75%, Fe14-17%, Cu4.38%,
An alloy ingot was prepared by weighing 20 inches of Zr 2 and melting and casting in an argon atmosphere. This was coarsely ground to about 50 μm using a Brown mill, and then processed using a jet mill in an N2 atmosphere with an average particle size of 2.1.2.8.4.5, 5.6.
It was pulverized to 6.5μIIIK. After preparing a case where the particle size of this powder was adjusted by the method (classification) K of the present invention and a case where it was left unclassified as a comparative example, 0.05% by weight of calcium stearate was added to each of these and Ar The V-con was mixed for 20 minutes in an atmosphere.
次にこれらを横1iIl場プレス(プレス圧力4 ’r
OMでプレス方向と直角方向に10,0000eの磁場
を印加、成形体寸法は40m(長さ)X1!1m+11
I(幅)ス処理(1[r’〜I Cr’Torrで60
0℃×3時間)を施し、次いで760Torrの水素雰
励気内で1160℃×2時間焼結した。これに続いて7
60TorrのアルゴンTI#囲気内で1130℃×4
時間保持したのちオイル中に急冷し、次いで760To
rrのアルゴン雰囲気で740℃×2時間保持後、0
、6 ”C/fkで300℃まで冷却後30分間保持し
、次いで730℃×24時間保持後0.6いで室温まで
冷却した。これを切断、平研加工して24■(長さ)×
8■(幅)×4■(厚さ)の試験片を作成して抗折力な
らびに磁気特性、grain 5izeを測定した。Next, press these horizontally (press pressure 4'r
A magnetic field of 10,0000e is applied in the direction perpendicular to the press direction using OM, and the molded body dimensions are 40m (length) x 1!1m + 11
I (width) processing (1[r'~I Cr'Torr = 60
0° C. for 3 hours) and then sintered at 1160° C. for 2 hours in a hydrogen atmosphere of 760 Torr. Following this, 7
1130℃ x 4 in 60Torr argon TI# atmosphere
After holding for a period of time, it was rapidly cooled in oil and then heated to 760To
After holding at 740°C for 2 hours in an argon atmosphere of rr,
, 6" C/fk to 300°C and held for 30 minutes, then held at 730°C for 24 hours and then cooled to room temperature at 0.6". This was cut and flat-ground to 24cm (length) x
A test piece of 8 cm (width) x 4 cm (thickness) was prepared and its transverse rupture strength, magnetic properties, and grain 5ize were measured.
第1表に抗折力及び磁気特性の結果を示す。この表から
れかるように、平均粒度3〜6μ2粒度δ≦2.60の
場合に抗折力10 kf15!以上の機械的特性が優れ
た希土類コバルト磁石の得られることがわかる。もちろ
ん、磁気特性も良好である。Table 1 shows the results of transverse rupture strength and magnetic properties. As can be seen from this table, when the average particle size is 3 to 6 μ2 and the particle size δ≦2.60, the transverse rupture strength is 10 kf15! It can be seen that a rare earth cobalt magnet with excellent mechanical properties as described above can be obtained. Of course, the magnetic properties are also good.
なお抗折力の試験はJIS−H2SO4によりた。Note that the transverse rupture strength test was based on JIS-H2SO4.
本発明によれは、従来不充分であった抗折力が改善され
、10V−以上の希土類コバルト磁石が安定して得られ
るため、高信頼性かつ自動組立の社会的要諸に応えられ
る永久磁石を得ることができる。According to the present invention, the conventionally insufficient transverse rupture strength is improved, and rare earth cobalt magnets of 10 V or more can be stably obtained, so permanent magnets with high reliability and meeting the social requirements of automatic assembly can be obtained. can be obtained.
Claims (3)
.60あり抗折力が10kg/mm^3以上の高強度希
土類コバルト磁石。1. Average particle size 3-6 μm, standard deviation of particle size distribution δn≦2
.. 60 high strength rare earth cobalt magnet with transverse rupture strength of 10kg/mm^3 or more.
金属の1種以上からなる合金粉末を磁場中成形,焼結,
熱処理等の工程で永久磁石を製造する方法において、粉
末を分級し粉末粒度分布を調整する工程を入れて製造す
ることを特徴とする高強度希土類コバルト磁石の製造方
法。2. An alloy powder consisting of one or more rare earth elements and one or more cobalt and other transition metals is formed in a magnetic field, sintered,
A method for manufacturing a high-strength rare earth cobalt magnet, which comprises adding a step of classifying powder and adjusting powder particle size distribution in a method of manufacturing a permanent magnet through a process such as heat treatment.
準偏差δn≦2.60であることを特徴とする特許請求
の範囲第2項に記載の高強度希土類コバルト磁石の製造
方法。3. The method for producing a high-strength rare earth cobalt magnet according to claim 2, wherein the powder particle size distribution has an average particle size of 3 to 6 μm and a standard deviation of particle size distribution δn≦2.60.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284770A JPH01125907A (en) | 1987-11-11 | 1987-11-11 | High intensity rare earth based cobalt magnet and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284770A JPH01125907A (en) | 1987-11-11 | 1987-11-11 | High intensity rare earth based cobalt magnet and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01125907A true JPH01125907A (en) | 1989-05-18 |
Family
ID=17682788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62284770A Pending JPH01125907A (en) | 1987-11-11 | 1987-11-11 | High intensity rare earth based cobalt magnet and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01125907A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139109A1 (en) | 2017-01-26 | 2018-08-02 | Jsr株式会社 | Radiation-sensitive composition and pattern formation method |
WO2018168221A1 (en) | 2017-03-13 | 2018-09-20 | Jsr株式会社 | Radiation sensitive composition and pattern forming method |
WO2018180049A1 (en) | 2017-03-30 | 2018-10-04 | Jsr株式会社 | Radiation sensitive composition and resist pattern forming method |
-
1987
- 1987-11-11 JP JP62284770A patent/JPH01125907A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139109A1 (en) | 2017-01-26 | 2018-08-02 | Jsr株式会社 | Radiation-sensitive composition and pattern formation method |
WO2018168221A1 (en) | 2017-03-13 | 2018-09-20 | Jsr株式会社 | Radiation sensitive composition and pattern forming method |
WO2018180049A1 (en) | 2017-03-30 | 2018-10-04 | Jsr株式会社 | Radiation sensitive composition and resist pattern forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3686301B1 (en) | Samarium-cobalt magnets and method for preparing the same | |
JP7416476B2 (en) | magnet manufacturing | |
JPH06212327A (en) | Rare earth permanent magnet alloy | |
US5486239A (en) | Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material | |
JPH06231916A (en) | Magnet powder of fe-re-b type, sintered magnet and its preparation modulus | |
JP7255514B2 (en) | Method for producing rare earth magnet powder | |
JPS6181606A (en) | Preparation of rare earth magnet | |
JPH10106875A (en) | Manufacturing method of rare-earth magnet | |
JPH1070023A (en) | Permanent magnet and manufacture thereof | |
JP3303044B2 (en) | Permanent magnet and its manufacturing method | |
JPH01125907A (en) | High intensity rare earth based cobalt magnet and manufacture thereof | |
JPH1092617A (en) | Permanent magnet and its manufacture | |
JPH05258928A (en) | Permanent magnet and powder thereof and manufacturing method thereof | |
JPS6181604A (en) | Preparation of rare earth magnet | |
JPH01155603A (en) | Manufacture of oxidation-resistant rare-earth permanent magnet | |
JP2587617B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP3053344B2 (en) | Rare earth magnet manufacturing method | |
RU2685708C1 (en) | Method for producing heat-resistant rare-earth magnets | |
JP4133315B2 (en) | Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder | |
JPH05152119A (en) | Hot-worked rare earth element-iron-carbon magnet | |
JP3227613B2 (en) | Manufacturing method of powder for rare earth sintered magnet | |
JPH0362775B2 (en) | ||
JPS63216307A (en) | Alloy powder for magnet | |
JPH08148317A (en) | Production of rare earth magnet | |
JPH0246658B2 (en) |