JPH01125907A - High intensity rare earth based cobalt magnet and manufacture thereof - Google Patents

High intensity rare earth based cobalt magnet and manufacture thereof

Info

Publication number
JPH01125907A
JPH01125907A JP62284770A JP28477087A JPH01125907A JP H01125907 A JPH01125907 A JP H01125907A JP 62284770 A JP62284770 A JP 62284770A JP 28477087 A JP28477087 A JP 28477087A JP H01125907 A JPH01125907 A JP H01125907A
Authority
JP
Japan
Prior art keywords
rare earth
particle size
earth based
based cobalt
cobalt magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284770A
Other languages
Japanese (ja)
Inventor
Shuichi Shiina
椎名 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62284770A priority Critical patent/JPH01125907A/en
Publication of JPH01125907A publication Critical patent/JPH01125907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To stably obtain a rare earth based cobalt magnet having a bending resistance force of 10kg/mm<2> or more by making the average grain size 3-6mum and the standard deviation deltan<=2.60. CONSTITUTION:An ingot is coarsely crushed by means of a mechanical means such as a hammer mill of brown mill, and further is finely crushed in a non- oxidizing atmosphere (for example, inactive gas, Ar, N2, or a solvent of toluene or alcohol) to make the average grain size 6mum or less. Next, the grain distribution is adjusted using an atmosphere classifier. In the condition that a rare earth based cobalt is given desired permanent magnet characteristics after it passed the final manufacturing process, a bending resistance force increases when the average grain size is 3-6mum and the standard deviation of the grain distribution deltan<=2.60, and a rare earth based cobalt having a bending resistance force of 10kg/mm<2> or more is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、VCM、ステッピングモータ等に用いられる
希土類コバルト磁石に関し、特に高信頼性の用途に好適
の抗折力が高いもの及びその製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to rare earth cobalt magnets used in VCMs, stepping motors, etc., and particularly those with a high transverse rupture strength suitable for high reliability applications, and a method for manufacturing the same. It is related to.

〔従来の技術〕[Conventional technology]

永久磁石合金の一つである希土類コバルト磁石は、その
優れた磁気特性のためKVCM(ボイスコイルモータ)
、ステッピングモータ等に多用されておシ今中高信頼性
を要求される情報処理機器の中枢部品の1つである。
Rare earth cobalt magnets, which are one of the permanent magnet alloys, are used in KVCMs (voice coil motors) due to their excellent magnetic properties.
It is widely used in stepping motors, etc., and is now one of the central components of information processing equipment that requires high reliability.

そして、磁気特性に関する研究は盛んである反面、その
機械的性質に関する研究はあまシなされておらず、それ
に言及した公開公報等も、我々が知シ得る@シではない
。その理由性、機械的性質が従来は第二次的な因子にす
ぎなかつたことによると思われる。
And while research on magnetic properties is active, research on its mechanical properties has not been done extensively, and there are no published publications that mention it that we can know about. The reason for this seems to be that mechanical properties were conventionally only a secondary factor.

しかし、近年の希土類コバルト磁石の用途は、従来に比
して、高信頼性を要求されるようになり、例えばこれら
機器の中で、何らかの原因〔ヒートン1ツク(熱衝撃)
など〕で磁石が破損した場合は大事故となり得る。また
、製造の自動化、いわゆるFA化が急速に進展する現代
においては、磁石のこれら機器への組込みも人手からロ
ボットへと移行しつつある。特に着磁された磁石を組込
む場合にはワレ、カケが生じ易かった。従って、こうし
た点からも磁石の機械的強度への要求が増大していた。
However, in recent years, the use of rare earth cobalt magnets has required higher reliability than in the past.
etc.] If the magnet is damaged, it could result in a serious accident. Furthermore, in the modern era where manufacturing automation, so-called FA, is rapidly progressing, the integration of magnets into these devices is also shifting from manual labor to robots. Particularly when a magnetized magnet is incorporated, cracks and chips are likely to occur. Therefore, from this point of view as well, the demand for the mechanical strength of magnets has increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の製造方法によって製造された希土類コバ
ルト磁石では10 kf/−以上の抗折力が安定して得
られ難く、機器のへ頼性向上2組立のロボット化(%に
着磁後組立をする場合)へのニーズに十分応え得るもの
ではなかった。そのためには抗折力が101#/−以上
が要求されているからである。
However, with rare earth cobalt magnets manufactured using conventional manufacturing methods, it is difficult to stably obtain a transverse rupture force of 10 kf/- or more. It was not possible to sufficiently meet the needs of This is because a transverse rupture strength of 101#/- or more is required for this purpose.

