JPS62128504A - R-b-fe group sintered magnet and manufacture thereof - Google Patents

R-b-fe group sintered magnet and manufacture thereof

Info

Publication number
JPS62128504A
JPS62128504A JP60268786A JP26878685A JPS62128504A JP S62128504 A JPS62128504 A JP S62128504A JP 60268786 A JP60268786 A JP 60268786A JP 26878685 A JP26878685 A JP 26878685A JP S62128504 A JPS62128504 A JP S62128504A
Authority
JP
Japan
Prior art keywords
powder
atmosphere
molding
sintering
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60268786A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Chitoshi Hagi
萩 千敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60268786A priority Critical patent/JPS62128504A/en
Publication of JPS62128504A publication Critical patent/JPS62128504A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain and R-B-Fe group sintered magnet having larger coercive force (iHc) and excellent magnetic characteristics by compounding a specific quantity of at least one kind of the borides of Al and C to R-B-Fe group alloy powder and mixing, molding, sintering and thermally treating the whole. CONSTITUTION:R-B-Fe group alloy powder or mixed powder capable of being brought to the same composition as said powder is prepared. 0.05-3.5wt% boride powder of Al and C is compounded to the powder, and molded and consolidated by a compression press, etc. Molding pressure of 0.5-10t/cm<2> is preferable for molding and consolidation. A non-oxidizing atmosphere is desirable as an atmosphere, and said process may also be executed in the atmosphere, such as a vacuum, an inert gas or a reducing gas. A molded shape acquired is sintered at a temperature of 900-1,200 deg.C. It is desirable that sintering is conduct in the non-oxidizing atmosphere for preventing the oxidation of an R element. That is, the atmosphere of the vacuum, the inert gas or the reducing gas is preferable.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はR−B−Fe系焼結磁石においてホウ化物を添
加することにより保磁力(iHc)を改善したものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is an R-B-Fe sintered magnet whose coercive force (iHc) is improved by adding boride.

〔従来の技術〕[Conventional technology]

近年、従来のSm−Co系磁石に比較し、より高磁気特
性を有しかつ資源的にも高価なSmやCoを、必らずし
も含まないNd−B−Fe系永久磁石が、発明された。
In recent years, Nd-B-Fe permanent magnets have been invented that have higher magnetic properties than conventional Sm-Co magnets and do not necessarily contain Sm or Co, which are expensive resources. It was done.

(佐用ほか、J、Appl、Phys、55(6)、1
5 March1984、p2083〜2087.およ
び特開昭59−46008号公報、同59−20420
9号公報参照) それらによれば、製造方法として溶解、鋳造し得られた
合金インゴットを粉砕し、必要に応じて磁界を印加しな
がらプレス成形し、さらに焼結することが開示されてい
る。
(Sayo et al., J. Appl. Phys., 55(6), 1
5 March 1984, p2083-2087. and Japanese Unexamined Patent Publication No. 59-46008, No. 59-20420
(Refer to Publication No. 9) They disclose that as a manufacturing method, an alloy ingot obtained by melting and casting is crushed, press-formed while applying a magnetic field as necessary, and further sintered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これら従来の方法による製造方法では磁気特性
の点で、十分満足のできる保磁力(iHc)が得られる
には、至ってない。
However, with these conventional manufacturing methods, it has not been possible to obtain a sufficiently satisfactory coercive force (iHc) in terms of magnetic properties.

本発明は上述した従来技術の問題点を解消し、保磁力(
iHc)が大きく、磁気特性の優れたR−B−Fe系焼
結磁石を得ることができる製造方法を提供することを目
的とするものである。
The present invention solves the above-mentioned problems of the prior art and has a coercive force (
It is an object of the present invention to provide a manufacturing method capable of obtaining an R-B-Fe-based sintered magnet with a large iHc) and excellent magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明はR(但しRはYを含む希土類元素の内
、少くとも1種)、BおよびFeを必須成分とするR−
B−Fe系合金粉末またはそれと同組成となる混合粉末
にさらにAA、Cのホウ化物すなわちA i B2.B
Cの内掛くとも1種を重量%にて0.05〜3.5%配
合し、混合、成形、焼結および熱処理を行うことを特徴
とするものである。
That is, the present invention provides an R-
Further, borides of AA and C, that is, A i B2. B
It is characterized by blending 0.05 to 3.5% by weight of at least one type of C, followed by mixing, molding, sintering, and heat treatment.

本発明を詳述すると先ず公知の手段にて所定成分を有す
るR−B−Fe系合金粉末またはそれと同組成となり得
る混合粉末が準備される。例えば、溶解。
To explain the present invention in detail, first, an R-B-Fe alloy powder having a predetermined component or a mixed powder that can have the same composition is prepared by known means. For example, lysis.

鋳造しインゴットを粉末にする方法または溶解しアトマ
イズする方法または希土類酸化物を出発原料とする還元
拡散法で合金粉は作成される。上記合金粉の少(とも一
部をFeを代表する遷移金属粉。
The alloy powder is produced by a method of casting an ingot into powder, a method of melting and atomizing, or a reduction diffusion method using a rare earth oxide as a starting material. A small amount of the above-mentioned alloy powder (transition metal powder representing a portion of Fe).

ボロン扮、希土類金属粉、B−遷移金属合金粉、R−遷
移金属合金粉などの1種または2種以上で代替とした混
合粉末を使用しても本発明の効果は失なわれない。
Even if a mixed powder substituted with one or more of boron powder, rare earth metal powder, B-transition metal alloy powder, R-transition metal alloy powder, etc. is used as a substitute, the effects of the present invention are not lost.

上記粉末に、Aj2.Cのホウ化物粉末が、0.05〜
3.5wt%配合される。
Add Aj2 to the above powder. The boride powder of C is 0.05~
3.5wt% is blended.

0.05%未満および3.5%を越えると、効果が少い
ため、0.05〜3.5wt%とされる。
If it is less than 0.05% or more than 3.5%, the effect will be small, so it is set at 0.05 to 3.5 wt%.

上記方法にて得られた混合粉を圧縮プレスなどにて成形
−圧密化を行う。
The mixed powder obtained by the above method is molded and compacted using a compression press or the like.

なお、上記成形−圧密化は、0.5〜10t/cnlの
成形圧力が良く、必要に応じ成形時において、磁界(5
KOe以上)を印加することにより、磁気特性は向上す
る。一連の成形−圧密化は湿式あるいは乾式でよく、常
温以外の高温度にて行っても良い。
For the above-mentioned molding-consolidation, a molding pressure of 0.5 to 10 t/cnl is best, and if necessary, a magnetic field (5 t/cnl) is applied during molding.
By applying KOe or more), the magnetic properties are improved. The series of molding and compaction may be performed wet or dry, and may be performed at a high temperature other than room temperature.

雰囲気は非酸化性雰囲気が望ましく、例えば真空中、不
活性ガス中あるいは還元性ガス中にて行っても良い。得
られた成形体を900〜1200”Cの温度にて焼結す
る。900℃未満では、密度があがらないためBrが十
分でなく1200℃を越えるとBrおよび角形性が低下
する理由による。
The atmosphere is preferably a non-oxidizing atmosphere, and may be carried out, for example, in a vacuum, an inert gas, or a reducing gas. The obtained molded body is sintered at a temperature of 900 to 1200''C. If the temperature is less than 900°C, the density will not increase and Br will not be sufficient, and if it exceeds 1200°C, Br and squareness will decrease.

焼結は、R元素の酸化防止のための非酸化性雰囲気中に
て行なうことが望ましい。すなわち、真空、不活性ガス
、または還元性ガスの雰囲気が良い。なお、焼結時室温
からの昇温速度は特に規定しないが、昇温途中200〜
800℃の温度範囲で少くとも0.5時間保持すること
により、被加熱部の温度均一性を改善したり、真空中に
おいて脱ガス処理を行うことも可能となる。あるいは潤
滑剤として用いるステアリン酸塩などのクラッキング(
水素化熱分解法)も、水素ガス雰囲気中で行い得る。従
って、焼結における雰囲気としては、真空あるいは不活
性ガス(例えばAr)あるいは還元性ガス(例えばH,
)などの非酸化性雰囲気が良い。加熱保持後の冷却速度
は、特に規定しないが、0.5〜b 処理による磁気特性のバラツキが少なくなるためである
。また冷却は一度常温まで冷却することも良くあるいは
、500℃位迄行い、次の熱処理のため再度昇温するよ
うに、焼結と熱処理を連続的に行っても良い。
Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation of the R element. That is, a vacuum, an inert gas, or a reducing gas atmosphere is preferable. Note that the rate of temperature increase from room temperature during sintering is not particularly specified, but
By maintaining the temperature in the 800° C. range for at least 0.5 hours, it becomes possible to improve the temperature uniformity of the heated portion and to perform degassing treatment in a vacuum. Or cracking (such as stearate used as a lubricant)
Hydropyrolysis) can also be carried out in a hydrogen gas atmosphere. Therefore, the atmosphere for sintering should be vacuum, inert gas (e.g. Ar), or reducing gas (e.g. H,
) is preferable. The cooling rate after heating and holding is not particularly specified, but it is 0.5 to b. This is because the variation in magnetic properties due to treatment is reduced. Further, cooling may be performed once to room temperature, or sintering and heat treatment may be performed continuously, such as cooling to about 500° C. and raising the temperature again for the next heat treatment.

以上の焼結後、さらに磁気特性を向上せしめるため、5
00〜700℃で時効処理を行うが、必要に応じ時効処
理前に800〜1000℃で保持−徐冷という中間熱処
理を行うことにより一層磁気特性が向上する。時効処理
、中間熱処理などの熱処理は前記焼結と同じく、非酸化
性雰囲気が望ましい。
After the above sintering, in order to further improve the magnetic properties,
Aging treatment is performed at 00 to 700°C, but if necessary, an intermediate heat treatment of holding and slow cooling at 800 to 1000°C is performed before aging to further improve the magnetic properties. Heat treatments such as aging treatment and intermediate heat treatment are preferably performed in a non-oxidizing atmosphere, as in the case of sintering.

なお時効処理は500〜700℃で少くとも0.5時間
保持し、急冷することで良い。s o o ’c未満で
は効果が少なく700″Cを越えると磁気特性の低下が
生じるからである。
The aging treatment may be carried out by holding at 500 to 700°C for at least 0.5 hours and then rapidly cooling. This is because if the temperature is less than s o o'c, the effect will be small, and if it exceeds 700''C, the magnetic properties will deteriorate.

次に本発明を適用する希土類・ボロン・鉄系焼結磁石の
成分限定理由について説明すると、本発明の磁石は希土
類元素1?(但しRはYを含む希土類元素の少くとも1
種)、ボロンおよび鉄を必須元素とする。さらに詳述す
ると、Rとしてはネオジム(Nd) 、プラセオジム(
Pr)またはそれらの混合物(ジジム)が好ましく、他
にランタン(La) 、セリウム(Ce) 、テルビウ
ム(Tb)、  ジスプロシウム(031) 、ホルミ
ウム(Ho) 、エルビウム(Er) 、ユウロピウム
CEu)、サマリウム(Sm)、ガドリニウム(Gd)
 。
Next, to explain the reason for limiting the components of the rare earth/boron/iron based sintered magnet to which the present invention is applied, the magnet of the present invention contains one or more rare earth elements. (However, R is at least one rare earth element including Y.
species), boron and iron are essential elements. To explain in more detail, R is neodymium (Nd), praseodymium (
Pr) or a mixture thereof (didim) is preferred; other examples include lanthanum (La), cerium (Ce), terbium (Tb), dysprosium (031), holmium (Ho), erbium (Er), europium (CEu), samarium ( Sm), gadolinium (Gd)
.

プロメチウム(Pm)、 ツリウム(Tm)、  イッ
テルビウム(Yb) 、ルテチウム(シu)及びインド
リウム(Y)などの希土類元素を含んで良く、総量で8
〜30原子%とされる。8原子%未満では十分な保磁力
が得られず、30原子%を越えると、残留磁束密度が低
下するためである。ボロンBは2〜28原子%とされる
。2原子%未満では十分な保磁力が得られず、28原子
%を越えると残留磁束密度が低下し優れた磁気特性が得
られないためである。上記RおよびB以外の元素として
Feは必須であり40〜90原子%含有される。
May contain rare earth elements such as promethium (Pm), thulium (Tm), ytterbium (Yb), lutetium (U), and indolium (Y), with a total amount of 8
~30 atomic%. This is because if it is less than 8 atomic %, sufficient coercive force cannot be obtained, and if it exceeds 30 atomic %, the residual magnetic flux density decreases. Boron B is contained in an amount of 2 to 28 atomic %. This is because if it is less than 2 atomic %, a sufficient coercive force cannot be obtained, and if it exceeds 28 atomic %, the residual magnetic flux density decreases and excellent magnetic properties cannot be obtained. Fe is essential as an element other than R and B, and is contained in an amount of 40 to 90 atom %.

40原子%未満では残留磁束密度(Br)が低下し、9
0原子%を越えると高い保磁力(iHc)が得られない
ためである。
If it is less than 40 at%, the residual magnetic flux density (Br) decreases, and 9
This is because if it exceeds 0 atomic %, a high coercive force (iHc) cannot be obtained.

上記R−BおよびFeを必須元素とし、希土類・ボロン
・鉄系焼結磁石は作成されるが下記の如く、鉄の一部を
他の元素で置換することや、不純物を含んでも本発明の
効果は失なわれない。
Rare earth/boron/iron based sintered magnets can be created using the above R-B and Fe as essential elements, but as described below, even if some of the iron is replaced with other elements or even if impurities are included, the present invention will still work. The effect will not be lost.

すなわち、Fe0代りに、50原子%以下のGo。That is, Go of 50 atomic % or less is used instead of Fe0.

8原子%以下のNiで代替しても良い。Coは50原子
%を越えると高いiHcが得られず、Niは8%を越え
ると高いBrが得られないためである。また上記以外の
元素として下記所定原子%以外のへ元素の1種以上(た
だし、2種以上含む場合のへ元素の総量は当該含有へ元
素の内最大値を有するものの値以下)をFe元素と置換
しても本発明の効果は失なわれない。へ元素を下記する
It may be replaced with 8 atomic % or less of Ni. This is because if Co exceeds 50 atomic %, high iHc cannot be obtained, and if Ni exceeds 8 atomic %, high Br cannot be obtained. In addition, as elements other than the above, one or more of the Fe elements other than the specified atomic percent below (however, if two or more types are included, the total amount of Fe elements is less than or equal to the value of the element with the maximum value among the contained elements) is considered to be Fe element. Even if substituted, the effects of the present invention will not be lost. The elements are listed below.

次に本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
Next, examples of the present invention will be described, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1 16 Nd−88−残Fe(原子%)となるよう溶解し
、合金インゴットを得た。合金インゴットをショークラ
ッシャー、ブラウンミル、ジェット・ミルを用いて平均
粒径3.5μmの微粉とし、これにAIB。
Example 1 An alloy ingot was obtained by melting to obtain 16 Nd-88-remaining Fe (atomic %). The alloy ingot was made into a fine powder with an average particle size of 3.5 μm using a show crusher, a brown mill, and a jet mill, and then AIB was applied to this powder.

(平均粒径2.2μm)を第1表の如く配合、混合し原
料粉とした。
(average particle size 2.2 μm) were blended and mixed as shown in Table 1 to obtain raw material powder.

第  1  表 得られた原料粉を、成形圧3t/co!で磁場中(10
KOe)成形し、得られた成形体を真空中(10”3T
orr)で、1100°CX2時間の焼結後炉冷し、再
度610°cx1時間の熱処理後、急冷し磁気特性の評
価に供した。結果を第1表に示す。
Table 1 The obtained raw material powder was molded under a molding pressure of 3t/co! in a magnetic field (10
KOe), and the obtained molded body was molded in vacuum (10”3T
After sintering at 1100°C for 2 hours, the sample was cooled in a furnace, and then heat treated again at 610°C for 1 hour, then rapidly cooled and evaluated for magnetic properties. The results are shown in Table 1.

第1表に見る如< A j282無添加(隘1)に比較
し、Ajl!B2を添加(隘2〜7)することにより、
著しく保磁力(iHc)が向上することが分る。しかし
、へ/823.8%添加材(N[L?)では、残留磁束
密度(Br)の著しい低下が生じる。
As shown in Table 1, compared to Aj282 without additive (1), Ajl! By adding B2 (squares 2 to 7),
It can be seen that the coercive force (iHc) is significantly improved. However, the residual magnetic flux density (Br) significantly decreases when using the H/823.8% additive material (N[L?).

実施冷2 第2表に示す如く、ホウ化物粉(平均粒径1.6〜2.
2μm)を配合、混合し、実施例1と同様に成形、焼結
、熱処理を行い、磁気特性の評価に供した。結果を、第
2表に示す。
Cooling implementation 2 As shown in Table 2, boride powder (average particle size 1.6-2.
2 μm) were blended and mixed, molded, sintered, and heat treated in the same manner as in Example 1, and the magnetic properties were evaluated. The results are shown in Table 2.

第2表 第2表に見る如く、BC添加(N[L8,9.10゜1
1)にても八βB2と同様に保磁力向上が認められる。
Table 2 As shown in Table 2, BC addition (N [L8, 9.10°1
1) as well, an improvement in coercive force is observed as in the case of 8βB2.

また、BCと八JB、の複合添加(Il&l12,13
゜14)にても同様な結果が認められる。
In addition, combined addition of BC and 8JB (Il&l12,13
Similar results were observed for ゜14).

しかし、添加量が過度(寛11.N114)の場合、覧
7と同様に著しいBrの低下が生じる。
However, when the amount added is excessive (Kan 11.N114), a significant decrease in Br occurs as in Example 7.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は、AN、Cのホウ化物の少く
とも1種を添加することにより保磁力を向上するもので
あり、その工業的は極めて大きい。
As described above, the present invention improves the coercive force by adding at least one of AN and C borides, and its industrial application is extremely large.

Claims (1)

【特許請求の範囲】 1、R(但しRはYを含む希土類元素の内、少なくとも
1種)、BおよびFeを必須成分とするR−B−Fe系
合金粉末またはそれと同組成となる混合粉末にさらにA
lB_2、BCの内、少くとも1種を重量%にて0.0
5〜3.5%配合し、混合、成形、焼結および熱処理を
行うことを特徴とするR−B−Fe系焼結磁石の製造方
法 2、AlB_2、BCの内、少くとも1種を重量%にて
0.05〜3.5%配合することを特徴とするR−B−
Fe系焼結磁石。
[Claims] 1. R-B-Fe alloy powder containing R (where R is at least one rare earth element including Y), B and Fe, or a mixed powder having the same composition. further A
lB_2, at least one type of BC 0.0% by weight
Manufacturing method 2 of R-B-Fe based sintered magnet characterized by blending 5 to 3.5%, mixing, molding, sintering and heat treatment, at least one of AlB_2 and BC by weight R-B- characterized in that it is blended in an amount of 0.05 to 3.5%.
Fe-based sintered magnet.
JP60268786A 1985-11-29 1985-11-29 R-b-fe group sintered magnet and manufacture thereof Pending JPS62128504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268786A JPS62128504A (en) 1985-11-29 1985-11-29 R-b-fe group sintered magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268786A JPS62128504A (en) 1985-11-29 1985-11-29 R-b-fe group sintered magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62128504A true JPS62128504A (en) 1987-06-10

Family

ID=17463257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268786A Pending JPS62128504A (en) 1985-11-29 1985-11-29 R-b-fe group sintered magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62128504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707421A1 (en) * 1993-07-07 1995-01-13 Ugimag Sa Additive powder for the manufacture of Fe-Nd-B-type sintered magnets, method of manufacture and corresponding magnets
CN102299000A (en) * 2010-06-26 2011-12-28 比亚迪股份有限公司 NdFeB (neodymium iron boron) permanent magnet material and preparation method thereof
CN103567446A (en) * 2012-07-30 2014-02-12 比亚迪股份有限公司 Toughening-type rare earth permanent-magnetic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707421A1 (en) * 1993-07-07 1995-01-13 Ugimag Sa Additive powder for the manufacture of Fe-Nd-B-type sintered magnets, method of manufacture and corresponding magnets
CN102299000A (en) * 2010-06-26 2011-12-28 比亚迪股份有限公司 NdFeB (neodymium iron boron) permanent magnet material and preparation method thereof
CN103567446A (en) * 2012-07-30 2014-02-12 比亚迪股份有限公司 Toughening-type rare earth permanent-magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004165482A (en) R-Fe-B SYSTEM SINTERED MAGNET
JPS63255902A (en) R-b-fe sintered magnet and manufacture thereof
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP2021077868A (en) METHOD FOR MANUFACTURING Nd-Fe-B BASED SINTERED MAGNETIC MATERIAL
JP2020161811A (en) R-t-b based permanent magnet
JPS60144909A (en) Manufacture of permanent magnet material
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS63301505A (en) R-b-fe sintered magnet
JP3237053B2 (en) Rare earth magnet material powder having excellent magnetic properties and method for producing the same
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPS6151901A (en) Manufacture of permanent magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JP2022008212A (en) R-t-b based permanent magnet and motor
JPS62181403A (en) Permanent magnet
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62182249A (en) R-b-fe sintered magnet and its manufacture
JPS63249305A (en) R-b-fe system sintered magnet and manufacture thereof
JP7572775B2 (en) Manufacturing method of RTB based sintered magnet
JPS62141705A (en) R-b-fe system sintered magnet and manufacture thereof
JP7447573B2 (en) RTB series permanent magnet
JPS63249303A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62134908A (en) R-b-fe system sintered magnet and manufacture thereof
JP4076017B2 (en) Method for producing rare earth magnet powder with excellent magnetic anisotropy