JPS62132302A - Rare earth element-iron-boron alloy powder and manufacture thereof - Google Patents

Rare earth element-iron-boron alloy powder and manufacture thereof

Info

Publication number
JPS62132302A
JPS62132302A JP60272942A JP27294285A JPS62132302A JP S62132302 A JPS62132302 A JP S62132302A JP 60272942 A JP60272942 A JP 60272942A JP 27294285 A JP27294285 A JP 27294285A JP S62132302 A JPS62132302 A JP S62132302A
Authority
JP
Japan
Prior art keywords
rare earth
phase
iron
powder
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272942A
Other languages
Japanese (ja)
Inventor
Junichi Ishii
純一 石井
Koichi Oka
岡 公一
Koichi Yamagishi
浩一 山岸
Koichiro Maki
孝一郎 槙
Takehiko Sato
佐藤 威彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60272942A priority Critical patent/JPS62132302A/en
Publication of JPS62132302A publication Critical patent/JPS62132302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain preferable magnetic properties of rare earth element-iron-boron alloy powder without necessity of heat treatment by composing alloy powder of a main phase disposed at its center, a coercive force generating phase covered around the main phase, and outermost side rare earth rich element phase covered around the coercive force generating phase. CONSTITUTION:A mean composition contains 8-25atom% of a rare earth element, 3-15atom% of boron, residal iron (part of Fe may be substituted for one or more of Co, Ni, Al, Mn) and inevitable impurities. Each particle contains a central main phase of a tetragonal crystal, a coercive force generating phase of body-centered cubic crystal covered on the main phase and laminated on the main phase, and rare earth rich element phase made of solid solution including 80-95atom% of the rare earth element. Mean particle size is 2-50mum. Since the obtained R-Fe-B alloy powder has a structure capable of having high performance as a magnet in the individual particles, the powder is proper for manufacturing a permanent magnet. Since a heat treatment for improving the magnetic properties is not necessary, the powder is advantageous in manufacturing a resin magnet and is particularly excellent as alloy powder for the resin magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄−ホウ素系合金粉末に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron-boron alloy powder.

特に樹脂磁石用として好適である合金粉末に関する。In particular, the present invention relates to an alloy powder suitable for use in resin magnets.

〔従来の技術〕[Conventional technology]

希土類(R)−鉄(Fe)−ホウ素(B)系磁石は、ア
ルニコ磁石や希土類−コバルト磁石に使用される、原料
供給が不安定であるコバルト(Go)や、希土類の中で
も特に稀少で高価なサマリウム(Sm)を使用しなくて
もよい高性能磁石として知られている。このR−Fe−
B系磁石の製造に使用されるR−Fe−B系合金粉末は
、溶解法または還元拡散法により製造されている。
Rare earth (R)-iron (Fe)-boron (B) magnets are made from cobalt (Go), which is used in alnico magnets and rare earth-cobalt magnets, whose raw material supply is unstable, and which is particularly rare and expensive among rare earths. It is known as a high-performance magnet that does not require the use of samarium (Sm). This R-Fe-
The R-Fe-B alloy powder used for manufacturing B-based magnets is manufactured by a melting method or a reduction diffusion method.

溶解法は、出発原料として純鉄、Fe−8合金、希土類
金属を溶解、鋳造した後、得られた鋳塊を粗粉砕および
微粉砕するというものであり、還元拡散法は、希土類元
素の酸化物、鉄粉、 Fe−B粉および金属Caあるい
はCa)I□を混合し、不活性ガス雰囲気中で900〜
12oO°Cに加熱し、得られたCaOや残留Caを含
む生成混合物を湿式処理することによりR−Fe−B系
合金粉末を得るものである。
The melting method involves melting and casting pure iron, Fe-8 alloy, and rare earth metals as starting materials, and then coarsely and finely pulverizing the resulting ingot.The reduction diffusion method involves oxidizing rare earth elements. Mix metal powder, iron powder, Fe-B powder, and metal Ca or Ca)I□ and heat to 900~
R-Fe-B alloy powder is obtained by heating to 120°C and wet-processing the resulting mixture containing CaO and residual Ca.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の製法により得られる合金粉末は、そのま
までは磁気特性が劣り、その向上には熱処理が必要であ
る。したがって、焼成を伴なう焼結磁石の製造原料とし
ては適しているが、合金粉末をエポキシ樹脂等で結合、
成形して製造する樹脂磁石の場合には所要の熱処理を施
すことができないので、得られる樹脂磁石の磁気特性は
焼結磁石に比して大幅に劣るという問題点を有している
However, the alloy powder obtained by the above manufacturing method has poor magnetic properties as it is, and heat treatment is required to improve them. Therefore, it is suitable as a raw material for manufacturing sintered magnets that involve firing, but alloy powder is combined with epoxy resin, etc.
In the case of resin magnets manufactured by molding, the required heat treatment cannot be performed, so the magnetic properties of the resulting resin magnets are significantly inferior to those of sintered magnets.

本発明の目的は、この問題点を解決し、磁気特性に優れ
、そのまま樹脂磁石の原料として用いても良好な磁気特
性を有するR−Fe−[1系磁石を製造することができ
るR−Fe−B系合金粉末およびその製法を提供するこ
とにある。
The purpose of the present invention is to solve this problem and to produce R-Fe-[1 series magnets that have excellent magnetic properties and have good magnetic properties even when used as raw materials for resin magnets. An object of the present invention is to provide a B-based alloy powder and a method for producing the same.

C問題点を解決するための手段〕 すなわち本発明は、前記の従来技術の問題点を解決する
ものとして、 平均組成が、希土類元素8〜25原子%、ホウ素3〜1
5原子%ならびに残部鉄(Feの一部がCo、 Ni。
Means for Solving Problem C] That is, the present invention solves the problems of the above-mentioned prior art.
5 at.% and the balance is iron (part of Fe is Co, Ni).

Al、 Mnの1種以上により置換されていてもよい)
および不可避不純物からなり。
(may be substituted with one or more of Al and Mn)
and unavoidable impurities.

各粒子が、正方晶の中心部主相と、該主相を被覆しかつ
該主相と整層をなす体心立方晶の保磁力発生相と、該保
磁力発生相を被覆し希土類元素80〜95原子%含有す
る固溶体からなる富希土類相とから構成され、 平均粒度が2〜50μmである希土類−鉄−ホウ素合金
粉末を提供するものである。
Each particle has a tetragonal central main phase, a body-centered cubic coercive force-generating phase that covers the main phase and is aligned with the main phase, and a rare earth element 80 that covers the coercive force-generating phase. The present invention provides a rare earth-iron-boron alloy powder composed of a rich rare earth phase consisting of a solid solution containing ~95 at%, and having an average particle size of 2 to 50 μm.

本発明において、希土類元素(R)には、ランタン(L
a)、セリウム(Ce)、プラセオジム(Pr) +ネ
オジム(Nd)、サマリウム(Sm)、ユウロピウム(
Eu)、ガドリニウム(Gd)、テレビラム(Tb)、
ジスプロシウム(Dy)、ホルミウム()Io)、エル
ビウム(Er)、ツリウム(Tm)、イッテルビウム(
Yb)、ルテチウム(Lu)、プロメチウム(Pm)、
およびイツトリウム(Y)が包含される。
In the present invention, the rare earth element (R) includes lanthanum (L
a), cerium (Ce), praseodymium (Pr) + neodymium (Nd), samarium (Sm), europium (
Eu), gadolinium (Gd), televisionram (Tb),
Dysprosium (Dy), holmium ()Io), erbium (Er), thulium (Tm), ytterbium (
Yb), lutetium (Lu), promethium (Pm),
and yttrium (Y).

これら希土類元素の中でも、Nd、Pr等の軽希土類元
素が好ましく、他の希土類元素は軽希土類とともに使用
することが好ましい。
Among these rare earth elements, light rare earth elements such as Nd and Pr are preferred, and other rare earth elements are preferably used together with the light rare earth elements.

本発明の合金粉末は、平均組成において、希土類元素が
、8〜25原子%、好ましくは12〜20原子%である
。8原子%未満では、富希土類相が薄くなりすぎて高保
磁力が得られず、25原子%を超えると富希土類相が厚
くなりすぎ残留磁束密度(Br)が低下して高性能の磁
石が得られない。
The alloy powder of the present invention has a rare earth element content of 8 to 25 at%, preferably 12 to 20 at%, in the average composition. If it is less than 8 at%, the rare earth phase becomes too thin and high coercive force cannot be obtained, and if it exceeds 25 at%, the rich rare earth phase becomes too thick and the residual magnetic flux density (Br) decreases, resulting in a high performance magnet. I can't.

ホウ素([3)は、平均組成において、3〜15原子%
、好ましくは5〜10原子%である。3原子%未満では
保磁力(iHc)を発生させる相が形成され這いため高
保磁力が得られず、15原子%を超えると保磁力発生相
が厚くなりすぎて残留磁束密度(Br)が低下するため
得られる磁石の性能が低下する。
Boron ([3) is 3 to 15 atomic% in the average composition
, preferably 5 to 10 atom %. If it is less than 3 at%, a phase that generates coercive force (iHc) is formed and creeps, so high coercive force cannot be obtained, and if it exceeds 15 at%, the coercive force generating phase becomes too thick and the residual magnetic flux density (Br) decreases. Therefore, the performance of the resulting magnet deteriorates.

本発明の合金粉末は、中心部に位置する主相と、該主相
を包囲して被覆する保磁力発生相と、該保磁力発生相を
包囲して被覆する最外側の富希土類相と力)ら構成され
ているものである。
The alloy powder of the present invention has a main phase located in the center, a coercive force generating phase surrounding and coating the main phase, an outermost rich rare earth phase surrounding and coating the coercive force generating phase, and a coercive force generating phase surrounding and coating the main phase. ).

中心部の主相は一般に、R8〜178〜25原子〜15
3〜15原子の鉄および不可避不純物からなる正方晶の
金属間化合物でもζ成されている。
The main phase in the center generally has R8~178~25 atoms~15
A tetragonal intermetallic compound consisting of 3 to 15 atoms of iron and inevitable impurities is also formed.

保磁力発生相は、体心立方晶の金属間化合物からなり、
前記の主相と整層をなす状態で接し形成されていること
が重要である。
The coercive force generating phase consists of a body-centered cubic intermetallic compound,
It is important that it is formed in contact with the main phase in a well-aligned state.

本明細書で、相隣接する2つの相が「整層」をなしてい
ないとは、保磁力発生相が中心部の主相中に幅10〜3
0人で長さ約100Å以上の突起状の食込みを有してい
る。ことを意味し、前記した従来の還元拡散法により製
造されたR−Fe−8合金粉末の場合は、このような突
起状食い込みを有しているため両相は整層をなしていな
い。一方「整層」をなしているとは、このような突起状
食い込みが主相と保磁力発生相の間で消失している状態
をいう。
In this specification, two adjacent phases are not "aligned" means that the coercive force generating phase is in the main phase at the center with a width of 10 to 3
0 people had protrusion-like bites with a length of about 100 Å or more. This means that in the case of the R-Fe-8 alloy powder produced by the conventional reduction-diffusion method described above, both phases are not aligned because it has such protruding bites. On the other hand, "aligned layering" refers to a state in which such protruding biting has disappeared between the main phase and the coercive force generating phase.

合金粉末粒子中で相隣接する2相が互いに整層をなして
いるか否かは1例えば、透過型電子顕微鏡によって測定
、確認することができる。
Whether or not two adjacent phases in the alloy powder particles are aligned with each other can be measured and confirmed using, for example, a transmission electron microscope.

保磁力発生相は高保磁力を実現する上で重要であり、そ
の厚さは最小30、最大4000人の範囲内にあって、
平均50〜1000人であることが好ましく、さらには
、最小50、最大1000人の範囲内にあって、平均1
00〜500人であることがより好ましい。この保磁力
発生相が薄すぎると保磁力(jHc)の向上は望めず、
厚すぎると残留磁束密度(Br)が低下する傾向にあり
好ましくない。
The coercive force generation phase is important in achieving high coercive force, and its thickness is within the range of minimum 30 and maximum 4000.
It is preferable that the average number of people is 50 to 1000 people, and more preferably within the range of a minimum of 50 and a maximum of 1000 people, with an average of 1
00 to 500 people is more preferable. If this coercive force generating phase is too thin, no improvement in coercive force (jHc) can be expected;
If it is too thick, the residual magnetic flux density (Br) tends to decrease, which is not preferable.

富希土類相は、主に希土類元素およびFeからなる相で
あり、若干のBが存在し得るが、希土類が80〜95原
子%を占める固溶体相である。この富希土類相の厚さは
、最小50人、最大10000人の範囲内で平均100
〜5000人であることが好ましく、さらには、最小5
0人、最大10000人の範囲内で、平均1000〜5
ooo人であることが好ましい。この富希土類相が薄す
ぎると粒子の酸化が起り易く、また粒子内に逆磁区が発
生し易くなり、また厚すぎると相対的に主相の量が減少
し残留磁束密度が低下する。
The rich rare earth phase is a phase mainly composed of rare earth elements and Fe, and although some B may be present, it is a solid solution phase in which rare earth elements account for 80 to 95 at %. The thickness of this rich rare earth phase ranges from a minimum of 50 people to a maximum of 10,000 people, with an average thickness of 100 people.
~5,000 people, preferably at least 5
0 people, maximum 10000 people, average 1000-5
It is preferable to be an ooo person. If this rich rare earth phase is too thin, the particles are likely to be oxidized and reversed magnetic domains are likely to occur within the particles, while if it is too thick, the amount of the main phase will be relatively reduced and the residual magnetic flux density will be lowered.

本発明のR−Fe−8合金粉末の平均粒度は、2〜50
μmであり、好ましくは5〜35μmである。平均粒度
が2μm未満であると、樹脂磁石製造の際の成形、熱処
理などの諸工程において酸化され易く、また得られる成
形体の密度が低いため得られる磁石の残留磁束密度(B
r)が低下する。また、50μmを超えると高い保磁力
が得られない。
The average particle size of the R-Fe-8 alloy powder of the present invention is 2 to 50
μm, preferably 5 to 35 μm. If the average particle size is less than 2 μm, it is likely to be oxidized during various steps such as molding and heat treatment during the production of resin magnets, and the density of the resulting molded product will be low, resulting in a decrease in the residual magnetic flux density (B
r) decreases. Moreover, if it exceeds 50 μm, high coercive force cannot be obtained.

以上説明した各相は、製造上不可避的に混入する不純物
を含んでいてもよい。
Each of the phases described above may contain impurities that are inevitably mixed in during production.

次に、本発明のR−Fe−8合金粉末の製造方法を説明
する。
Next, a method for manufacturing the R-Fe-8 alloy powder of the present invention will be explained.

第1の製法は、希土類酸化物粉末もしくは該希土類酸化
物粉末および希土類金属粉末と、含鉄粉末と、含ホウ素
粉末と、アルカリ金属、アルカリ土類金属およびこれら
の水素化物から選ばれる少なくとも1種とを、希土類元
素、ホウ素および鉄の割合が希土類元素8〜25原子%
、ホウ素3〜15原子%、そして残部鉄となるように混
合し、該混合物を不活性ガス雰囲気または還元性雰囲気
中において、まず900〜1200°Cにおいて加熱し
、その後350以上900°C未満において加熱し、得
られる生成混合物を湿式処理することからなる方法であ
る。
The first production method includes rare earth oxide powder or the rare earth oxide powder and rare earth metal powder, iron-containing powder, boron-containing powder, and at least one selected from alkali metals, alkaline earth metals, and hydrides thereof. , the proportion of rare earth elements, boron and iron is 8 to 25 at% of rare earth elements.
, 3 to 15 at% boron, and the balance iron, and the mixture is heated in an inert gas atmosphere or reducing atmosphere at 900 to 1200 °C, and then at 350 to 900 °C. The method consists of heating and wet processing of the resulting product mixture.

この製法に用いられる希土類酸化物は、前述の希土類元
素の酸化物であり、1種単独でも2種以上の組合わせで
も使用することができる。好ましくは、Nd、 Pr等
の軽希土類を主体として用いる。
The rare earth oxides used in this production method are the aforementioned rare earth element oxides, and can be used alone or in combination of two or more. Preferably, light rare earth elements such as Nd and Pr are used as the main material.

また、希土類供給原料としては、希土類酸化物粉末の他
に希土類金属粉末を併用することもできる。
Furthermore, as the rare earth feed material, rare earth metal powder can also be used in combination with rare earth oxide powder.

これら希土類酸化物粉末および希土類金属粉末の平均粒
度は1〜100μmが好ましい。
The average particle size of these rare earth oxide powders and rare earth metal powders is preferably 1 to 100 μm.

上記製法に用いられる含鉄粉末としては、例えば鉄粉末
、フェロボロン等をあげることができ、粒度は、1〜1
00μmが好ましい。
Examples of the iron-containing powder used in the above manufacturing method include iron powder, ferroboron, etc., and the particle size is 1 to 1.
00 μm is preferred.

また、含ホウ素粉末としては、例えば、フェロボロン粉
末をあげることができ、これらの粒度は、1〜100μ
mが好ましい。
Further, as the boron-containing powder, for example, ferroboron powder can be mentioned, and the particle size of these powders is 1 to 100μ.
m is preferred.

上記製法に用いられるアルカリ金属、アルカリ土類金属
およびこれらの水素化物は、還元剤として働くものであ
り、具体例としてはリチウム、ナトリウム、カリウム、
マグネシウム等およびその水素化物が挙げられるが、取
扱い上の安定性およびコストの点からカルシウムが好ま
しい。またこれらの金属または金属水素化物は粒状また
は粉末状のものが使用されるが、コストの点からは粒度
4メツシユ以下の粒状金属カルシウムが好ましい。
The alkali metals, alkaline earth metals, and their hydrides used in the above manufacturing method act as reducing agents, and specific examples include lithium, sodium, potassium,
Examples include magnesium and its hydrides, but calcium is preferred from the viewpoint of handling stability and cost. These metals or metal hydrides may be used in granular or powdered form, but from the viewpoint of cost, granular metallic calcium having a particle size of 4 mesh or less is preferred.

これら還元剤の使用量は、反応当量(希土類酸化物を還
元するのに必要な化学量論、に1)の1.1〜3.0倍
量が好ましい。
The amount of these reducing agents used is preferably 1.1 to 3.0 times the reaction equivalent (the stoichiometry required to reduce the rare earth oxide, 1).

上記製法によると、まず、上述した希土類酸化物粉末等
の混合物が不活性ガス雰囲気中1回目の加熱処理に供さ
れる。用いられる不活性ガス雰囲気としては、アルゴン
、チッ素等を挙げることができる。
According to the above manufacturing method, first, a mixture of the rare earth oxide powder and the like described above is subjected to a first heat treatment in an inert gas atmosphere. Examples of the inert gas atmosphere used include argon, nitrogen, and the like.

また、このときの加熱温度は、900〜1200℃、特
に950〜1100℃の範囲が好ましく、加熱時間は特
に制約させず、均一な合金粉末が得られる上で必要な時
間加熱すればよい。通常は、1〜5時間程度でよい。
Further, the heating temperature at this time is preferably in the range of 900 to 1200°C, particularly 950 to 1100°C, and the heating time is not particularly limited, and heating may be performed for a time necessary to obtain a uniform alloy powder. Usually, it takes about 1 to 5 hours.

1回目の加熱処理後の生成混合物は、2回目の加熱処理
に供されるが、1回目の加熱処理後、そのまま2回目の
処理温度にもち来して処理してもよいし、一旦常温に冷
却した後に再度昇温しで2回目の加熱処理に供してもよ
い。これらの操作は。
The mixture produced after the first heat treatment is subjected to the second heat treatment, but after the first heat treatment, it may be directly brought to the second treatment temperature, or it may be heated to room temperature once. After cooling, the temperature may be raised again to provide a second heat treatment. These operations are.

不活性ガス雰囲気中で行われる。It is carried out in an inert gas atmosphere.

第2回11の加熱処理も、不活性ガス雰囲気において行
なわれ、用いられる81Illl気は先に例示したとお
りである。このときの加熱温度は、350℃以上900
℃未満であり、好ましくは500〜850℃である。加
熱時間は、粒子の主相と保磁力発生相が整層状態となる
のに十分な時間であり、通常0.1〜4時間程度である
。なお、この2回目の加熱処理は、2段以上に分けて行
なうこともできる。
The second heat treatment 11 was also performed in an inert gas atmosphere, and the gas used was as exemplified above. The heating temperature at this time is 350°C or higher and 900°C.
℃, preferably 500 to 850℃. The heating time is sufficient for the main phase of the particles and the coercive force generating phase to be in an ordered state, and is usually about 0.1 to 4 hours. Note that this second heat treatment can also be performed in two or more stages.

こうして得られる生成物は、目的とする合金粉末のほか
アルカリ金属はたはアルカリ土類金属の酸化物等の副生
物および残留還元剤を含む混合物であり、湿式処理に供
して不要物を除去する。湿式処理は、一般に水による処
理および酸水溶液による処理により行なう。まず、生成
混合物を水中に投入することにより、CaOおよびCa
をCa (OH)2として分離し1次に酢酸、ギ酸、酪
酸等の弱酸の水溶液により処理して粒子表面の酸化膜を
除去する。
The product thus obtained is a mixture containing the desired alloy powder, by-products such as oxides of alkali metals or alkaline earth metals, and residual reducing agents, and is subjected to wet processing to remove unnecessary substances. . Wet treatment is generally carried out by treatment with water and treatment with an aqueous acid solution. First, by putting the product mixture into water, CaO and Ca
is separated as Ca (OH) 2 and then treated with an aqueous solution of a weak acid such as acetic acid, formic acid, butyric acid, etc. to remove the oxide film on the particle surface.

得られた合金粉末は、エタノール、アセトン等の有機溶
媒で洗浄、乾燥される。
The obtained alloy powder is washed with an organic solvent such as ethanol or acetone and dried.

本発明のR−Fe−8合金粉末の別の製法は、原料粉末
の1つとして、希土類元素8〜25原子%、B3〜15
3〜15原子鉄および不可避不純物の単相組織からなる
合金粉末(以下、 rR−Fe−8単相粉末」という)
を用いるものである。
Another method for producing the R-Fe-8 alloy powder of the present invention is to use 8 to 25 atomic % of rare earth elements and B3 to 15 atomic percent as one of the raw material powders.
Alloy powder consisting of a single phase structure of 3 to 15 atoms of iron and inevitable impurities (hereinafter referred to as rR-Fe-8 single phase powder)
is used.

この製法は、このR−Fe−8単相粉末と、希土類酸化
物粉末もしくは該希土類酸化物粉末および希土類金属粉
末と、アルカリ金属、アルカリ土類金属およびこれらの
水素化物から選ばれる少なくとも1種とを、希土類元素
、ホウ素および鉄の割合が希土類元素8〜25原子%、
ホウ素3〜15原子%、そして残部鉄となるように混合
して得られる混合粉末を、前記の第1の製法と同様にし
て、2回の加熱処理および湿式処理に供するものである
This manufacturing method includes this R-Fe-8 single-phase powder, rare earth oxide powder or the rare earth oxide powder and rare earth metal powder, and at least one selected from alkali metals, alkaline earth metals, and hydrides thereof. , the proportion of rare earth elements, boron and iron is 8 to 25 at% of rare earth elements,
A mixed powder obtained by mixing 3 to 15 atomic % of boron and the balance iron is subjected to two heat treatments and a wet treatment in the same manner as in the first manufacturing method.

この製法に用いられるR−Fe−8単相粉末は、例えば
、所望組成となるように、希土類金属と、純ホウ素もし
くはフェロボロンと、さらに純鉄とを溶解、鋳造により
鋳塊を作成し、微粉砕することにより得ることができる
。このR−Fe−8単相粉末の粒度は、2〜50μm、
特に5〜35μmが好ましい。
The R-Fe-8 single-phase powder used in this manufacturing method is produced by, for example, melting and casting rare earth metals, pure boron or ferroboron, and pure iron to create an ingot so as to have the desired composition. It can be obtained by grinding. The particle size of this R-Fe-8 single phase powder is 2 to 50 μm,
Particularly preferred is 5 to 35 μm.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例I Nd、 O,粉末78g、鉄粉68g、830重量%の
フェロボロン粉末4.4g、および金属Ca 4.5g
を混合した。
Example I 78 g of Nd, O, powder, 68 g of iron powder, 4.4 g of 830 wt% ferroboron powder, and 4.5 g of metallic Ca
were mixed.

この混合粉末をArガス雰囲気中で加熱して1020℃
まで昇温し該温度に30分間保持後、常温まで冷却し、
再度昇温し650℃で30分間保持後常温まで冷却した
。得られた生成物を202の水に投入してCaOを水と
反応させCa (OH)、とし、次いで希酢酸で処理し
た。得られたスラリー状粉末をエタノールで洗浄し、真
空乾燥器で常温24時間真空引きして乾燥した。得られ
た合金粉末の平均組成は、Nd14.5原子%、Fe 
76.3原子%、88.2原子%であった。この合金粉
末の粒子を透過電子顕微鏡で調査すると、平均粒度は5
.3μm、保磁力発生相の厚さは平均約300人、富希
土類相の厚さは平均約4000人であった。
This mixed powder was heated to 1020°C in an Ar gas atmosphere.
After raising the temperature to 30 minutes and keeping it at that temperature for 30 minutes, cool it to room temperature,
The temperature was raised again, held at 650°C for 30 minutes, and then cooled to room temperature. The obtained product was poured into 202 water to react CaO with water to form Ca (OH), and then treated with dilute acetic acid. The obtained slurry powder was washed with ethanol and dried in a vacuum dryer at room temperature under vacuum for 24 hours. The average composition of the obtained alloy powder was 14.5 atomic% Nd, Fe
They were 76.3 at% and 88.2 at%. When the particles of this alloy powder were examined using a transmission electron microscope, the average particle size was 5.
.. The average thickness of the coercive force generating phase was about 300 mm, and the average thickness of the rich rare earth phase was about 4000 mm.

保磁力発生相と中心相とは整層をなしていることが確認
された。
It was confirmed that the coercive force generation phase and the central phase were well-aligned.

この合金粉末をエポキシ樹脂と混合し、15にOeの磁
界中で配向し、3t/Cm”の圧力で成形し、その後A
rガス中で120°Cの加熱処理を行い樹脂を硬化させ
磁石を作成した。磁石の磁気特性は、Br 8.OKG
、 iHc 2.5にOe、 (BH)max 5.3
MGOeであった。
This alloy powder was mixed with epoxy resin, oriented in a magnetic field of 15 Oe, and molded at a pressure of 3t/Cm'', and then A
A heat treatment was performed at 120° C. in r gas to harden the resin and create a magnet. The magnetic properties of the magnet are Br8. OKG
, iHc 2.5 to Oe, (BH)max 5.3
It was MGOe.

比較例1 2回目の加熱処理である650℃における処理を行なわ
なかった以外は、実施例1と同様にして合金粉末を製造
した。得られた合金粉末は実施例1で製造したものと同
一組成で、平均粒度10μm、保磁力発生相の厚さ約1
0OA 、富希土類相の厚さ約5000人であった。電
子顕微鏡の観察により、保磁力発生相が中心部の主相中
に多数の突起状に食い込んでおり、両相は整層をなして
いなかった。
Comparative Example 1 An alloy powder was produced in the same manner as in Example 1, except that the second heat treatment at 650° C. was not performed. The obtained alloy powder had the same composition as that produced in Example 1, an average particle size of 10 μm, and a thickness of the coercive force-generating phase of about 1 μm.
0OA, the thickness of the rich rare earth phase was about 5000 people. Observation using an electron microscope revealed that the coercive force-generating phase was embedded in the main phase at the center in the form of many protrusions, and both phases were not aligned.

実施例1と同様に磁石を製造したところ、 Br 6.
OKG、 iHc O,5KOe、 (BH)max 
O,3MGOeであった。
When a magnet was manufactured in the same manner as in Example 1, Br6.
OKG, iHc O, 5KOe, (BH)max
It was O,3MGOe.

実施例2 希土類成分としてNd、 O,の一部をPrgOllt
 CezO3またはLa20.に代え、表1に示す組成
の合金粉末が得られるように鉄粉およびフェロボロンと
混合した。混合粉末を実施例1と同様にして処理して試
料1〜3の合金粉末を得た。得られた合金粉末の平均粒
径、保磁力発生相の厚さおよび富希土類相の厚さを表1
に示す。
Example 2 Part of Nd, O, and PrgOllt as rare earth components
CezO3 or La20. Instead, iron powder and ferroboron were mixed to obtain an alloy powder having the composition shown in Table 1. The mixed powder was treated in the same manner as in Example 1 to obtain alloy powders of Samples 1 to 3. The average particle size, coercive force generating phase thickness, and rich rare earth phase thickness of the obtained alloy powder are shown in Table 1.
Shown below.

次に、このようにしてI!5潰した合金粉末を実施例1
と同様にしてエポキシ樹脂を用いて磁石を製造した。得
られた磁石の性能も表1に示す。
Then, in this way I! Example 1: Crushed alloy powder
A magnet was manufactured using epoxy resin in the same manner as above. Table 1 also shows the performance of the obtained magnet.

実施例3 Nd 14原子%、Fe 78原子%、B88原子とな
る様に各金属を秤量し、真空溶解、鋳造により作成した
合金鋳塊を湿式で10時間ボールミルを用いて微粉砕し
た。得られた微粉末を真空乾燥後、Nd、 O,粉末4
0g、金属Ca 3.0gと混合した。
Example 3 Each metal was weighed so that Nd was 14 at %, Fe was 78 at %, and B was 88 atoms, and an alloy ingot produced by vacuum melting and casting was wet-pulverized using a ball mill for 10 hours. After vacuum drying the obtained fine powder, Nd, O, powder 4
0 g, and mixed with 3.0 g of metallic Ca.

得られた混合粉末を、実施例1と同様にして、2段階の
加熱処理および湿式処理に供して合金粉末を製造した。
The obtained mixed powder was subjected to two-stage heat treatment and wet treatment in the same manner as in Example 1 to produce an alloy powder.

得られた合金粉末の平均組成は、Nd 15原子%、F
e 77原子%、B88原子であった。また、平均粒度
は5.3μm、保磁力発生相の厚さは平均約300人、
富希土類相の厚さは平均2000人であった。電子顕微
鏡により、中心部の主相と保磁力発生相が整層をなして
いることが確認された。
The average composition of the obtained alloy powder was 15 at% Nd, F
e 77 at%, B88 atoms. In addition, the average particle size is 5.3 μm, and the thickness of the coercive force generation phase is approximately 300 μm on average.
The thickness of the rich rare earth facies was on average 2000 people. Using an electron microscope, it was confirmed that the main phase in the center and the coercive force generating phase were well-aligned.

このように得られた合金粉末から実施例1と同様にエポ
キシ樹脂を用いて磁石を製造した。得られた磁石の磁気
特性は、Br 7.5KG、 1llc 3.0にOe
A magnet was manufactured from the alloy powder thus obtained using an epoxy resin in the same manner as in Example 1. The magnetic properties of the obtained magnet were Br 7.5KG, 1llc 3.0 and Oe.
.

(B)I)max 5.2MGOeであった。(B)I)max was 5.2MGOe.

比較例2 2回目の熱処理である650°Cにおける処理を行なわ
ない以外は実施例3と同様にして合金粉末を製造した。
Comparative Example 2 An alloy powder was produced in the same manner as in Example 3, except that the second heat treatment at 650°C was not performed.

得られた合金粉末では、保磁力発生相および富希土類相
が主相を完全に被覆していなかった・ この合金粉末を用いて、実施例1と同様にして磁石を製
造したところ、磁石特性は、Br 5.5KG。
In the obtained alloy powder, the coercive force generating phase and the rare earth phase did not completely cover the main phase. When a magnet was manufactured using this alloy powder in the same manner as in Example 1, the magnetic properties were , Br 5.5KG.

111c O,5にOe、 (Bll)max 0.3
8GOeであった。
111c O,5 to Oe, (Bll)max 0.3
It was 8GOe.

〔発明の効果〕〔Effect of the invention〕

本発明のR−Fe−B系合金粉末は、その個々の粒子が
磁石として高性能を有し得る構造を備えているため、永
久磁石の製造に好適であり、特に磁気特性向」二のため
の熱処理を必要としないため樹脂磁石を製造する上で有
利であり、樹脂磁石用合金粉末として特に優れている。
The R-Fe-B alloy powder of the present invention has a structure in which each particle thereof can have high performance as a magnet, so it is suitable for manufacturing permanent magnets, and especially because of its magnetic properties. Since it does not require heat treatment, it is advantageous in producing resin magnets, and is particularly excellent as an alloy powder for resin magnets.

Claims (1)

【特許請求の範囲】 1)平均組成が、希土類元素8〜25原子%、ホウ素3
〜15原子%ならびに残部鉄および不可避不純物からな
り、 各粒子が、正方晶の中心部主相と、該主相を被覆しかつ
該主相と整層をなす体心立方晶の保磁力発生相と、該保
磁力発生相を被覆し希土類元素80〜95原子%含有す
る固溶体からなる富希土類相とから構成され、 平均粒度が2〜50μmである希土類−鉄−ホウ素系合
金粉末。 2)希土類酸化物粉末もしくは該希土類酸化物粉末およ
び希土類金属粉末と、含鉄粉末と、含ホウ素粉末と、ア
ルカリ金属、アルカリ土類金属およびこれらの水素化物
から選ばれる少なくとも1種とを、希土類元素、ホウ素
および鉄の割合が希土類元素8〜25原子%、ホウ素3
〜15原子%、そして残部鉄となるように混合し、 該混合物を不活性ガス雰囲気または還元性雰囲気中にお
いて、まず900〜1200℃において加熱し、その後
350以上900℃未満において加熱し、得られる生成
混合物を湿式処理することからなる希土類−鉄−ホウ素
系合金粉末の製法。 3)希土類元素8〜17原子%、ホウ素3〜15原子%
ならびに残部鉄および不可避不純物の単相組織からなる
合金粉末と、 希土類酸化物粉末もしくは該希土類酸化物粉末および希
土類金属粉末と、アルカリ金属、アルカリ土類金属およ
びこれらの水素化物から選ばれる少なくとも1種とを、
希土類元素、ホウ素および鉄の割合が希土類元素8〜2
5原子%、ホウ素3〜15原子%、そして残部鉄となる
ように混合し、 該混合物を不活性ガス雰囲気または還元性雰囲気中にお
いて、まず900〜1200℃において加熱し、その後
350以上900℃未満において加熱し、得られる生成
混合物を湿式処理することからなる希土類−鉄−ホウ素
系合金粉末の製法。
[Claims] 1) The average composition is 8 to 25 atomic % of rare earth elements and 3 atomic % of boron.
~15 atomic % and the balance is iron and unavoidable impurities, and each particle has a tetragonal central main phase and a body-centered cubic coercive force-generating phase that covers the main phase and is aligned with the main phase. and a rich rare earth phase consisting of a solid solution containing 80 to 95 atom % of rare earth elements, which coats the coercive force generating phase, and has an average particle size of 2 to 50 μm. 2) A rare earth oxide powder or the rare earth oxide powder and rare earth metal powder, an iron-containing powder, a boron-containing powder, and at least one selected from alkali metals, alkaline earth metals, and hydrides thereof, and a rare earth element. , the proportion of boron and iron is rare earth elements 8 to 25 at%, boron 3
~15 at%, and the balance is iron, and the mixture is first heated at 900 to 1200°C in an inert gas atmosphere or reducing atmosphere, and then heated at 350 or more and less than 900°C. A method for producing a rare earth-iron-boron alloy powder, which comprises wet-processing the resulting mixture. 3) Rare earth elements 8-17 at%, boron 3-15 at%
and an alloy powder consisting of a single-phase structure with the balance iron and unavoidable impurities, a rare earth oxide powder or the rare earth oxide powder and rare earth metal powder, and at least one selected from alkali metals, alkaline earth metals, and hydrides thereof. and,
The proportion of rare earth elements, boron and iron is rare earth elements 8 to 2
5 at% of boron, 3 to 15 at% of boron, and the balance is iron, and the mixture is first heated at 900 to 1200°C in an inert gas atmosphere or reducing atmosphere, and then heated at 350 to 900°C. A method for producing a rare earth-iron-boron alloy powder, which comprises heating the resulting mixture in a wet process.
JP60272942A 1985-12-04 1985-12-04 Rare earth element-iron-boron alloy powder and manufacture thereof Pending JPS62132302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272942A JPS62132302A (en) 1985-12-04 1985-12-04 Rare earth element-iron-boron alloy powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272942A JPS62132302A (en) 1985-12-04 1985-12-04 Rare earth element-iron-boron alloy powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62132302A true JPS62132302A (en) 1987-06-15

Family

ID=17520914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272942A Pending JPS62132302A (en) 1985-12-04 1985-12-04 Rare earth element-iron-boron alloy powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62132302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448403A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Rare earth-iron-boron magnet powder and manufacture thereof
JPS6484701A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Mining Co Manufacture of powder for resin bonded magnet
JPH01162702A (en) * 1987-12-17 1989-06-27 Kobe Steel Ltd Rare earth series magnetic powder for resin combined-type magnet
JPH05243025A (en) * 1992-02-26 1993-09-21 Nichia Chem Ind Ltd Permanent magnet material and manufacture thereof
CN106463223A (en) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB-BASED MAGNET AND PROCESS FOR PRODUCING RFeB-BASED MAGNET

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448403A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Rare earth-iron-boron magnet powder and manufacture thereof
JPS6484701A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Mining Co Manufacture of powder for resin bonded magnet
JPH01162702A (en) * 1987-12-17 1989-06-27 Kobe Steel Ltd Rare earth series magnetic powder for resin combined-type magnet
JPH05243025A (en) * 1992-02-26 1993-09-21 Nichia Chem Ind Ltd Permanent magnet material and manufacture thereof
CN106463223A (en) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB-BASED MAGNET AND PROCESS FOR PRODUCING RFeB-BASED MAGNET

Similar Documents

Publication Publication Date Title
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS63301505A (en) R-b-fe sintered magnet
JPH0518242B2 (en)
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JP3143396B2 (en) Manufacturing method of sintered rare earth magnet
JPH0461042B2 (en)
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH045739B2 (en)
JPS6230846A (en) Production of permanent magnet material
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JP2000252108A (en) Rare-earth sintered magnet and its manufacture
JPS627831A (en) Manufacture of permanent magnet material
JPH0475303B2 (en)
JPH0320044B2 (en)
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPS6230845A (en) Production of anisotropic permanent magnet material
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH06922B2 (en) Method for producing alloy powder for rare earth magnet
JPH01127606A (en) Production of raw material powder for permanent magnet material
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH05247600A (en) Magnet material and its production
JPH044384B2 (en)