JPS63255902A - R-b-fe sintered magnet and manufacture thereof - Google Patents

R-b-fe sintered magnet and manufacture thereof

Info

Publication number
JPS63255902A
JPS63255902A JP62090355A JP9035587A JPS63255902A JP S63255902 A JPS63255902 A JP S63255902A JP 62090355 A JP62090355 A JP 62090355A JP 9035587 A JP9035587 A JP 9035587A JP S63255902 A JPS63255902 A JP S63255902A
Authority
JP
Japan
Prior art keywords
rare earth
sintered
sintered magnet
mixed
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62090355A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Takayoshi Sato
隆善 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62090355A priority Critical patent/JPS63255902A/en
Publication of JPS63255902A publication Critical patent/JPS63255902A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain an R-B-Fe sintered magnet which has excellent magnetic characteristics by adding a specific fluoride to the R-B-Fe sintered magnet. CONSTITUTION:An R-B-Fe alloy powder wherein the essential components are R (at least one of rare earth elements which contain Y), B and Fe or the same component mixed powder is further mixed with at least one of rare earth element fluoride NdF3 or DyF3 and is formed, sintered and heat-treated. It is preferable that at least one of the rare earth element fluoride NdF3 or DyF3 is so mixed and added that 0.001-0.8 weight % of halogen element fluorine (F) is contained in a product after sintered and heat-treated. This improves magnetic characteristics such as residual magnetic flux density (Br), coercive force (iHc) or a maximum energy product {BH(MAX)}.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−B−Fe系焼結磁石において、弗化物を添
加することにより磁気特性を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is an R-B-Fe sintered magnet whose magnetic properties are improved by adding fluoride.

〔従来の技術〕[Conventional technology]

近年、従来のSo −Co系磁石に比較し、より高磁気
特性を有しかつ資源的にも高価なSmやCoを、必らず
しも含まないNd−B−Fe系永久磁石が、発明された
。(俵用ほか、J、Appl、Phys、55(61,
15March1984、 P2O83〜2087、お
よび特開昭59−46008号公報、同60−1821
04号公報参照)それらによれば、製造方法として溶解
、鋳造し得られた合金インゴットを粉砕し、必要に応じ
て磁界を印加しながらプレス成形し、さらに焼結および
熱処理することが開示されている。
In recent years, Nd-B-Fe permanent magnets have been invented that have higher magnetic properties than conventional So-Co magnets and do not necessarily contain Sm or Co, which are expensive resources. It was done. (Bale use, etc., J, Appl, Phys, 55 (61,
15March1984, P2O83-2087, and JP-A-59-46008, JP-A-60-1821
According to them, as a manufacturing method, an alloy ingot obtained by melting and casting is crushed, press-formed while applying a magnetic field as necessary, and further sintered and heat-treated. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これら従来の方法による製造方法では磁気特性
の点で、十分満足のできる磁気特性が得られるには、至
ってない。
However, with these conventional manufacturing methods, it has not been possible to obtain sufficiently satisfactory magnetic properties.

本発明は上述した従来技術の問題点を解消し、磁気特性
の優れたR−B−Fe系焼結磁石およびその製造方法を
、提供することを目的とするものである。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an R-B-Fe sintered magnet with excellent magnetic properties and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明はR(但しRはYを含む希土類元素の内
、少くとも1種)、BおよびFeを必須成分とするR−
B−Fe系合金粉またはそれと同組成となる混合粉にさ
らに希土類フッ化物NdF、、 DYF3の内、少(と
も1種を配合し、混合、成形、焼結および熱処理を行う
ことを特徴とするものである。
That is, the present invention provides an R-
B-Fe alloy powder or mixed powder having the same composition is further blended with at least one of the rare earth fluorides NdF, DYF3, and mixed, molded, sintered and heat treated. It is something.

本発明を詳述すると先ず公知の手段にて所定成分を有す
るR−B−Fe系合金粉またはそれと同組成となり得る
混合粉が準備される。例えば、溶解。
To explain the present invention in detail, first, an R-B-Fe alloy powder having a predetermined component or a mixed powder that can have the same composition is prepared by known means. For example, lysis.

鋳造しインゴットを粉末にする方法または溶解しアトマ
イズする方法または希土類酸化物を出発原料とする還元
拡散法で合金粉は作成される。上記合金粉の少くとも一
部をFeを代表とする遷移金属粉、ボロン粉、希土類金
属粉、B−遷移金属合金粉、R−遷移金属合金粉などの
1種または2種以上で代替とした混合粉を使用しても本
発明の効果は失なわれない。
The alloy powder is produced by a method of casting an ingot into powder, a method of melting and atomizing, or a reduction diffusion method using a rare earth oxide as a starting material. At least a part of the above alloy powder was replaced with one or more of transition metal powder represented by Fe, boron powder, rare earth metal powder, B-transition metal alloy powder, R-transition metal alloy powder, etc. Even if a mixed powder is used, the effects of the present invention are not lost.

なお、希土類フッ化物NdFi、 DyF3の内掛くと
も1種は焼結および熱処理後の製品に、ハロゲン元素フ
ッ素(F)が、重■%にて0.001〜0.8シロ含有
されるように、配合添加される。0.001%未満およ
び0.8%を越えると、効果が少いことと磁気特性が低
下するため0.001〜0.8wt%とされる。
In addition, at least one of the rare earth fluorides NdFi and DyF3 contains the halogen element fluorine (F) by weight of 0.001 to 0.8 sigma in the product after sintering and heat treatment. It is mixed and added to. If it is less than 0.001% or more than 0.8%, the effect will be small and the magnetic properties will deteriorate, so it is set at 0.001 to 0.8 wt%.

上記方法にて得られた混合粉を圧縮プレスなどにて成形
−圧密化を行う。)(IP等の1益間静水圧成形も可能
である。
The mixed powder obtained by the above method is molded and compacted using a compression press or the like. ) (Isostatic pressing such as IP is also possible.

なお、上記成形−圧密化は、0.5〜Lot/ctdの
成形圧力が良く、必要に応じ成形時において、磁界(5
KOe以上)を印加することにより、磁気特性は向上す
る。一連の成形−圧密化は湿式あるいは乾式でよく、常
温以外の高温度にて行っても良い。雰囲気は非酸化性雰
囲気が望ましく、例えば真空中、不活性ガス中あるいは
還元性ガス中にて行っても良い。得られた成形体を90
0〜1200°Cの温度にて焼結する。900℃未満で
は、宙度があがらないためBrが十分でなく1200’
cを越えるとBrおよび角形性が低下する理由による。
In the above molding-consolidation, a molding pressure of 0.5 to Lot/ctd is good, and if necessary, a magnetic field (5
By applying KOe or more), the magnetic properties are improved. The series of molding and compaction may be performed wet or dry, and may be performed at a high temperature other than room temperature. The atmosphere is preferably a non-oxidizing atmosphere, and may be carried out, for example, in a vacuum, an inert gas, or a reducing gas. The obtained molded body was heated to 90
Sinter at a temperature of 0 to 1200°C. If the temperature is less than 900°C, the degree of inertia will not increase and Br will not be sufficient, resulting in a temperature of 1200'
This is because if it exceeds c, Br and squareness decrease.

焼結は、R元素の酸化防止のための非酸化性雰囲気中に
て行なうことが望ましい。すなわち、真空または不活性
ガスの雰囲気が良い。なお、焼結時室温からの昇温速度
は特に規定しないが、昇温途中200〜800°Cの温
度範囲で少くとも0.5時間保持することにより、被加
熱部の温度均一性を改善したり、真空中において脱ガス
処理を行うことも可能となる。
Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation of the R element. That is, a vacuum or an inert gas atmosphere is preferable. The rate of temperature increase from room temperature during sintering is not particularly specified, but the temperature uniformity of the heated part can be improved by maintaining the temperature in the range of 200 to 800 °C for at least 0.5 hours during the temperature increase. Alternatively, it becomes possible to perform degassing treatment in a vacuum.

従って、焼結における雰囲気としては、真空あるいは不
活性ガス(例えばAr)などの非酸化性雰囲気が良い。
Therefore, the atmosphere for sintering is preferably a non-oxidizing atmosphere such as vacuum or an inert gas (eg Ar).

加熱保持後の冷却速度は、特に規定しないが、0゜1〜
b は0.2〜b による磁気特性のバラツキが少なくなるためである。ま
た冷却は一度常温まで冷却することも良くあるいは、5
00°C位迄行い、次の熱処理のため再度昇温するよう
に、焼結と熱処理を連続的に行っても良い。
The cooling rate after heating and holding is not particularly specified, but it is 0°1~
This is because the variation in magnetic properties due to b being 0.2 to b is reduced. It is also good to cool down to room temperature once, or
Sintering and heat treatment may be performed continuously, such that the temperature is raised to about 00°C and the temperature is raised again for the next heat treatment.

以上の焼結後、さらに磁気特性を向上せしめるため、5
00〜700℃で時効処理を行うが、a:要に応じ時効
処理前に800〜1000°Cで保持−徐冷という中間
熱処理を行うことにより一層fn気特性が向上する。時
効処理、中間熱処理などの熱処理は前記焼結と同じく、
非酸化性雰囲気が望ましい。
After the above sintering, in order to further improve the magnetic properties,
Aging treatment is performed at 00 to 700°C, but a: If necessary, an intermediate heat treatment of holding and slow cooling at 800 to 1000°C is performed before the aging treatment to further improve the fn properties. Heat treatments such as aging treatment and intermediate heat treatment are the same as the sintering described above.
A non-oxidizing atmosphere is preferred.

なお、時効処理は500〜700℃で少くとも0.5時
間保持し、急冷することで良い。500℃未満では効果
が少なく 700 ’Cを越えると磁気特性の低下が生
じるからである。
Note that the aging treatment may be carried out by holding at 500 to 700°C for at least 0.5 hours and then rapidly cooling. This is because there is little effect below 500°C, and above 700'C the magnetic properties deteriorate.

次に本発明を適用する希土類・ボロン・鉄系焼結磁石の
成分限定理由について説明すると、本発明の磁石は希土
類元素R(ただしRはYを含む希土類元素の少くとも1
種)、ボロンおよび鉄を必須元素どする。さらに詳述す
ると、Rとしてはネオジム(Nd) 、プラセオジム(
Pr)またはそれらの混合物(ジジム)が好ましく、他
にランタン(La)、セリウム(Ce) 、テルビウム
(Tb)、 ジスプロシウム(Dy) 、ホルミウム(
Jio)、エルビウム(Er)。
Next, to explain the reason for limiting the components of the rare earth/boron/iron sintered magnet to which the present invention is applied, the magnet of the present invention contains the rare earth element R (where R is at least one of the rare earth elements including Y).
species), boron and iron as essential elements. To explain in more detail, R is neodymium (Nd), praseodymium (
Pr) or a mixture thereof (didim) is preferred; other examples include lanthanum (La), cerium (Ce), terbium (Tb), dysprosium (Dy), and holmium (
Jio), erbium (Er).

ユウロピウム(Eu) 、サマリウム(Sm) 、カド
リニウム(Gd)、プロメチウム(Pm)、ツリウム(
Tm)、イッテルビウム(Yb)、ルテチウム(Lu)
及びイソトリウム(Y)などの希土類元素を含んで良く
、総量で8〜30原子%とされる。8原子%未満では十
分な保磁力が得られず、30原子%を越えると、残留磁
束密度が低下するためである。ボロンBは2〜28原子
%とされる。2原子%未満では十分な保磁力が得られず
、28原子%を越えると残留磁束密度が低下し優れた磁
気特性が得られないためである。上記RおよびB以外の
元素としてFeは必須元素であり40〜90原子%含有
される。
Europium (Eu), samarium (Sm), cadrinium (Gd), promethium (Pm), thulium (
Tm), ytterbium (Yb), lutetium (Lu)
and rare earth elements such as isotrium (Y), in a total amount of 8 to 30 at.%. This is because if it is less than 8 atomic %, sufficient coercive force cannot be obtained, and if it exceeds 30 atomic %, the residual magnetic flux density decreases. Boron B is contained in an amount of 2 to 28 atomic %. This is because if it is less than 2 atomic %, a sufficient coercive force cannot be obtained, and if it exceeds 28 atomic %, the residual magnetic flux density decreases and excellent magnetic properties cannot be obtained. Fe is an essential element other than R and B, and is contained in an amount of 40 to 90 atomic %.

40原子%未満では残留磁束密度(Br)が低下、  
し、90原子%を越えると高い保磁力(illc)が得
られないためである。
If it is less than 40 at%, the residual magnetic flux density (Br) decreases,
However, if it exceeds 90 atomic %, a high coercive force (ILLC) cannot be obtained.

上記R−BおよびFeを必須元素とし、希土類・ボロン
・鉄系焼結磁石は作成されるが下記の如く、鉄の一部を
他の元素で置換することや、不純物を含んでも本発明の
効果は失なわれない。
Rare earth/boron/iron based sintered magnets can be created using the above R-B and Fe as essential elements, but as described below, even if some of the iron is replaced with other elements or even if impurities are included, the present invention will still work. The effect will not be lost.

すなわち、Fe0代りに、50原子%以下のCo。That is, 50 atomic % or less of Co is used instead of Fe0.

8原子%以下のNiで代替しても良い。Coは50原子
%を越えると高いiHcが得られず、Niは8%を越え
ると高いBrが得られないためである。また上記以外の
元素として下記所定原子%以下のA元素の1種以上(た
だし、2種以上含む場合のA元素の総量は当該含有A元
素の内最大値を有するものの値以下)をFe元素と置換
しても本発明の効果は失なわれない。A元素を下記する
It may be replaced with 8 atomic % or less of Ni. This is because if Co exceeds 50 atomic %, high iHc cannot be obtained, and if Ni exceeds 8 atomic %, high Br cannot be obtained. In addition, as elements other than the above, one or more of the A elements below the specified atomic % (however, if two or more types are included, the total amount of A elements is less than or equal to the value of the maximum value of the contained A elements) is considered to be Fe element. Even if substituted, the effects of the present invention will not be lost. Element A is shown below.

次に本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
Next, examples of the present invention will be described, but the present invention is not limited to these examples.

実施例1 第1表の如< 、NdFzを配合添加し、重量%にて3
38d  1.IB−(x)F−残Feの焼結体が得ら
れるよう原料粉(平均粒径3.1μm)を作成した。
Example 1 As shown in Table 1, NdFz was mixed and added at a weight percent of 3.
38d 1. Raw material powder (average particle size: 3.1 μm) was prepared so as to obtain a sintered body of IB-(x)F-remaining Fe.

得られた原料粉を2t/a11で磁場中(8KOe)で
成形し、得られた成形体を真空中(10−’Torr)
で、1050℃×2時間の焼結後、炉冷し、再度640
℃×1時間の熱処理後、急冷し磁気特性の測定に供した
The obtained raw material powder was molded at 2t/a11 in a magnetic field (8KOe), and the resulting molded body was molded in a vacuum (10-'Torr).
After sintering at 1050°C for 2 hours, it was cooled in the furnace and sintered at 640°C again.
After heat treatment at °C for 1 hour, it was rapidly cooled and subjected to measurement of magnetic properties.

得られた製品の磁気特性値を第1表に示す。Table 1 shows the magnetic property values of the obtained product.

第1表に見る如く、Fの無添加材(階1)に比較しF含
有材(患2〜6)の磁気特性が優れていることが分る。
As shown in Table 1, it can be seen that the magnetic properties of the F-containing materials (Cases 2 to 6) are superior to the F-free materials (Scope 1).

しかし、過度の添加量では、阻7の如く磁気特性は低下
する。
However, if the amount added is excessive, the magnetic properties will deteriorate as shown in Example 7.

実施例2 第2表の如< 、)ldF、およびDyF、を配合添加
し、重量%にて、3ONd−1,0B−3,5Dy−(
x)F−残Feの焼結体が得られるよう原料粉(平均粒
径3,5μm)を作成し、以後、実施例1と同様に行っ
た結果を第2表に示す。
Example 2 As shown in Table 2, 3ONd-1,0B-3,5Dy-(3ONd-1,0B-3,5Dy-(
x) A raw material powder (average particle size 3.5 μm) was prepared so as to obtain a sintered body of F-residue Fe, and the same procedure as in Example 1 was carried out. The results are shown in Table 2.

NdF2およびDyt’Hの複合添加においてもF添加
による磁気特性の向上が認められる。
Even in the combined addition of NdF2 and Dyt'H, the magnetic properties are improved by the addition of F.

第1表でのNdF3単独、第2表でのNdF3. Dy
F:+の複合配合した場合に見る如く、磁気特性(Br
、1llcおよび(B11)MAX)を著しく向上させ
ることがわかる。
NdF3 alone in Table 1, NdF3 in Table 2. Dy
As seen in the case of F:+ composite blending, the magnetic properties (Br
, 1llc and (B11)MAX).

(発明の効果) Dy、 Ndの弗化物の添加により残留磁束密度(Br
)。
(Effect of the invention) By adding Dy and Nd fluorides, the residual magnetic flux density (Br
).

保磁力(i t(c ) 、最大エネルギー積(BHn
+ax+ )などの磁気特性を著しく向上する。従って
、サーボモーター等の減磁界が作用する用途に適するだ
けでなく、V、C,Mo等の高磁束量を要求される用途
にも好適である。
coercive force (it(c)), maximum energy product (BHn
+ax+) and other magnetic properties are significantly improved. Therefore, it is suitable not only for applications such as servo motors where a demagnetizing field acts, but also for applications that require a high amount of magnetic flux such as V, C, Mo, etc.

Claims (1)

【特許請求の範囲】 1、R(但しRは、Yを含む希土類元素の内少くとも1
種)、BおよびFeを必須成分とするR−B−Fe系合
金粉または、それと同組成となる混合粉に希土類フッ化
物NdF_3、DyF_3の内、少くとも1種を配合し
、混合、成形、焼結および熱処理することを特徴とする
R−B−Fe系焼結磁石の製造方法。 2、ハロゲン元素フッ素(F)が重量%にて0.001
〜0.8%含有されることを特徴とする特許請求の範囲
第1項記載の製造方法。 3、ハロゲン元素フッ素(F)が、重量%にて0.00
1〜0.8%含有することを特徴とするR−B−Fe系
焼結磁石。
[Claims] 1. R (where R is at least one rare earth element including Y)
At least one of the rare earth fluorides NdF_3 and DyF_3 is blended with R-B-Fe alloy powder containing B and Fe as essential components, or a mixed powder with the same composition, mixed, molded, A method for manufacturing an R-B-Fe sintered magnet, which comprises sintering and heat treatment. 2. Halogen element fluorine (F) is 0.001% by weight
The manufacturing method according to claim 1, characterized in that the content is 0.8% to 0.8%. 3. Halogen element fluorine (F) is 0.00% by weight
An R-B-Fe-based sintered magnet characterized by containing 1 to 0.8%.
JP62090355A 1987-04-13 1987-04-13 R-b-fe sintered magnet and manufacture thereof Pending JPS63255902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090355A JPS63255902A (en) 1987-04-13 1987-04-13 R-b-fe sintered magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090355A JPS63255902A (en) 1987-04-13 1987-04-13 R-b-fe sintered magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63255902A true JPS63255902A (en) 1988-10-24

Family

ID=13996225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090355A Pending JPS63255902A (en) 1987-04-13 1987-04-13 R-b-fe sintered magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63255902A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2006303433A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2006303435A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2006303434A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
CN100433204C (en) * 2004-07-28 2008-11-12 株式会社日立制作所 Rare-earth magnet
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet
KR101030267B1 (en) 2005-03-23 2011-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth permanent magnet
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
CN104851542A (en) * 2015-05-21 2015-08-19 潘成军 Method for preparing Ce-doped permanent magnetic material
JP2015206116A (en) * 2014-04-18 2015-11-19 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Method for producing rare earth-based sintered magnet
CN105374486A (en) * 2015-12-08 2016-03-02 宁波韵升股份有限公司 High-performance sintered neodymium-iron-boron magnet
JP2019535121A (en) * 2017-08-09 2019-12-05 江西金力永磁科技股▲分▼有限公司Jl Mag Rare−Earth Co., Ltd. High temperature resistant neodymium / iron / boron magnet and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet
CN100433204C (en) * 2004-07-28 2008-11-12 株式会社日立制作所 Rare-earth magnet
JP4702549B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Rare earth permanent magnet
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2006303434A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP4702546B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Rare earth permanent magnet
JP4702547B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Functionally graded rare earth permanent magnet
JP2006303435A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2006303433A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
KR101030267B1 (en) 2005-03-23 2011-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth permanent magnet
JP4702548B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Functionally graded rare earth permanent magnet
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
JP4702542B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 Manufacturing method of RTBC type sintered magnet
JP4702543B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 R-T-B-C type rare earth sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP2015206116A (en) * 2014-04-18 2015-11-19 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Method for producing rare earth-based sintered magnet
CN104851542A (en) * 2015-05-21 2015-08-19 潘成军 Method for preparing Ce-doped permanent magnetic material
CN104851542B (en) * 2015-05-21 2017-01-18 杨仲辉 Method for preparing Ce-doped permanent magnetic material
CN105374486A (en) * 2015-12-08 2016-03-02 宁波韵升股份有限公司 High-performance sintered neodymium-iron-boron magnet
JP2019535121A (en) * 2017-08-09 2019-12-05 江西金力永磁科技股▲分▼有限公司Jl Mag Rare−Earth Co., Ltd. High temperature resistant neodymium / iron / boron magnet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS63255902A (en) R-b-fe sintered magnet and manufacture thereof
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS60144909A (en) Manufacture of permanent magnet material
JPH01219143A (en) Sintered permanent magnet material and its production
JPS63301505A (en) R-b-fe sintered magnet
JPS60144906A (en) Permanent magnet material
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPH01175705A (en) Manufacture of rare earth magnet
JPH045740B2 (en)
JPS6151901A (en) Manufacture of permanent magnet
JP3969691B2 (en) Method for producing rare earth-Fe-Co-B magnet
JPS62181403A (en) Permanent magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPS63249305A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS63128606A (en) Permanent magnet
JPH045739B2 (en)
JPS62182249A (en) R-b-fe sintered magnet and its manufacture
JPS63255901A (en) R-b-fe sintered magnet and manufacture thereof
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JPS62141705A (en) R-b-fe system sintered magnet and manufacture thereof