なお、従来の製造方法が不十分だった理由は、この合金
の硬くて粉砕しにくい性質にありた。すなわち、そのた
めに粒度分布は非常にバラツキが大きくなることにある
と解する。
The reason why conventional manufacturing methods were unsatisfactory was that this alloy was hard and difficult to crush. In other words, it is understood that this is why the particle size distribution varies greatly.

そこで、本発明は抗折力低下の原因を究明することによ
って抗折力10に/−以上の希土類コバルト礎石及びそ
の製造方法を提供するものである。
Therefore, the present invention provides a rare earth cobalt foundation stone having a transverse rupture strength of 10/- or more by investigating the cause of the decrease in transverse rupture strength, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、平均粒度3〜6μm1粒度分布の標準偏差δ
≦2.60であシ、抗折力が10 V−以上の高強度希
土類コバルト磁石及び、希土類元素が1種以上とコバル
ト及びその他の遷移金属の1種以上からなる合金粉末を
磁場中成形、焼結、熱処理等の工程で永久磁石を製造す
る方法において、粉末を分級し粉末粒度分布を調整する
工程を入れて製造することを特徴とする高強度希土類コ
バルト磁石の製造方法である。
The present invention has an average particle size of 3 to 6 μm, a standard deviation of particle size distribution δ
≦2.60, a high-strength rare earth cobalt magnet with a transverse rupture strength of 10 V or more, and an alloy powder consisting of one or more rare earth elements and one or more cobalt and other transition metals in a magnetic field, This is a method of manufacturing a high-strength rare earth cobalt magnet, which is characterized by including a step of classifying powder and adjusting the powder particle size distribution in a method of manufacturing a permanent magnet through processes such as sintering and heat treatment.

希土類元素とは、Sm * Ce * Pr * Sc
 、 Y a La*Nd。
Rare earth elements are Sm * Ce * Pr * Sc
, Y a La * Nd.

Pm * Eu * Gd a Tb t Dy l 
Er s Yb 、 Lu 、 Tm + Hoあるい
は二徨以上の混合物(いわゆるミツシュメタル)であシ
、遷移金属とはFe * Zr * Cu * Hf 
+ Ti 、 Nb 。
Pm * Eu * Gd a Tb t Dy l
Er s Yb, Lu, Tm + Ho, or a mixture of two or more of them (so-called Mitsushmetal). Transition metals are Fe * Zr * Cu * Hf
+ Ti, Nb.

V + Ta等である。V + Ta etc.

この合金は、溶解鋳造法によってインゴットを粉砕して
得られるか、超急冷法によって得られたフレークを粉砕
するか直接粉末を作成するかの方法によって粉砕される
This alloy is obtained by crushing an ingot by a melt casting process, or by crushing flakes obtained by an ultra-quenching process, or by directly creating a powder.

溶解鋳造法による場合を例にとって本発明を説明すると
、インゴットはハンマーミルやブラウンミル等の機械的
手段により粗粉砕される。この時の粒度は数十μである
。これを更に非酸化性雰囲気(不活性ガスg Ar e
 Nt a又は溶媒のトルエン。
To explain the present invention using a melting and casting method as an example, an ingot is roughly pulverized by mechanical means such as a hammer mill or a Brown mill. The particle size at this time is several tens of microns. This is further heated in a non-oxidizing atmosphere (inert gas
Nta or solvent toluene.

アルコール等)の中で微粉砕する。例えば、ボールミル
、ジェットミル、振動ミル等で微粉砕して平均粒度を6
μ以下にする。
(alcohol, etc.). For example, finely pulverize with a ball mill, jet mill, vibration mill, etc. to reduce the average particle size to 6.
Make it less than μ.

次に公知の空気分級機を用いて粒度分布を調整する。粒
度分布を調整して粉体性状を改善しない場合は粗粒が混
入し、焼結後にもこれが残存する。
Next, the particle size distribution is adjusted using a known air classifier. If the powder properties are not improved by adjusting the particle size distribution, coarse particles will be mixed in and remain even after sintering.

そのために、これが応力を加えた場合に切欠き部として
作用して抗折力を低下させることを見出した。すなわち
、最終製造工程を経て希土類コバルト磁石としてのPJ
r望の永久磁石特性が付与された状態で、平均粒径が3
〜6μm1粒度分布の標準偏差δn≦2.60のときに
抗折力が向上することを見出し左ものである。
Therefore, it has been found that when stress is applied, this acts as a notch and reduces transverse rupture strength. In other words, PJ as a rare earth cobalt magnet after the final manufacturing process.
With the desired permanent magnetic properties, the average particle size is 3.
It was found that the transverse rupture strength was improved when the standard deviation of particle size distribution δn≦2.60.

なお、分級には前述の空気分級機(例えばターボクラシ
ファイヤー等)方式以外の他の方法でもよく、例えばメ
ツシュによる篩い方式、ジェット粉砕分級機、ジグザグ
分級機、ベントプレックス分級機等により粒度分布の調
整を図ってもよい。
In addition, other methods than the above-mentioned air classifier (for example, turbo classifier) may be used for classification, such as mesh sieving, jet crushing classifier, zigzag classifier, ventplex classifier, etc. to control the particle size distribution. Adjustments may be made.

また有機溶媒中での湿式分級を実施しても良い。Wet classification may also be carried out in an organic solvent.

その後、脱ガス、脱溶媒工程を経たのち磁石粉末に対し
て0.05wt%のステアリン酸カルシウムを添加して
、ミキサーで均一化混合を行なう。その後磁場中、ある
いは無磁場中で金型に入れて圧縮成形する。その後、k
g/mm35糸磁石の場合は焼結。
Thereafter, after degassing and solvent removal steps, 0.05 wt % of calcium stearate is added to the magnet powder, and homogenized mixing is performed using a mixer. Thereafter, it is placed in a mold and compression molded in a magnetic field or in the absence of a magnetic field. Then k
Sintered for g/mm35 thread magnets.

熱処理を実施する。また2−17系磁石の場合は焼結、
f#体化・時効を実施する。
Perform heat treatment. In addition, in the case of 2-17 series magnets, sintering,
f# implementation and statute of limitations.

以下、実施例によって本発明を具体的に説明する0 (実施例) it百分率でSm15.04%、Ce13.46%、c
Hereinafter, the present invention will be specifically explained with reference to examples.
.

50.75%、Fe14−17%、Cu4.38%、 
Zr 2 、20チを秤量し、アルゴン雰囲気下で溶解
して鋳造した合金インゴットを作成した。これをブラウ
ンミルで50μm程度に粗粉砕し、N2雰囲気にてジェ
ットミルで平均粒径2.1.2.8.4.5,5.6.
6.5μIIIK微粉砕した。この粉末を本発明の方法
(分級)Kよりて粒度調整した場合と、比較例として分
級しないままのものとを準備したのち、これらにそれぞ
れ0.05重t%のステアリン酸カルシウムを添加して
Ar雰囲気内で20分間Vコン混合した。
50.75%, Fe14-17%, Cu4.38%,
An alloy ingot was prepared by weighing 20 inches of Zr 2 and melting and casting in an argon atmosphere. This was coarsely ground to about 50 μm using a Brown mill, and then processed using a jet mill in an N2 atmosphere with an average particle size of 2.1.2.8.4.5, 5.6.
It was pulverized to 6.5μIIIK. After preparing a case where the particle size of this powder was adjusted by the method (classification) K of the present invention and a case where it was left unclassified as a comparative example, 0.05% by weight of calcium stearate was added to each of these and Ar The V-con was mixed for 20 minutes in an atmosphere.

次にこれらを横1iIl場プレス(プレス圧力4 ’r
OMでプレス方向と直角方向に10,0000eの磁場
を印加、成形体寸法は40m(長さ)X1!1m+11
I(幅)ス処理(1[r’〜I Cr’Torrで60
0℃×3時間)を施し、次いで760Torrの水素雰
励気内で1160℃×2時間焼結した。これに続いて7
60TorrのアルゴンTI#囲気内で1130℃×4
時間保持したのちオイル中に急冷し、次いで760To
rrのアルゴン雰囲気で740℃×2時間保持後、0 
、6 ”C/fkで300℃まで冷却後30分間保持し
、次いで730℃×24時間保持後0.6いで室温まで
冷却した。これを切断、平研加工して24■(長さ)×
8■(幅)×4■(厚さ)の試験片を作成して抗折力な
らびに磁気特性、grain 5izeを測定した。
Next, press these horizontally (press pressure 4'r
A magnetic field of 10,0000e is applied in the direction perpendicular to the press direction using OM, and the molded body dimensions are 40m (length) x 1!1m + 11
I (width) processing (1[r'~I Cr'Torr = 60
0° C. for 3 hours) and then sintered at 1160° C. for 2 hours in a hydrogen atmosphere of 760 Torr. Following this, 7
1130℃ x 4 in 60Torr argon TI# atmosphere
After holding for a period of time, it was rapidly cooled in oil and then heated to 760To
After holding at 740°C for 2 hours in an argon atmosphere of rr,
, 6" C/fk to 300°C and held for 30 minutes, then held at 730°C for 24 hours and then cooled to room temperature at 0.6". This was cut and flat-ground to 24cm (length) x
A test piece of 8 cm (width) x 4 cm (thickness) was prepared and its transverse rupture strength, magnetic properties, and grain 5ize were measured.

第1表に抗折力及び磁気特性の結果を示す。この表から
れかるように、平均粒度3〜6μ2粒度δ≦2.60の
場合に抗折力10 kf15!以上の機械的特性が優れ
た希土類コバルト磁石の得られることがわかる。もちろ
ん、磁気特性も良好である。
Table 1 shows the results of transverse rupture strength and magnetic properties. As can be seen from this table, when the average particle size is 3 to 6 μ2 and the particle size δ≦2.60, the transverse rupture strength is 10 kf15! It can be seen that a rare earth cobalt magnet with excellent mechanical properties as described above can be obtained. Of course, the magnetic properties are also good.

なお抗折力の試験はJIS−H2SO4によりた。Note that the transverse rupture strength test was based on JIS-H2SO4.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、従来不充分であった抗折力が改善され
、10V−以上の希土類コバルト磁石が安定して得られ
るため、高信頼性かつ自動組立の社会的要諸に応えられ
る永久磁石を得ることができる。
According to the present invention, the conventionally insufficient transverse rupture strength is improved, and rare earth cobalt magnets of 10 V or more can be stably obtained, so permanent magnets with high reliability and meeting the social requirements of automatic assembly can be obtained. can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 1.平均粒度3〜6μm,粒度分布の標準偏差δn≦2
.60あり抗折力が10kg/mm^3以上の高強度希
土類コバルト磁石。
1. Average particle size 3-6 μm, standard deviation of particle size distribution δn≦2
.. 60 high strength rare earth cobalt magnet with transverse rupture strength of 10kg/mm^3 or more.
2.希土類元素が1種以上とコバルト及びその他の遷移
金属の1種以上からなる合金粉末を磁場中成形,焼結,
熱処理等の工程で永久磁石を製造する方法において、粉
末を分級し粉末粒度分布を調整する工程を入れて製造す
ることを特徴とする高強度希土類コバルト磁石の製造方
法。
2. An alloy powder consisting of one or more rare earth elements and one or more cobalt and other transition metals is formed in a magnetic field, sintered,
A method for manufacturing a high-strength rare earth cobalt magnet, which comprises adding a step of classifying powder and adjusting powder particle size distribution in a method of manufacturing a permanent magnet through a process such as heat treatment.
3.粉末粒度分布が平均粒度3〜6μm,粒度分布の標
準偏差δn≦2.60であることを特徴とする特許請求
の範囲第2項に記載の高強度希土類コバルト磁石の製造
方法。
3. The method for producing a high-strength rare earth cobalt magnet according to claim 2, wherein the powder particle size distribution has an average particle size of 3 to 6 μm and a standard deviation of particle size distribution δn≦2.60.
JP62284770A 1987-11-11 1987-11-11 High intensity rare earth based cobalt magnet and manufacture thereof Pending JPH01125907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284770A JPH01125907A (en) 1987-11-11 1987-11-11 High intensity rare earth based cobalt magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284770A JPH01125907A (en) 1987-11-11 1987-11-11 High intensity rare earth based cobalt magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01125907A true JPH01125907A (en) 1989-05-18

Family

ID=17682788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284770A Pending JPH01125907A (en) 1987-11-11 1987-11-11 High intensity rare earth based cobalt magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01125907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139109A1 (en) 2017-01-26 2018-08-02 Jsr株式会社 Radiation-sensitive composition and pattern formation method
WO2018168221A1 (en) 2017-03-13 2018-09-20 Jsr株式会社 Radiation sensitive composition and pattern forming method
WO2018180049A1 (en) 2017-03-30 2018-10-04 Jsr株式会社 Radiation sensitive composition and resist pattern forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139109A1 (en) 2017-01-26 2018-08-02 Jsr株式会社 Radiation-sensitive composition and pattern formation method
WO2018168221A1 (en) 2017-03-13 2018-09-20 Jsr株式会社 Radiation sensitive composition and pattern forming method
WO2018180049A1 (en) 2017-03-30 2018-10-04 Jsr株式会社 Radiation sensitive composition and resist pattern forming method

Similar Documents

Publication Publication Date Title
EP3686301B1 (en) Samarium-cobalt magnets and method for preparing the same
JP7416476B2 (en) magnet manufacturing
JPH06212327A (en) Rare earth permanent magnet alloy
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JPH06231916A (en) Magnet powder of fe-re-b type, sintered magnet and its preparation modulus
JP7255514B2 (en) Method for producing rare earth magnet powder
JPS6181606A (en) Preparation of rare earth magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH01125907A (en) High intensity rare earth based cobalt magnet and manufacture thereof
JPH1092617A (en) Permanent magnet and its manufacture
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPS6181604A (en) Preparation of rare earth magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
RU2685708C1 (en) Method for producing heat-resistant rare-earth magnets
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPH0362775B2 (en)
JPS63216307A (en) Alloy powder for magnet
JPH08148317A (en) Production of rare earth magnet
JPH0246658B2 (en)