JPS62181403A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS62181403A
JPS62181403A JP61023228A JP2322886A JPS62181403A JP S62181403 A JPS62181403 A JP S62181403A JP 61023228 A JP61023228 A JP 61023228A JP 2322886 A JP2322886 A JP 2322886A JP S62181403 A JPS62181403 A JP S62181403A
Authority
JP
Japan
Prior art keywords
amount
powder
coercive force
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61023228A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Chitoshi Hagi
萩 千敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61023228A priority Critical patent/JPS62181403A/en
Publication of JPS62181403A publication Critical patent/JPS62181403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve a coercive force, by specifying the amount of an adding element M and the amount of C in a sintered magnet having a specified composition. CONSTITUTION:A sintered magnetic comprises at least one kinds of 8-30atom% Nd, Pr, Dy, Ho and Tb and at least one kind of La, Ce, Sm, Gd, Er and Y, 2-28% B, 0.02-2% C and a remaining part for Fe and impurities. In said magnet, the amount of (y) of an adding element M (at least one kind of Nb, Ti, Zr and Hf) with respect to the amount (x) of C is made to be in a range of x<=y<=(x+4). When the value of (y) is less than (x), a sufficient effect is not obtained. When the value of (y) exceeds (x+4), magnetic characteristics are lowered. The material undergoes dissolution and casting and the ingot is made to be powder. The powder obtained in this method undergoes molding and consolidation with a compressing press. Thus the permanent magnet having a large coercive force (iHc) and excellent magnetic characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−B−Fe系焼結磁石において炭化物を形成
することにより保磁力(iHc)を改善したものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention improves coercive force (iHc) by forming carbides in an R-B-Fe sintered magnet.

〔従来の技術〕[Conventional technology]

近年、従来のSm −Co系磁石に比較し、より高磁気
特性を有しかつ資源的にも高価なSmやCoを、必らず
しも含まないNd −B −Fe系永久磁石が、発明さ
れた。(佐用ほか、J、Appl、Phys、55(6
)、15March 1984 、 p2083〜20
87.および特開昭59−475008号公報、同59
−204209号公報参照)それらKよれば、製造方法
として溶解、鋳造し得られた合金インゴットを粉砕し、
必要に応じて磁界を印加しながらプレス成形し、さらに
焼結することが開示されている。
In recent years, Nd-B-Fe-based permanent magnets have been invented that have higher magnetic properties than conventional Sm-Co-based magnets and do not necessarily contain Sm or Co, which are expensive in terms of resources. It was done. (Sayo et al., J. Appl. Phys., 55 (6
), 15March 1984, p2083-20
87. and Japanese Unexamined Patent Publication No. 59-475008, 59
(Refer to Publication No. 204209) According to those K, as a manufacturing method, an alloy ingot obtained by melting and casting is crushed,
It is disclosed that press molding is performed while applying a magnetic field as necessary, and further sintering is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これら従来の方法による製造方法では磁気特性
の点で、十分満足のできる保磁力(iHc)が得られる
には、至ってない。
However, with these conventional manufacturing methods, it has not been possible to obtain a sufficiently satisfactory coercive force (iHc) in terms of magnetic properties.

本発明は上述した従来技術の問題点を解消し、保磁力(
iHc)が大きく、磁気特性の優れたR−B−Fe系永
久磁石を得ることを目的とするものである0 すなわち、従来方法の場合、原料およびその他の要因で
C(炭素)が、混入−存在すると、保磁力(iHc )
が低下するという問題を有]−ていた。たとえば、Nd
酸化物を精製する場合、電極からCがNdメタルへ混入
する。そのようなC量の多Ndメタルを使用すると、磁
気特性の低下が生じる。
The present invention solves the above-mentioned problems of the prior art and has a coercive force (
The purpose of this method is to obtain an R-B-Fe permanent magnet with a large iHc) and excellent magnetic properties. If present, the coercive force (iHc)
There was a problem that the For example, Nd
When refining an oxide, C is mixed into the Nd metal from the electrode. If such a Nd-rich metal with a high C content is used, the magnetic properties will deteriorate.

また、成形時にCを含む滑剤などを用いると、前記と同
様な持性低下が生じる。
Furthermore, if a lubricant containing C is used during molding, the same deterioration in durability as described above occurs.

〔問題点を順法するだめの手段〕[Means to comply with the law]

上記問題点に対し、撞々検訂した結果、CがM(Nb 
、 Ti 、 Zr 、 Hfの内少くとも18I)と
炭化物を形成しやすい性質を利用し本発明を見出すに至
ったのである。
As a result of thorough examination of the above problems, we found that C is M(Nb
The present invention was discovered by taking advantage of the property of easily forming carbides with at least 18I of Ti, Zr, and Hf.

本発明を詳述すると原子チで8〜30%のNd 。To explain the present invention in detail, Nd is 8 to 30% in terms of atoms.

Pr r Dy + Ho + Tbの内、少くとも1
種と、La +Ce 、 Sm r Gd 、 Er 
r Yの内少くとも1種、2〜28チのB 、0.02
〜2%のCおよび残部Feと不純物から成る焼結磁石に
おいて、M(Nb 、 ’l’i 。
At least 1 of Pr r Dy + Ho + Tb
Seeds, La + Ce, Sm r Gd, Er
r At least one type of Y, 2 to 28 B, 0.02
In a sintered magnet consisting of ~2% C and balance Fe and impurities, M(Nb,'l'i).

Zr 、 Hfの内少くとも1種)のt (y)がCの
JJI:(X)に対し X≦y≦(x+4)  の範囲であることを、特徴とす
るものである。
It is characterized in that t (y) of at least one of Zr and Hf is in the range of X≦y≦(x+4) with respect to JJI: (X) of C.

本発明を詳述すると先ず公知の手段にて所定成分を有す
るR−B−Fe系合金粉末またはそれと同組成となり得
る混合粉末が準備される。例えば、溶解、鋳造しインゴ
ットを粉末にする方法または溶解しアトマイズする方法
または希土類酸化物を出発原料とする還元拡散法で合金
粉は作成される。
To explain the present invention in detail, first, an R-B-Fe alloy powder having a predetermined component or a mixed powder that can have the same composition is prepared by known means. For example, the alloy powder is prepared by a method of melting and casting an ingot into powder, a method of melting and atomizing, or a reduction diffusion method using a rare earth oxide as a starting material.

上記合金粉の少くとも一部をFeを代表する遷移金属粉
、ボロン粉、希土類金属粉、B−遷移金属合金粉、R−
遷移金属合金粉などの1種または2種以上で代替とした
混合粉末を使用しても本発明の効果は失なわれない。
At least a part of the above alloy powder is a transition metal powder representing Fe, boron powder, rare earth metal powder, B-transition metal alloy powder, R-
The effects of the present invention will not be lost even if a mixed powder made of one or more of transition metal alloy powders is used instead.

上記粉末は、Ci (x = 0.02〜2原子%)に
対応するM (N′b+ Tl + Zr 、Hfの内
少くとも1種)を含む。Mのik (y)はX≦y≦(
x+4)を満足せねばならない。
The above powder contains M (at least one of N'b+Tl+Zr and Hf) corresponding to Ci (x = 0.02 to 2 atomic %). ik (y) of M is X≦y≦(
x+4) must be satisfied.

yの値が、X未満では十分な効果が得られないこと、(
x+4)を越えると、磁気特性が低下する理由による。
If the value of y is less than X, sufficient effect cannot be obtained (
This is because when the value exceeds x+4), the magnetic properties deteriorate.

上記方法にて得られた粉末を圧縮プレスなどにて成形−
圧密化を行う。
The powder obtained by the above method is molded using a compression press, etc.
Consolidate.

なお、上記成形−圧密化は、0.5〜10 t/dの成
形圧力が良く、必要に応じ成形時において、磁界(5K
Oe以上)を印加することによシ、磁気特性は向上する
。一連の成形−圧密化は湿式あるいは乾式でよく、常温
以外の高温度にて行っても良い。雰囲気は非酸化性雰囲
気が望ましく、例えば真空中、不活性ガス中あるいは還
元性ガス中にて行っても良い。得られた成形体を900
〜1200℃の温度にて焼結する。900℃未満では、
密度があがらないためBrが十分でな(1200℃を越
えるとBrおよび角形性が低下する理由による。
The above molding-consolidation is preferably performed at a molding pressure of 0.5 to 10 t/d, and if necessary, a magnetic field (5K
Magnetic properties are improved by applying a magnetic field (Oe or more). The series of molding and compaction may be performed wet or dry, and may be performed at a high temperature other than room temperature. The atmosphere is preferably a non-oxidizing atmosphere, and may be carried out, for example, in a vacuum, an inert gas, or a reducing gas. The obtained molded body was heated to 900
Sinter at a temperature of ~1200°C. Below 900℃,
Br is not sufficient because the density does not increase (this is because Br and squareness decrease when the temperature exceeds 1200°C).

焼結は、R元素の酸化防止のための非酸化性雰囲気中に
て行なうことが望ましい。すなわち、真空、不活性ガス
、または還元性ガスの雰囲気が良い。なお、焼結時室温
からの昇温速度は特に規定しないが、昇温途中200〜
800℃の温度範囲で少くとも0.5時間保持すること
により、被加熱部の温度均一性を改善したり、真空中に
おいて脱ガス処理を行うことも可能となる。あるいは潤
滑剤として用いるステアリン酸塩などのクランキング(
水素化熱分解法)も、水素ガス雰囲気中で行い得る。従
って、焼結における雰囲気としては、真空あるいは不活
性ガス(例えばAr )あるいは還元性ガス(例えばH
2)などの非酸化性雰囲気が良い0加熱保持後の冷却速
度は、特に規定しないが、0.5〜100ツ分が良く、
一般的には1〜10℃2今が良い0遅くすることによシ
、その後の熱処理による磁気特性のバラツキが少なくな
るためである。また冷却は一度常温まで冷却することも
良くあるいは、500℃迄行い、次の熱処理のため再度
昇温するように、焼結と熱処理を連続的に行っても良い
Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation of the R element. That is, a vacuum, an inert gas, or a reducing gas atmosphere is preferable. Note that the rate of temperature increase from room temperature during sintering is not particularly specified, but
By maintaining the temperature in the 800° C. range for at least 0.5 hours, it becomes possible to improve the temperature uniformity of the heated portion and to perform degassing treatment in a vacuum. or cranking (such as stearate) used as a lubricant.
Hydropyrolysis) can also be carried out in a hydrogen gas atmosphere. Therefore, the atmosphere for sintering should be vacuum, inert gas (e.g. Ar), or reducing gas (e.g. H2).
2) A non-oxidizing atmosphere such as
Generally speaking, by slowing down the heat treatment by 1 to 10°C, variations in magnetic properties due to subsequent heat treatment will be reduced. Further, cooling may be performed once to room temperature, or sintering and heat treatment may be performed continuously, such as cooling to 500° C. and raising the temperature again for the next heat treatment.

以上の焼結後、さらに磁気特性を向上せしめるため、5
00〜700℃で時効処理を行うが、必要に応じ時効処
理前に800〜1000℃で保持−徐冷という中間熱処
理を行うことにより一層磁気特性が向上する。時効処理
、中間熱処理などの熱処理は前記焼結と同じく、非酸化
性雰囲気が望ましい。
After the above sintering, in order to further improve the magnetic properties,
Aging treatment is performed at 00 to 700°C, but if necessary, an intermediate heat treatment of holding and slow cooling at 800 to 1000°C is performed before aging to further improve the magnetic properties. Heat treatments such as aging treatment and intermediate heat treatment are preferably performed in a non-oxidizing atmosphere, as in the case of sintering.

なお時効処理は500〜700℃で少くとも0.5時間
保持し、急冷することで良い。500℃未満では効果が
少なく700℃を越えると磁気特性の低下が生じるから
である。
The aging treatment may be carried out by holding at 500 to 700°C for at least 0.5 hours and then rapidly cooling. This is because if the temperature is less than 500°C, the effect will be small, and if it exceeds 700°C, the magnetic properties will deteriorate.

次に本発明を適用する希土類・ボロン・鉄系永久磁石の
成分限定理由について説明すると、本発明の磁石は希土
類元素R(但しRはYを含む希土類元素の少くとも1種
)、ボロンおよび鉄を必須元素とする。さらに詳述する
と、Rとしてはネオジム(Nd) 、プラセオジム(P
r )またはそれらの混合物(ジジム)が好ましく、他
にランタン(La)。
Next, to explain the reason for limiting the components of the rare earth/boron/iron permanent magnet to which the present invention is applied, the magnet of the present invention contains the rare earth element R (where R is at least one rare earth element including Y), boron, and iron. is an essential element. To explain in more detail, R is neodymium (Nd), praseodymium (P
r) or mixtures thereof (didim), and also lanthanum (La).

セリウム(Ce) 、テルビウム(Tb) 、ジスプロ
シウム(Dy) 、ホルミウム(Ho)、エルビウム(
Er)、サマリウム(Sm) 、カドリニウム(Gd)
及びイツトリウム(Y)などの希土類元素を含X7で良
く、総量で8〜30原子チとされる。8原子チ未満では
十分な保磁力が得られず、30原子チを越えると、残留
磁束密度が低下するためである□ボロンBは2〜28原
子チとされる。2原子チ未満では十分な保磁力が得られ
ず、28原子チを越えると残留磁束密度が低下し優れた
磁気特性が得られないためである。上記RおよびB以外
の元素としてFeは必須であり40〜90原子チ含有さ
れる。
Cerium (Ce), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (
Er), samarium (Sm), cadrinium (Gd)
It may contain rare earth elements such as yttrium (Y) and yttrium (Y), and the total amount is 8 to 30 atoms. If it is less than 8 atoms, a sufficient coercive force cannot be obtained, and if it exceeds 30 atoms, the residual magnetic flux density will decrease. This is because if it is less than 2 atoms, a sufficient coercive force cannot be obtained, and if it exceeds 28 atoms, the residual magnetic flux density decreases and excellent magnetic properties cannot be obtained. Fe is essential as an element other than R and B, and is contained in an amount of 40 to 90 atoms.

40原子チ未満では残留磁束密度(Br)が低下し、9
0原子チを越えると高い保磁力(iHc )が得られな
いためである。
Below 40 atoms, the residual magnetic flux density (Br) decreases, and 9
This is because if it exceeds 0 atoms, a high coercive force (iHc) cannot be obtained.

次に本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない0〔実施例〕 実施例1 第1表の組成となるよう溶解し、合金インゴットを得た
。合金インゴットをショークラッシャー。
Next, examples of the present invention will be described, but the present invention is not limited to these examples.0 [Example] Example 1 An alloy ingot was obtained by melting so as to have the composition shown in Table 1. Show crusher for alloy ingots.

ブラウンミル、ジェット・ミルを用いて平均粒径3.5
μmの微粉とし、原料粉とした0得られた原料粉を、成
形圧2 、7 Vdで磁揚中(10KOe)成形し、得
られた成形体を真空中(10−”Torr )で、10
80℃×2時間の焼結後炉冷し、再度630℃×1時間
の熱処理後、急冷し磁気特性の評価に供した。結果を第
2表に示す0第1表に見る如< Nb無添加(AI 、
 5 、 io )に比較し、冷を添加することにより
、著しく保磁力(iHc)が向上することが分る。また
、金相学的には隅とCの共存の場合、NbCの形成と存
在が、認められた。
Average particle size 3.5 using brown mill, jet mill
The obtained raw material powder was made into a fine powder of μm and used as raw material powder. The obtained raw material powder was molded during magnetic lifting (10 KOe) at a molding pressure of 2.7 Vd, and the obtained molded body was molded in a vacuum (10-" Torr) for 10
After sintering at 80° C. for 2 hours, it was cooled in a furnace, heat treated again at 630° C. for 1 hour, and then rapidly cooled to evaluate magnetic properties. The results are shown in Table 2.0 As shown in Table 1, Nb-free (AI,
5, io), it can be seen that the coercive force (iHc) is significantly improved by adding cold. Moreover, metallographically, in the case of coexistence of corner and C, the formation and existence of NbC was recognized.

第   1    表 実施例2 第3表に示す組成となるように溶解し、実施例1と同様
に成形、焼結、熱処理を行い、磁気特性の評価に供し丸
。結果を、第4表に示す。
Table 1 Example 2 A circle was melted to have the composition shown in Table 3, molded, sintered, and heat treated in the same manner as in Example 1, and subjected to evaluation of magnetic properties. The results are shown in Table 4.

Ti* Zr r Hfの場合にても、それらの炭化物
の形成が認められた。
The formation of these carbides was also observed in the case of Ti*Zr r Hf.

第2表 第    6   表 第   4   表 〔発明の効果〕 以上述べた如く、本発明は、CとNb r Ti、Zr
Table 2, Table 6, Table 4 [Effects of the invention] As stated above, the present invention provides the following advantages:
.

Claims (1)

【特許請求の範囲】  原子%で8〜30%のNd、Pr、Dy、Ho、Tb
の内少くとも1種とLa、Ce、Sm、Gd、Er、Y
の内少くとも1種、2〜28%のB、0.02〜2%の
Cおよび残部Feと不純物から成る焼結磁石において添
加元素M(Nb、Ti、Zr、Hfの内少くとも1種)
の量(y)が、Cの量(x)に対し、 x≦y≦(x+4)の範囲であることを、特徴とする永
久磁石。
[Claims] 8 to 30% Nd, Pr, Dy, Ho, Tb in atomic %
At least one of the following and La, Ce, Sm, Gd, Er, Y
Additive element M (at least one of Nb, Ti, Zr, Hf) in a sintered magnet consisting of at least one of the following, 2 to 28% B, 0.02 to 2% C, and the balance Fe and impurities. )
A permanent magnet characterized in that the amount (y) of C is in the range of x≦y≦(x+4) with respect to the amount (x) of C.
JP61023228A 1986-02-05 1986-02-05 Permanent magnet Pending JPS62181403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61023228A JPS62181403A (en) 1986-02-05 1986-02-05 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023228A JPS62181403A (en) 1986-02-05 1986-02-05 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS62181403A true JPS62181403A (en) 1987-08-08

Family

ID=12104767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023228A Pending JPS62181403A (en) 1986-02-05 1986-02-05 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS62181403A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260105A (en) * 1988-08-26 1990-02-28 Shin Etsu Chem Co Ltd Rare-earth permanent magnet
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5376291A (en) * 1993-01-29 1994-12-27 Ici Japan Limited Bonded magnet molding composition and bonded magnet
CN102304663A (en) * 2011-09-20 2012-01-04 浙江大学 Permanent magnetic alloy block and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260105A (en) * 1988-08-26 1990-02-28 Shin Etsu Chem Co Ltd Rare-earth permanent magnet
EP0571002A2 (en) 1989-08-25 1993-11-24 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
EP0571002B2 (en) 1989-08-25 2003-01-02 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
US5376291A (en) * 1993-01-29 1994-12-27 Ici Japan Limited Bonded magnet molding composition and bonded magnet
CN102304663A (en) * 2011-09-20 2012-01-04 浙江大学 Permanent magnetic alloy block and preparation method thereof

Similar Documents

Publication Publication Date Title
US7618497B2 (en) R-T-B based rare earth permanent magnet and method for production thereof
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
JP7418598B2 (en) Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods
JPH0531807B2 (en)
JP2904667B2 (en) Rare earth permanent magnet alloy
JPS63255902A (en) R-b-fe sintered magnet and manufacture thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPS62181403A (en) Permanent magnet
JPH0320046B2 (en)
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPH0549737B2 (en)
JPH05234789A (en) Molding method and manufacture of sintered magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS62182249A (en) R-b-fe sintered magnet and its manufacture
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP2022093885A (en) Manufacturing method of rare-earth magnet
JPS63249305A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62141705A (en) R-b-fe system sintered magnet and manufacture thereof
JPH05152115A (en) Manufacture of magnetic recording powder