JPS62134908A - R-b-fe system sintered magnet and manufacture thereof - Google Patents

R-b-fe system sintered magnet and manufacture thereof

Info

Publication number
JPS62134908A
JPS62134908A JP60276571A JP27657185A JPS62134908A JP S62134908 A JPS62134908 A JP S62134908A JP 60276571 A JP60276571 A JP 60276571A JP 27657185 A JP27657185 A JP 27657185A JP S62134908 A JPS62134908 A JP S62134908A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered magnet
atoms
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276571A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Chitoshi Hagi
萩 千敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60276571A priority Critical patent/JPS62134908A/en
Publication of JPS62134908A publication Critical patent/JPS62134908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To remarkably improve the coercive force by adding a nitride of at least one kind of Al, B. CONSTITUTION:To an R-B-Fe system alloy powder having R (R is at least one kind of the rare earth elements containing Y), B and Fe as the essential components or a mixed powder becoming the same composition as that, a nitride powder of at least one kind of B, Al is further blended by 0.05-3.5wt%, and mixing forming, sintering and heat treatment are performed. Sintering is preferably performed in a non-oxide atmosphere for preventing the oxidation of the R element. That is, vacuum, inert gas or reducing gas atmosphere is desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−B−Fe系焼結磁石において、窒化物を添
加することにより保磁力(iHc)を改善したものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is an R-B-Fe sintered magnet whose coercive force (iHc) is improved by adding nitride.

〔従来の技術〕[Conventional technology]

近年、従来のSm −Co系磁石に比較し、より高磁気
特性を有しかつ資源的にも高価なSmやCoを、必らず
しも含まないNdB−Fe系永久磁石が、発明された。
In recent years, NdB-Fe-based permanent magnets have been invented that have higher magnetic properties than conventional Sm-Co-based magnets and do not necessarily contain Sm or Co, which are expensive in terms of resources. .

(佐用ほか、J、Appl 、Phys、55 (6)
 。
(Sayo et al., J. Appl., Phys., 55 (6)
.

15March 1984.P2O83〜2087.お
よび特開昭59−46008号公報、同59−2042
09号公報参照)それらによれば、製造方法として溶解
、鋳造し得られた合金インゴットを粉砕し、必要に応じ
て磁界を印加しながらプレス成形し、さらに現結するこ
とが開示されている。
15March 1984. P2O83-2087. and Japanese Unexamined Patent Publication No. 59-46008, No. 59-2042
According to them, a manufacturing method is disclosed in which an alloy ingot obtained by melting and casting is crushed, press-formed while applying a magnetic field as necessary, and then solidified.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これら従来の方法による製造方法では磁気特性
の点で、十分満足のできる保磁力(iHc)が得られる
には、至ってない。
However, with these conventional manufacturing methods, it has not been possible to obtain a sufficiently satisfactory coercive force (iHc) in terms of magnetic properties.

本琴明は上述した従来技術の問題点を解消し、保磁力(
iHc)が大きく、磁気特性の優れたR−B−Fe系焼
結磁石を得ることができる製造方法を掠供することを目
的とするものである。
Honkotomei solves the problems of the conventional technology mentioned above, and has a coercive force (
The purpose of this invention is to provide a manufacturing method capable of obtaining an R-B-Fe-based sintered magnet with a large iHc) and excellent magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明はR(但しRはYを含む希土類元素の内
、少くとも1種)、BおよびFeを必須成分とするR 
−B −Fe系合金粉末またはそれと同組成となる混合
粉末にさらに4B、B、Alの元素の内、少くとも1種
の窒化物粉末を重量%にて肌05〜5.5%配合し、混
合、成形、焼結および熱処理を行うことを特徴とするも
のである。
That is, the present invention provides R (where R is at least one kind of rare earth elements including Y), B, and Fe as essential components.
-B - Fe-based alloy powder or a mixed powder having the same composition is further blended with at least one nitride powder among the elements 4B, B, and Al in an amount of 05 to 5.5% by weight, It is characterized by mixing, molding, sintering and heat treatment.

本発明を詳述すると先ず公知の手段にて所定成分を有す
るR−B−Fe系合金粉末またはそれと同組成となシ得
る混合粉末が準備される。例えば、溶解、鋳造しインゴ
ットを粉末にする方法または浴解しアトマイズする方法
または希土類酸化物を出発原料とする還元拡散法で合金
粉は作成される。
To explain the present invention in detail, first, an R-B-Fe alloy powder having a predetermined component or a mixed powder having the same composition is prepared by known means. For example, the alloy powder is prepared by a method of melting and casting an ingot into powder, a method of bath dissolving and atomizing, or a reduction diffusion method using a rare earth oxide as a starting material.

上記合金粉の少くとも一部をFeを代表とする遷移金属
粉、ポロ/粉、希土類金属粉、B−遷移金属合金粉、R
−遷移金属合金粉などの1種または2株以上で代替とし
た混合粉末を使用しても本発明の効果は失なわれない。
At least a part of the above alloy powder is transition metal powder represented by Fe, poro/powder, rare earth metal powder, B-transition metal alloy powder, R
- Even if a mixed powder substituted with one or more types of transition metal alloy powder is used, the effects of the present invention will not be lost.

上記粉末に、4B、B、Alの9化物粉末が0.05〜
15wtチ配合される。
In the above powder, 4B, B, Al 9ide powder is added from 0.05 to
Contains 15wt.

0.05%未満および3.5チを越えると、効果が少い
ため0.05〜6.5wt% とされる。上記方法にて
得られた混合粉を圧縮プレスなどにて成形−圧密化を行
う。
If it is less than 0.05% or more than 3.5%, the effect will be small, so it is set at 0.05 to 6.5wt%. The mixed powder obtained by the above method is molded and compacted using a compression press or the like.

なお、上記成形−圧密化は、0.5〜10 Valの成
形圧力が良く、必要に応じ成形時において、磁界(5K
Oe以上)を印加することにより、磁気特性は向上する
。一連の成形−圧密化は湿式あるいは乾式でよく、常温
以外の高温度にて行っても良い。
The above molding-consolidation is preferably performed at a molding pressure of 0.5 to 10 Val, and if necessary, a magnetic field (5K
Magnetic properties are improved by applying a magnetic field (Oe or more). The series of molding and compaction may be performed wet or dry, and may be performed at a high temperature other than room temperature.

雰囲気は非酸化性雰囲気が望ましく、例えは真空中、不
活性ガス中あるいは還元性ガス中にて行っ1ても良い。
The atmosphere is preferably a non-oxidizing atmosphere, and for example, it may be carried out in a vacuum, an inert gas, or a reducing gas.

得られた成形体を900〜1200℃の温度にて焼結す
る。900℃未満では、密度があがらないためBrが十
分でな(1200℃を越えるとBrおよび角形性が低下
する理由による。
The obtained molded body is sintered at a temperature of 900 to 1200°C. If the temperature is less than 900°C, the density will not increase and Br will not be sufficient (this is because if it exceeds 1200°C, Br and squareness will decrease.

焼結は、R元素の酸化防止のための非酸化性雰囲気中に
て行なうことが望ましい。すなわち、真空、不活性ガス
または還元性カスの雰囲気が良い0なお、焼結時室温か
らの昇温速度は特に規定しないが、昇温途中200〜8
00℃の温度範囲で少くとも0.5時間保持することに
より、被加熱部の温度均一性を改善したシ、真空中にお
いて脱カス処理を行うことも可能となる0あるいは潤滑
剤として用いるステアリン酸塩などのクラッキング(水
素化熱分解法)も、水素ガス雰囲気中で行い得る0従っ
て、焼結における雰囲気としては、真空あるいは不活性
ガス(例えばAr )あるいは還元性カス(例えばHz
 )などの非酸化性雰囲気が良い0加熱保持後の冷却速
度は、特に規定しないが、0.5〜100C/分が良く
、一般的には1〜10いが良い0遅くすることにより、
その後の熱処理による磁気特性のバラツキが少なくなる
ためである0また冷却は一度常温まで冷却することも良
くあるいは、500℃位迄行い、次の熱処理のため再度
昇温するように、焼結と熱処理を連続的に行っても良い
0以上の焼結後、さらに磁気特性を向上せしめるため、
500〜700℃で時効処理を行うが、必要に応じ時効
処理前に800〜1000℃で保持−徐冷という中間熱
処理を行うことによシ一層磁気特性が向上する。時効処
理、中間熱処理などの熱処理は前記焼結と同じく、非酸
化性雰囲気が望ましい0なお、時効処理は500〜70
0℃で少くとも0.5時間保持し、急冷することで良い
。500℃未満では効果が少なく700℃を越えると磁
気特性の低下が生じるからである。
Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation of the R element. In other words, a vacuum, an inert gas, or a reducing gas atmosphere is preferable.The temperature increase rate from room temperature during sintering is not particularly specified, but
By holding the temperature in the 00°C temperature range for at least 0.5 hours, the temperature uniformity of the heated part is improved, and it is also possible to perform scale removal treatment in a vacuum. Cracking of salts (hydropyrolysis method) can also be carried out in a hydrogen gas atmosphere. Therefore, the atmosphere for sintering may be vacuum, inert gas (e.g. Ar), or reducing gas (e.g. Hz).
) is preferable in a non-oxidizing atmosphere such as 0. The cooling rate after heating and holding is not particularly specified, but 0.5 to 100 C/min is good, and generally 1 to 10 C/min is good.
This is because the variation in magnetic properties due to subsequent heat treatment will be reduced.0Also, cooling may be performed once to room temperature, or alternatively, sintering and heat treatment may be performed to about 500℃ and then raised again for the next heat treatment. After 0 or more sintering, which may be performed continuously, in order to further improve the magnetic properties,
Aging treatment is performed at 500 to 700°C, but if necessary, an intermediate heat treatment of holding and slow cooling at 800 to 1000°C can be performed before aging to further improve the magnetic properties. As with the above-mentioned sintering, heat treatments such as aging treatment and intermediate heat treatment are preferably performed in a non-oxidizing atmosphere.
It may be maintained at 0°C for at least 0.5 hours and then rapidly cooled. This is because if the temperature is less than 500°C, the effect will be small, and if it exceeds 700°C, the magnetic properties will deteriorate.

次に本発明を適用する希土類・ボロン・鉄系焼結磁石の
成分限定理由について説明すると、本発明の磁石は希土
類元素R(ただしRはYを含む希土類元素の少くとも1
種)、ボロンおよび鉄を必須元素とする0さらに詳述す
ると、Rとしてはネオジム(Nd) 、プラセオジム(
Pr) またはそねらの混合物(ジジム)が好ましく、
他にランタン(La )。
Next, to explain the reason for limiting the components of the rare earth/boron/iron sintered magnet to which the present invention is applied, the magnet of the present invention contains the rare earth element R (where R is at least one of the rare earth elements including Y).
Species), boron and iron are essential elements.
Pr) or a mixture of sora (didim) is preferred;
Another lantern (La).

セリウム(Ce) 、テルビウム(Tb) 、ジスプロ
シウム(Dy) 、ホルミウム(Ho) 、エルビウム
(Er) 、ユウロピウム(Eu) 、サマリウム(S
m) 、ガドリニウム(Gd) 、グロメチウム(Pm
) 、ツリウム(Tm) 、イッテルビウム(Yb) 
、ルテチウム(Lu)及びイツトリウム(Y)などの希
土類元素を含んで良く、総量で8〜30原子チとされる
。8原子チ未満では十分な保磁力が得られず、30原子
チを越犬ると、残留磁束密度が低下するためである。ボ
ロンBは2〜28原子チとされる。2原子チ未満では十
分な保磁力が得られず、28原子チを越オーると残留磁
束密度が低下し優れた磁気特性が得られないためである
。上記RおよびB以外の元素としてFeは必須元素であ
り40〜90原子チ含有される。
Cerium (Ce), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Europium (Eu), Samarium (S)
m), gadolinium (Gd), glomethium (Pm)
), thulium (Tm), ytterbium (Yb)
, lutetium (Lu), and yttrium (Y), with a total amount of 8 to 30 atoms. This is because a sufficient coercive force cannot be obtained with less than 8 atoms, and with more than 30 atoms, the residual magnetic flux density decreases. Boron B has 2 to 28 atoms. This is because if it is less than 2 atoms, a sufficient coercive force cannot be obtained, and if it exceeds 28 atoms, the residual magnetic flux density decreases and excellent magnetic properties cannot be obtained. Fe is an essential element other than R and B and contains 40 to 90 atoms.

40原子チ未満では残留磁束密度(Br)が低下し、9
0原子チを越えると高い保磁力(iHc)が得られない
ためである。
Below 40 atoms, the residual magnetic flux density (Br) decreases, and 9
This is because if it exceeds 0 atoms, a high coercive force (iHc) cannot be obtained.

上記R−BおよびFeを必須元素とし、希土類・ボロン
・鉄系焼結磁石は作成されるが下記の如く、鉄の一部を
他の元素で置換することや、不純物を含んでも本弁明の
効果は失なわれない。
Rare earth/boron/iron sintered magnets can be created using the above R-B and Fe as essential elements, but as described below, even if some of the iron is replaced with other elements or impurities are included, this defense does not apply. The effect will not be lost.

すなわち、Feの代りに、50原子チ以下のCo p8
原子チ以下のNiで代替しても良いo Coは50原子
チを越えると高いfHcが得られず、Niは8%を越え
ると高いBrが得られないためである。また上記以外の
元素として下記所定原子チ以下のA元素の1種以上(た
だし、2種以上含む場合のA元素の総量は当該含有A元
素の内置大値を有するものの値以下)kFe元素と置換
しても本発明の効果は失なわれない。A元素を下記する
0 次に本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
That is, in place of Fe, less than 50 atoms of Co p8
Ni may be substituted with less than 50 atoms of Co. If Co exceeds 50 atoms, high fHc cannot be obtained, and if Ni exceeds 8%, high Br cannot be obtained. In addition, as an element other than the above, one or more of the A elements below the specified atom number (however, if two or more types are included, the total amount of A elements is less than or equal to the maximum value of the contained A element) kReplaced with Fe element However, the effects of the present invention are not lost. The A element is as follows: 0 Next, examples of the present invention will be described, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1゜ 16Nd−8B−残Fe(原子チ)となるよう溶解し、
合金インゴットを得た。合金インゴットをジヲークラッ
シャー、ブラウンミル、ジェット・ミルを用いて平均粒
径3.5μmの微粉とし、これにAlN粉(平均粒径1
.5μrn)を第1表の如く、配合、混合し原料粉とし
た0 第    1    表 得られた原料粉を、成形圧3 t/dで磁場中(10K
Oe)成形し、得られた成形体を真空中(10Torr
)で、1100℃×2時間の焼結後炉冷し、再度610
℃×1時間の熱処理後、急冷し磁気特性の評価に供した
。結果を第1表に示す。
Example 1 16Nd-8B-dissolved to form residual Fe (atomic atoms),
An alloy ingot was obtained. The alloy ingot was made into a fine powder with an average particle size of 3.5 μm using a Geo crusher, a brown mill, and a jet mill, and then AlN powder (average particle size of 1
.. 5 μrn) as shown in Table 1 to form raw material powder. Table 1 The obtained raw material powder was placed in a magnetic field (10K
Oe) The obtained molded body was molded in vacuum (10 Torr
), sintered at 1100°C for 2 hours, cooled in the furnace, and heated again at 610°C.
After heat treatment for 1 hour at °C, it was rapidly cooled and subjected to evaluation of magnetic properties. The results are shown in Table 1.

第1表に見る!20 < 、AlN無添加(A1)に比
較し、AlNを添加(A2〜7)することにより、著し
く保磁力(iHc)が、向上することが分る。しかしA
lN3.8%添加材(A7)では、残留磁束密度(Br
)の著しい低下が生じる0 実施例2゜ 第2表に示す如く、窒化物粉(平均粒径1.5〜2.5
μm)を配合、混合し、実施例1と同様に、成形、焼結
、熱処理を行い、磁気特性の評価に供した。結果を、第
3表に示す0 第6表に見る如く、BN添加(扁8,9.10)にても
、AlNと同様に、保磁力向上が認められる0また窒化
物の複合添加(411,12)にても保磁力の向上が認
められるoしかし、添加量が過度(AIo 、12)で
は、47と同様に、著しいBrの低下が生じる。
See Table 1! 20<, it can be seen that the coercive force (iHc) is significantly improved by adding AlN (A2 to A7) compared to the case where AlN is not added (A1). However, A
In the 3.8% lN additive material (A7), the residual magnetic flux density (Br
Example 2 As shown in Table 2, nitride powder (average particle size 1.5-2.5)
μm) were blended and mixed, molded, sintered, and heat treated in the same manner as in Example 1, and the magnetic properties were evaluated. The results are shown in Table 3. As shown in Table 6, the addition of BN (width: 8, 9.10) also improves the coercive force, similar to AlN. , 12) also shows an improvement in coercive force. However, when the amount added is excessive (AIo, 12), as in 47, a significant decrease in Br occurs.

〔発明の効果〕〔Effect of the invention〕

Claims (2)

【特許請求の範囲】[Claims] 1.R(但しRはYを含む希土類元素の内、少なくとも
1種)、BおよびFeを必須成分とするR−B−Fe系
合金粉末またはそれと同組成となる混合粉末にさらにB
、Alの元素の内、少くとも1種の窒化物粉末を重量%
にて0.05〜3.5%配合し、混合、成形、焼結およ
び熱処理を行うことを特徴とするR−B−Fe系焼結磁
石の製造方法。
1. R (where R is at least one rare earth element including Y), B-Fe alloy powder containing B and Fe as essential components, or a mixed powder having the same composition as B.
, at least one kind of nitride powder among the elements of Al in weight%
A method for manufacturing an R-B-Fe-based sintered magnet, which comprises blending 0.05 to 3.5% of R-B-Fe based sintered magnets, and performing mixing, molding, sintering, and heat treatment.
2.B、Alの元素の内、少くとも1種の窒化物粉末を
0.05〜3.5重量%配合することを特徴とするR−
B−Fe系焼結磁石。
2. R- characterized in that 0.05 to 3.5% by weight of at least one nitride powder of the elements B and Al is blended.
B-Fe based sintered magnet.
JP60276571A 1985-12-09 1985-12-09 R-b-fe system sintered magnet and manufacture thereof Pending JPS62134908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276571A JPS62134908A (en) 1985-12-09 1985-12-09 R-b-fe system sintered magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276571A JPS62134908A (en) 1985-12-09 1985-12-09 R-b-fe system sintered magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62134908A true JPS62134908A (en) 1987-06-18

Family

ID=17571331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276571A Pending JPS62134908A (en) 1985-12-09 1985-12-09 R-b-fe system sintered magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62134908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177147A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Manufacture of permanent magnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177147A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Manufacture of permanent magnet material

Similar Documents

Publication Publication Date Title
JP2006303433A (en) Rare earth permanent magnet
JPS63255902A (en) R-b-fe sintered magnet and manufacture thereof
JPS60144909A (en) Manufacture of permanent magnet material
JP2791470B2 (en) RB-Fe sintered magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2020161811A (en) R-t-b based permanent magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPS62134908A (en) R-b-fe system sintered magnet and manufacture thereof
JPH04338604A (en) Metallic bonding magnet and manufacture thereof
JPS62181403A (en) Permanent magnet
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof
JPS63249305A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS62182249A (en) R-b-fe sintered magnet and its manufacture
JPS62134906A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JPS63249303A (en) R-b-fe system sintered magnet and manufacture thereof
JPS63255901A (en) R-b-fe sintered magnet and manufacture thereof
JPS62141705A (en) R-b-fe system sintered magnet and manufacture thereof
JP2581161B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH0475303B2 (en)
JPS63249304A (en) R-b-fe system sintered magnet and manufacture thereof
JPS63234503A (en) Manufacture of permanent magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance