JPH0260105A - Rare-earth permanent magnet - Google Patents

Rare-earth permanent magnet

Info

Publication number
JPH0260105A
JPH0260105A JP63211674A JP21167488A JPH0260105A JP H0260105 A JPH0260105 A JP H0260105A JP 63211674 A JP63211674 A JP 63211674A JP 21167488 A JP21167488 A JP 21167488A JP H0260105 A JPH0260105 A JP H0260105A
Authority
JP
Japan
Prior art keywords
carbon
magnet
permanent magnet
alloy
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63211674A
Other languages
Japanese (ja)
Inventor
Setsu Arikawa
有川 節
Kenji Yamamoto
健治 山本
Masanobu Shimao
正信 島尾
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63211674A priority Critical patent/JPH0260105A/en
Publication of JPH0260105A publication Critical patent/JPH0260105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title rare-earth permanent magnet having stabilized magnetic characteristics by a method wherein the decrease in coercive force of the permanent magnet is prevented by having the carbide contained in a magnetic alloy deposited in the alloy as the prescribed element of carbide. CONSTITUTION:The title rare-earth permanent magnet consists of the sintered magnet alloy mainly composed of the fundamental composition of R (containing at least a kind selected from the rare-earth element containing Y) of 25 to 35wt.%, B of 0.5 to 2.0wt.%, M<1> (containing at least a kind selected from Fe, Co, Al, Ni, Mn, Si and Ga) of 60 to 70wt.%, M<2> (containing at least a kind selected from Cr, Mo, Nb, Ta, Ti, V, W and Zr) or 0.1 to 10wt.%, and carbon of 0.01 to 1.0wt.%, which will be mixed from raw material metal, a molding improving material, powder improving material and the like, is contained in the above-mentioned magnet alloy. Said carbon is deposited in the alloy by forming the M<2> and a carbide. The carbon prevents the formation of a carbide with the R having R-rich phase in an R-Fe-B magnet, and as a result, the lowering of coercive force is eliminated, and a rare-earth permanent magnet, having stabilized magnetic characteristics, can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はR−Fe−B系希土類永久磁石の保磁力Hcを
低下させる原因となる不純元素であるCを炭化物として
磁石中に析出させ、保磁力低下を防止した希土類永久磁
石に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention involves precipitating C, an impurity element that causes a decrease in the coercive force Hc of an R-Fe-B rare earth permanent magnet, as a carbide in the magnet. This invention relates to a rare earth permanent magnet that prevents a decrease in coercive force.

(従来の技術) 粉砕、磁場中成形、焼結の各工程を含む粉末冶金法によ
って製造されるR−Fe−B系希土類永久磁石は、磁気
特性に優れ高性能磁石として注目されているが、この磁
石の保磁力Hcが劣化することがあり、その原因として
炭素がRリッチ相のRと炭化物を形成することが解明さ
れた。従って、Hc劣化防止方法としては、この炭素を
磁石組成から除去するか、磁石特性に影響を与えない化
合物に変換することが考えられ、具体的には、R2Fe
Ia B相のBの一部を炭素で置換するか、あるいは、
炭素がRリッチ相のRと炭化物を生成することにより実
質的に減少するRリッチ相に相当するRを予め増加させ
た合金組成にすること等の方法が採用されてきたが必ず
しも満足されるものではなかった。
(Prior Art) R-Fe-B rare earth permanent magnets, which are manufactured by powder metallurgy including the steps of crushing, forming in a magnetic field, and sintering, have excellent magnetic properties and are attracting attention as high-performance magnets. The coercive force Hc of this magnet sometimes deteriorates, and it has been revealed that the cause of this is that carbon forms carbides with R in the R-rich phase. Therefore, as a method to prevent Hc deterioration, it is possible to remove this carbon from the magnet composition or convert it into a compound that does not affect the magnetic properties.
Part of B in phase Ia B is replaced with carbon, or
Methods such as creating an alloy composition in which R corresponding to an R-rich phase in which carbon substantially decreases by forming R in an R-rich phase and carbides have been adopted, but these methods are not always satisfactory. It wasn't.

(発明が解決しようとする課題) 本発明の解決すべき技術的課題は、上記したようにR−
Fe−B系希土類永久磁石の保磁力を劣化させる原因で
ある炭素を磁石組成中に残存させないか、或は磁石特性
に影響を及ぼさない化合物に変換してしまうことである
。この不純物炭素は、原料金属の不純物として、更には
成形性向上のために用いられる成形改良剤や粉体の酸化
防止に用いられている粉体安定剤が有機物であるために
焼結時に熱分解生成物として混入してくるが、原料金属
に不純炭素の少ない高純度品を使用することはコスト上
昇になり、後者の有機物はその使用が避けられないので
不可避的に混入する不利が生ずる。
(Problems to be Solved by the Invention) The technical problems to be solved by the present invention are as described above.
Carbon, which is a cause of deterioration of the coercive force of Fe-B rare earth permanent magnets, should not remain in the magnet composition, or it should be converted into a compound that does not affect the magnetic properties. This impurity carbon is thermally decomposed during sintering because it acts as an impurity in the raw metal, and also because the forming improver used to improve formability and the powder stabilizer used to prevent oxidation of powder are organic substances. Although they are mixed in as products, using high-purity materials with less impurity carbon as the raw material metal increases costs, and since the use of the latter organic substances is unavoidable, there is a disadvantage that they are unavoidably mixed.

(課題を解決するための手段) 本発明者らは、上記課題を解決するため炭素による保磁
力低下の原因と解決手段を種々検討した結果、先ず原因
として、R−Fe−B系希土類永久磁石に炭素が混入し
た場合、強磁性相であるR*Fe+4B相のBの一部が
炭素で置換されても磁石特性への影響は殆んどないが、
通常の手法により作成した磁石合金では、炭素の多くは
R2Fed4B相以外のRリッチ相内のRと炭化物を形
成するために実質的にRリッチ相が減少し保磁力低1来
したことが判明した。また、本磁石は焼結時にRリッチ
相が液相となり焼結が進行する液相焼結磁石であるため
、焼結には充分な量のR17ツチ相が必要となるが、R
リッチ相中のRが炭化物を形成するとこの炭化物は焼結
時に液相にならないため、実質的にRリッチ相は減少し
、その結果Hcが低下することを見出した。このHcに
影響を及ぼす炭素量は0.01重量%以上であり、Hc
の低下を防止するには製造工程中に混入する炭素量を0
.01重量%未満に制御するか、あるいは、炭素により
実質的に減少するRリッチ相に相当するRを予め増加し
た合金組成にすることが考えられる。しかしながら、磁
石中に混入する炭素量を0.01重量%に抑えることは
、前述したように大量生産する上では非常に困難である
。また、R量を多くした合金組成にすると、その増量分
だけ飽和磁化が小さくなる欠点がある。
(Means for Solving the Problems) In order to solve the above problems, the present inventors investigated various causes and solutions for the decrease in coercive force due to carbon, and found that R-Fe-B rare earth permanent magnets were the cause. When carbon is mixed into the ferromagnetic phase, even if part of the B in the R*Fe+4B phase is replaced with carbon, there is almost no effect on the magnetic properties.
It was found that in magnet alloys made by conventional methods, most of the carbon forms carbides with R in the R-rich phases other than the R2Fed4B phase, resulting in a substantial decrease in the R-rich phase and a low coercive force. . In addition, this magnet is a liquid-phase sintered magnet in which the R-rich phase becomes a liquid phase during sintering and sintering progresses, so a sufficient amount of R17-rich phase is required for sintering.
It has been found that when R in the rich phase forms a carbide, this carbide does not become a liquid phase during sintering, so the R-rich phase is substantially reduced, resulting in a decrease in Hc. The amount of carbon that affects Hc is 0.01% by weight or more, and Hc
To prevent a decrease in carbon content, reduce the amount of carbon mixed in during the manufacturing process to zero.
.. It is conceivable to control the amount of R to less than 0.01% by weight, or to create an alloy composition in which R, which corresponds to an R-rich phase that is substantially reduced by carbon, is increased in advance. However, as mentioned above, it is extremely difficult to suppress the amount of carbon mixed into the magnet to 0.01% by weight in terms of mass production. Furthermore, if the alloy composition is made to have an increased amount of R, there is a drawback that the saturation magnetization decreases by the increased amount.

本発明は以上のような不利を解決した磁石で、不純物炭
素を磁気特性に影響を与えない化合物としてRリッチ相
に析出させた組成をもつ希土類永久磁石に関するもので
あり、その要旨とするところは、 R(RはYを含む希土類元素のうち少なくとも1種であ
る)が25〜35%(重量%、以下同じ)、Bが0.5
〜2.0%、M’  (Fe、Co、A1.Ni、Mn
、St、GaのうちFeを含む少なくとも1種である)
が60〜70%、M2(Cr、Mo、Nb、Ta、Ti
、V、W、Zrのうち少なくとも1種である)が0.1
−10.0%および 炭素が0.01〜1.0%からな
り、炭素はM2と炭化物を形成していることを特徴とす
る希土類永久磁石にある。
The present invention is a magnet that solves the above-mentioned disadvantages, and relates to a rare earth permanent magnet having a composition in which impurity carbon is precipitated in an R-rich phase as a compound that does not affect magnetic properties. , R (R is at least one kind of rare earth elements including Y) is 25 to 35% (weight %, the same applies hereinafter), and B is 0.5%.
~2.0%, M' (Fe, Co, A1.Ni, Mn
, St, and Ga) containing Fe)
is 60-70%, M2 (Cr, Mo, Nb, Ta, Ti
, V, W, Zr) is 0.1
-10.0% and 0.01 to 1.0% carbon, and the rare earth permanent magnet is characterized in that the carbon forms a carbide with M2.

以下本発明を詳述する。The present invention will be explained in detail below.

本発明は、R−Fe−B系希土類永久磁石(RはYを含
む希土類元素のうち少なくとも1種である)において、
原料金属、成形改良剤、粉体安定剤等から不可避的に混
入する炭素によるHCの低下を抑えることを目的に種々
検討した結果、R−Fe−B系磁石合金中に含まれる炭
素をCr、Mo、Nb、Ta、Ti、V、W、 Zrの
いずれか1種または2種以上の元素(M2)との炭化物
として磁石合金中に析出させることによりHcの低下を
抑えられることを見出し、本発明に到達した。
The present invention provides an R-Fe-B rare earth permanent magnet (R is at least one rare earth element including Y),
As a result of various studies aimed at suppressing the decrease in HC due to carbon inevitably mixed in from raw metals, forming improvers, powder stabilizers, etc., we found that the carbon contained in the R-Fe-B magnet alloy was replaced with Cr, We have discovered that the decrease in Hc can be suppressed by precipitating it in a magnet alloy as a carbide with one or more elements (M2) of Mo, Nb, Ta, Ti, V, W, and Zr. The invention has been achieved.

すなわち、本R−Fe−B系希土類永久磁石の基本的組
成は、 R(RはYを含む希土類元素のうち少なくとも
1種である)が25〜35%(重量%、以下同じ)、B
が0.5〜2.0%、M’  (Fe、C。
That is, the basic composition of the present R-Fe-B rare earth permanent magnet is as follows: R (R is at least one kind of rare earth elements including Y) is 25 to 35% (weight %, the same applies hereinafter), B
is 0.5 to 2.0%, M' (Fe, C.

、A1.Ni、Mn、Si、 GaのうちFeを含む少
なくとも1種である)が60〜70%、M”  (Cr
、MO1〜b、 Ta、 Ti、■、W、Zrのうち少
なくとも1種である)が0.1〜1O00%を主成分と
する焼結磁石合金で、かつ、不純物として製造工程上原
料金属、成形改良剤、粉体安定剤等から不可避的に混入
する0、01−1.0%の炭素が含まれているが、この
炭素がM2と炭化物を形成し、合金中に析出したものと
なっている。この合金中に析出することの効果は、炭素
がR−Fe−B系磁石中でRリッチ相のRと炭化物を形
成することを防止することにある。すなわち、Rリッチ
相のRが炭化物を形成するとこの炭化物は焼結・時に液
相とならないため、実質的なRリッチ相が減少する。こ
の結果、焼結に必要なRすッチ相が不足し、Haは低下
する。しかし、M3はMlより炭化物をつくり易い元素
であるため、磁石合金に含有される炭素なM3との炭化
物として合金中に析出させれば、実質的なRリッチ相が
減少せず、炭素が混入することによるHcの低下を抑え
ることが出来る。また、M2との炭化物は主にRリッチ
相中に析出し、Ra FeI< Bには析出しないため
、飽和磁化の減少も少ないmM”の添加量は、炭化物を
形成するのに充分な量、即ち、0.1〜10.0%が必
要であるが、この量を超えるとM2はR2Feha B
相中にも含まれるようになり、飽和磁化が減少するので
この範囲内にする必要がある。Rが25%以下およびB
が0.5%以下の時はいずれも充分な保磁力が得られな
い、またRが35%を超えるかあるいはBが2%を超え
ると飽和磁化の減少が著しく、良好な磁気特性が得られ
ない、Rとしては、La、 Ce%Pr、 Nd%Sm
%Eu、 Gd、 Tb、 Dy、Ho、 Er、 T
m、 Yb、 LuおよびYの希土類元素の1種以上で
あり、特には、Pr、 Ndの軽希土類やそれらとTb
、 toyの重希土類元素との組合わせが望ましい。
, A1. At least one of Ni, Mn, Si, and Ga) containing Fe is 60 to 70%, M'' (Cr
, MO1-b, Ta, Ti, ■, W, Zr) is a sintered magnet alloy whose main component is 0.1-1000%, and contains raw material metals as impurities during the manufacturing process. It contains 0.01-1.0% carbon that is unavoidably mixed in from molding improvers, powder stabilizers, etc., but this carbon forms carbides with M2 and precipitates in the alloy. ing. The effect of precipitation in this alloy is to prevent carbon from forming carbides with R in the R-rich phase in the R-Fe-B magnet. That is, when R in the R-rich phase forms a carbide, this carbide does not become a liquid phase during sintering, so that the substantial R-rich phase decreases. As a result, the R switch phase required for sintering becomes insufficient, and Ha decreases. However, since M3 is an element that forms carbides more easily than Ml, if it is precipitated in the alloy as a carbide with the carbon-based M3 contained in the magnet alloy, the R-rich phase will not be substantially reduced and carbon will be mixed in. The decrease in Hc caused by this can be suppressed. In addition, since carbides with M2 mainly precipitate in the R-rich phase and do not precipitate when RaFeI<B, the amount of mM added that causes less decrease in saturation magnetization is sufficient to form carbides. That is, 0.1 to 10.0% is required, but if this amount is exceeded, M2 becomes R2Feha B
Since it becomes included in the phase and the saturation magnetization decreases, it is necessary to keep it within this range. R is 25% or less and B
When R is less than 0.5%, sufficient coercive force cannot be obtained, and when R exceeds 35% or B exceeds 2%, saturation magnetization decreases significantly and good magnetic properties cannot be obtained. No, R is La, Ce%Pr, Nd%Sm
%Eu, Gd, Tb, Dy, Ho, Er, T
one or more rare earth elements such as m, Yb, Lu and Y, in particular light rare earth elements such as Pr and Nd and their combination with Tb.
, toy is preferably combined with heavy rare earth elements.

MlはFeを主体とじCo、AI、Ni、Mn、Si、
Gaは磁石の可逆温度係数の改善や保磁力の増大を目的
として、これらの内から少なくとも1種を選択し、組み
合わされる。
Ml mainly consists of Fe, Co, AI, Ni, Mn, Si,
At least one type of Ga is selected from these and combined for the purpose of improving the reversible temperature coefficient of the magnet and increasing the coercive force.

原料金属の炭素含有量はR金属が0.2%以下、フェロ
ボロン0.1%以下で、原料金属からの炭素の混入は、
主に、これらの金属から起こり、この結果、磁石合金中
に混入する炭素材は0.O1〜0.1%程度となる。ま
た、不純物炭素の混入源である成形改良剤とは、パラフ
ィン類あるいはステアリン酸、パルミチン酸、オレイン
酸等の主として長鎖脂肪酸からなり磁石合金微粉末の圧
縮加圧成形時に添加し粉体の金型への流動性や成形後の
離脱性を良好にするため添加されるものである。また、
粉体安定剤は、ポリオキシエチレンアルキルエーテル、
ポリオキシエチレン千ノ脂肪酸エステル、ポリオキシエ
チレンアルキルアリルエーテル等があり、化学的に活性
な磁石合金粉末の発熱、発火を防止するために、粉末表
面に被覆して用いるものである。これらの添加剤は、磁
石合金粉末に対し約0.O1〜0.5%添加され、炭素
量としては約0、008〜0.4%に相当する。さらに
、湿式粉砕によって磁石粉末を得る場合には、溶媒から
の約0゜O1〜0.1%の炭素の混入がある。また、炭
化物の形成時期は、原料金属からの炭素は鋳造時に、成
形改良剤、粉体安定剤からの炭素は焼結時に主として形
成される。 以下本発明の具体的実施例を挙げて説明す
るが本発明はこれらに限定されるものではない0例中%
は全で重量%を表わす。
The carbon content of the raw material metal is 0.2% or less for R metal and 0.1% or less for ferroboron, and the carbon content from the raw material metal is
Mainly, carbon material is generated from these metals, and as a result, the carbon material mixed into the magnet alloy is 0. The content is approximately 0.1% to 0.1%. Molding improvers, which are a source of impurity carbon, are mainly made of paraffins or long-chain fatty acids such as stearic acid, palmitic acid, and oleic acid, and are added during compression and pressure molding of fine magnetic alloy powder. It is added to improve fluidity into the mold and ease of release after molding. Also,
The powder stabilizer is polyoxyethylene alkyl ether,
These include polyoxyethylene fatty acid ester, polyoxyethylene alkyl allyl ether, etc., and are used by coating the powder surface to prevent chemically active magnetic alloy powder from generating heat and igniting. These additives are added in amounts of about 0.0% to the magnet alloy powder. O is added in an amount of 1 to 0.5%, and the amount of carbon corresponds to approximately 0,008 to 0.4%. Furthermore, when the magnet powder is obtained by wet grinding, there is contamination of about 0°O1 to 0.1% carbon from the solvent. In addition, carbides are mainly formed when carbon from the raw metal is formed during casting, and carbon from forming improvers and powder stabilizers is mainly formed during sintering. The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
represents the total percentage by weight.

(実施例1) 出発原料として、純度99.9%の電解鉄、817.5
%を含み残部はFeおよび炭素などの不純物から成るフ
ェロボロン合金、純度99.5%以上のNd金属、純度
99.9%以上のAI金金属Nb金属を重量%でNd:
32.0%、Fe:65.5%、B:1.1%、Al:
0.4%、Nb:1.0%となるように秤量し、高周波
溶解により鋳塊を得た。
(Example 1) As a starting material, electrolytic iron with a purity of 99.9%, 817.5
% and the balance is composed of impurities such as Fe and carbon, Nd metal with a purity of 99.5% or more, AI gold metal Nb metal with a purity of 99.9% or more, Nd:
32.0%, Fe: 65.5%, B: 1.1%, Al:
Nb: 0.4%, Nb: 1.0%, and an ingot was obtained by high frequency melting.

この鋳塊を粗粉砕した後、N−ヘキサン中でボールミル
により湿式粉砕し、平均粒径3,3μmの合金粉末のス
ラリーを得た。このスラリー中の合金粉末100重量部
に対して成形改良剤として0.1部のステアリン酸を湿
式混合した後、乾燥させて、合金粉末を得た。この合金
粉末を用いて15kOeの磁場中で配向し、1. Ot
/cm”にて加圧成形したのちAr中1080℃X I
Hr、の条件で焼結し、さらに600℃X 2Hrsの
時効処理を施して永久磁石を作製した。
This ingot was coarsely pulverized and then wet-pulverized in N-hexane using a ball mill to obtain a slurry of alloy powder with an average particle size of 3.3 μm. 0.1 part of stearic acid as a molding improver was wet mixed with 100 parts by weight of the alloy powder in this slurry, and then dried to obtain an alloy powder. This alloy powder was oriented in a magnetic field of 15 kOe, and 1. Ot
/cm” and then press molded at 1080℃XI in Ar.
A permanent magnet was produced by sintering under the conditions of 2 hours and then aging at 600°C for 2 hours.

この磁石の組織をEPMAで観察したところ、合金中に
含まれている炭素の大部分はNbと炭化物を作りNdリ
ッチ相内に析出していた。得られた永久磁石の磁気特性
と炭素量を表−1に示す。
When the structure of this magnet was observed using EPMA, it was found that most of the carbon contained in the alloy formed carbides with Nb and precipitated within the Nd-rich phase. Table 1 shows the magnetic properties and carbon content of the obtained permanent magnet.

(実施例2) 出発原料として、純度99.9%の電解鉄、817.5
%を含み残部はFeおよび炭素などの不純物から成るフ
ェロボロン合金、純度99.5%以上のNd金属、純度
99.9%以上のAI金金属Cr金属を重量%でNd:
32.0%、Fe:65.5%、B:1.1%、Al:
0.4%、Cr:1.0%となるように秤量し、高周波
溶解により鋳塊を得た。
(Example 2) As a starting material, electrolytic iron with a purity of 99.9%, 817.5
% and the balance is composed of impurities such as Fe and carbon, Nd metal with a purity of 99.5% or more, AI gold metal Cr metal with a purity of 99.9% or more, Nd:
32.0%, Fe: 65.5%, B: 1.1%, Al:
Cr: 0.4%, Cr: 1.0%, and an ingot was obtained by high frequency melting.

この鋳塊を用いて実施例1と同一条件で永久磁石を作成
した。 この磁石の組織をEPMAで観察したところ、
合金中に含まれている炭素の大部分はCrと炭化物を作
りNdリッチ相内に析出していた。得られた永久磁石の
磁気特性と炭素量を表−1に示す。
A permanent magnet was produced using this ingot under the same conditions as in Example 1. When the structure of this magnet was observed using EPMA, it was found that
Most of the carbon contained in the alloy formed carbides with Cr and precipitated within the Nd-rich phase. Table 1 shows the magnetic properties and carbon content of the obtained permanent magnet.

(実施例3) 出発原料として、純度99.9%の電解鉄、817.5
%を含み残部はFeおよび炭素などの不純物から成るフ
ェロボロン合金、純度99.5%以上のNd金属、純度
99.9%以上のAI金金属Mo金属を重量%でNd:
32.0%、Fe:65.5%、B:1.1%、A1:
0.4%、Mo:1.0%となるように秤量し、高周波
溶解により鋳塊を得た。
(Example 3) As a starting material, electrolytic iron with a purity of 99.9%, 817.5
% and the remainder consists of impurities such as Fe and carbon, Nd metal with a purity of 99.5% or more, AI gold metal Mo metal with a purity of 99.9% or more, Nd:
32.0%, Fe: 65.5%, B: 1.1%, A1:
0.4% and Mo: 1.0%, and an ingot was obtained by high frequency melting.

この鋳塊を用いて実施例1と同一条件で永久磁石を作成
した。 この磁石の組織をEPMAで観察したところ、
合金中に含まれている炭素の大部分はMOと炭化物を作
りNdリッチ相内に析出していた。得られた永久磁石の
磁気特性と炭素量を表−1に示す。
A permanent magnet was produced using this ingot under the same conditions as in Example 1. When the structure of this magnet was observed using EPMA, it was found that
Most of the carbon contained in the alloy formed carbides with MO and precipitated within the Nd-rich phase. Table 1 shows the magnetic properties and carbon content of the obtained permanent magnet.

(実施例4) 出発原料として、純度99.9%の電解鉄、817.5
%を含み残部はFeおよび炭素などの不純物から成るフ
ェロボロン合金、純度99.5%以上のNd金属、純度
99.9%以上のAI金金属Ti金属を重量%でNd:
32.0%、Fe:65.5%、B:1.1%、A]:
0.4%、Ti:1.0%となるように秤量し、高周波
溶解により鋳塊を得た。
(Example 4) As a starting material, electrolytic iron with a purity of 99.9%, 817.5
% and the balance is composed of impurities such as Fe and carbon, Nd metal with a purity of 99.5% or more, AI gold metal and Ti metal with a purity of 99.9% or more, Nd:
32.0%, Fe: 65.5%, B: 1.1%, A]:
Ti: 0.4%, Ti: 1.0%, and an ingot was obtained by high frequency melting.

この鋳塊を用いて実施例1と同一条件で永久磁石を作成
した。 この磁石の組織をE PMAで観察したところ
、合金中に含まれている炭素の大部分はTiと炭化物を
作りNdリッチ相内に析出していた。得られた永久磁石
の磁気特性と炭素量を表−1に示す。
A permanent magnet was produced using this ingot under the same conditions as in Example 1. When the structure of this magnet was observed by EPMA, it was found that most of the carbon contained in the alloy formed carbides with Ti and precipitated within the Nd-rich phase. Table 1 shows the magnetic properties and carbon content of the obtained permanent magnet.

(比較例) 出発原料として、純度99.9%の電解鉄、B10.5
%を含み残部はFeおよび炭素などの不純物から成るフ
ェロボロン合金、純度99.5%以上のNd金属、純度
99.9%以上のAI金金属重量%でNd:32.0%
、Fe二66.5%、B:1.1%、A1:0.4%と
なるよ゛うに秤量し、高周波溶解により鋳塊を得た。こ
の鋳塊を用いて実施例1と同一条件で永久磁石を作成し
た。 この磁石の組織をEPMAで観察したところ、合
金中に含まれている炭素の大部分はNdと炭化物を作り
Ndリッチ相内に析出していた。得られた永久磁石の磁
気特性と炭素量を表−1に示す。
(Comparative example) As a starting material, electrolytic iron with a purity of 99.9%, B10.5
% and the balance is composed of impurities such as Fe and carbon, Nd metal with a purity of 99.5% or more, AI gold metal with a purity of 99.9% or more, Nd: 32.0% by weight
, Fe2: 66.5%, B: 1.1%, and A1: 0.4%, and an ingot was obtained by high frequency melting. A permanent magnet was produced using this ingot under the same conditions as in Example 1. When the structure of this magnet was observed using EPMA, it was found that most of the carbon contained in the alloy formed carbides with Nd and precipitated within the Nd-rich phase. Table 1 shows the magnetic properties and carbon content of the obtained permanent magnet.

(発明の効果) 表−1から明らかなようにR−Fe−B系永久磁石の製
造工程上不可避的に混入する炭素による磁気特性の劣化
を本発明により防止でき、安定な磁気特性を有する希土
類永久磁石を製造することができ産業上有益な効果をも
たらすものである。
(Effects of the invention) As is clear from Table 1, the present invention can prevent deterioration of magnetic properties due to carbon that is inevitably mixed in during the manufacturing process of R-Fe-B permanent magnets, and rare earths have stable magnetic properties. Permanent magnets can be manufactured and this has industrially beneficial effects.

Claims (1)

【特許請求の範囲】[Claims]  R(RはYを含む希土類元素のうち少なくとも1種で
ある)が25〜35%(%は重量%を表わす、以下同じ
)、Bが0.5〜2.0%、M^1(Fe、Co、Al
、Ni、Mn、Si、GaのうちFeを含む少なくとも
1種である)が60〜70%、M^2(Cr、Mo、N
b、Ta、Ti、V、W、Zrのうち少なくとも1種で
ある)が0.1〜10.0%およびC(炭素)が0.0
1〜1.0%からなり、CはM^2と炭化物を形成して
いることを特徴とする希土類永久磁石。
R (R is at least one rare earth element including Y) is 25 to 35% (% represents weight %, the same applies hereinafter), B is 0.5 to 2.0%, M^1 (Fe , Co, Al
, Ni, Mn, Si, Ga) is 60-70%, M^2 (Cr, Mo, N
b, Ta, Ti, V, W, Zr) is 0.1 to 10.0% and C (carbon) is 0.0%.
A rare earth permanent magnet consisting of 1 to 1.0%, characterized in that C forms a carbide with M^2.
JP63211674A 1988-08-26 1988-08-26 Rare-earth permanent magnet Pending JPH0260105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211674A JPH0260105A (en) 1988-08-26 1988-08-26 Rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211674A JPH0260105A (en) 1988-08-26 1988-08-26 Rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH0260105A true JPH0260105A (en) 1990-02-28

Family

ID=16609716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211674A Pending JPH0260105A (en) 1988-08-26 1988-08-26 Rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH0260105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145980A (en) * 1991-11-21 1993-06-11 Nec Corp Data transmission circuit
DE102016101890A1 (en) 2015-02-04 2016-08-04 Tdk Corporation R-T-B based sintered magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181403A (en) * 1986-02-05 1987-08-08 Hitachi Metals Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181403A (en) * 1986-02-05 1987-08-08 Hitachi Metals Ltd Permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145980A (en) * 1991-11-21 1993-06-11 Nec Corp Data transmission circuit
DE102016101890A1 (en) 2015-02-04 2016-08-04 Tdk Corporation R-T-B based sintered magnet
CN105845304A (en) * 2015-02-04 2016-08-10 Tdk株式会社 R-t-b based sintered magnet
US10522276B2 (en) 2015-02-04 2019-12-31 Tdk Corporation R-T-B based sintered magnet

Similar Documents

Publication Publication Date Title
JP5310923B2 (en) Rare earth magnets
JP5115511B2 (en) Rare earth magnets
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP6380738B2 (en) R-T-B permanent magnet, raw alloy for R-T-B permanent magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH0475304B2 (en)
JPH0260105A (en) Rare-earth permanent magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH045739B2 (en)
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH0320048B2 (en)
JP2000252108A (en) Rare-earth sintered magnet and its manufacture
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH0475303B2 (en)
JPH0355540B2 (en)
JPS61143553A (en) Production of material for permanent magnet
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet