JPS60144906A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS60144906A
JPS60144906A JP59000261A JP26184A JPS60144906A JP S60144906 A JPS60144906 A JP S60144906A JP 59000261 A JP59000261 A JP 59000261A JP 26184 A JP26184 A JP 26184A JP S60144906 A JPS60144906 A JP S60144906A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
residual magnetic
permanent magnet
maximum energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000261A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59000261A priority Critical patent/JPS60144906A/en
Publication of JPS60144906A publication Critical patent/JPS60144906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance coersive force of residual magnetic flux density, make large the maximum energy product and ensure good temperature coefficient of residual magnetic flux density by forming a permanent magnet using a material mainly composed of particular rare earth elements and ion. CONSTITUTION:As a material of permanent magnet, the composition expressed by R1-alpha-beta-gammaFealphaMbetaXgammais used. Here, R is one or two or more kinds of rare earth element and M is one or two or more kinds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W. X is one or two or more kinds of B, C, N, Si, P and the values of alpha, beta, gamma satisfy the relation, 0.60<=alpha<=0.85, 0.01<=beta<=0.10, gamma<=0.15. For example, an alloy having the composition of Nd0.17-betaFe0.75TibetaB0.08 is fused under the Ar ambient within a button dissolution furnace and is smashed into fine powder with a jet mill until the average grain size becomes 5mum. Next, this powder is press-molded under the magnetic field of 15kOe and is then sintered for an hour under the Ar ambient at a temperature of 1,000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、家庭電化製品、音響製品、時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料に関し、とくに希
土類元素(R)と鉄(F ’e )とを主体とする永久
磁石材料に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a permanent magnet that can be used in a wide range of applications such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. The present invention relates to materials, and particularly to permanent magnet materials mainly composed of rare earth elements (R) and iron (F'e).

(従来技術) 近年、永久磁石材料における最大エネルギ積((BH)
 wax )の向上はかってのアルニコ系磁石材料等の
それに比べて著しいものがあり、とくに家庭電化製品、
音響製品、時計部品、自動車部品、精密機器等々の小型
軽量化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((BH)
wax ) has been significantly improved compared to that of previous alnico magnet materials, especially for home appliances,
It has greatly contributed to making audio products, watch parts, automobile parts, precision equipment smaller, lighter, and higher in performance.

従来、このような優れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((B H) ff1ax )は18〜28
MG・Oe程度のかなり高い値を示している。しかし、
最大エネルギ積((BH)max )をさらに向上させ
るための研究はいぜんとして続けられ、一部では他の希
土類磁石の開発も進んでおり、なかには希土類−鉄系磁
石材料についての開発も行われている。この希土類−鉄
系磁石材料としてはNd−Fe−、B系のものもあるが
、この系の永久磁石材料では残留磁束密度(B r)の
温度係数があまり良くないという問題点があった。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such excellent properties, and their maximum energy product ((B H) ff1ax) is 18 to 28.
It shows a fairly high value on the order of MG.Oe. but,
Research to further improve the maximum energy product ((BH)max) is continuing, and the development of other rare earth magnets is also progressing, and some rare earth-iron magnet materials are also being developed. . This rare earth-iron based magnet material includes Nd-Fe- and B based permanent magnet materials, but this type of permanent magnet material has a problem in that the temperature coefficient of residual magnetic flux density (Br) is not very good.

(発明の目的) この発明は上述した従来の問題点に着目してなされたも
ので、残留磁束密度(Br)および保磁力C5Hc 、
 ■Hc)が優れていると共に、とくに最大エネルギ積
((B H) wax )が大きな値を示し、しかも残
留磁束密度(Br)の温度係数が良好である希土類−鉄
系永久磁石材料を提供することを目的としている。
(Objective of the Invention) This invention was made by focusing on the above-mentioned conventional problems.
■ To provide a rare earth-iron permanent magnet material that has an excellent Hc), a particularly large maximum energy product ((B H) wax), and a good temperature coefficient of residual magnetic flux density (Br). The purpose is to

(発明の構成) この発明による永久磁石材料は、一般式、R□ 、−β
 、Fe、MβX、で表わされ、Rが希土類元素の1種
または2種以上、MがTi。
(Structure of the Invention) The permanent magnet material according to the present invention has the general formula R□, -β
, Fe, MβX, where R is one or more rare earth elements, and M is Ti.

Zr、Hf、V、Nb、Ta、Cr、Mo、Wの1種マ
タは2種以上、XがB、C,N、St 、Pの1種また
は2種以上であり、 0.60≦α≦0.85. 0.01≦β≦0.10、 γ<0.15 であることを特徴としている。
One type of Zr, Hf, V, Nb, Ta, Cr, Mo, and W are two or more types, X is one or two or more types of B, C, N, St, and P, and 0.60≦α ≦0.85. It is characterized in that 0.01≦β≦0.10 and γ<0.15.

この発明による永久磁石材料は、上記のように、一般式
、R1−o−β−yFeoMβxyで表わされるが、式
中のRは希土類元素の1種または2種以上であることを
示し、Ndをはじめとし、Sc、Y、La、Ce、Pr
、Pm、Sm。
As mentioned above, the permanent magnet material according to the present invention is represented by the general formula R1-o-β-yFeoMβxy, where R represents one or more rare earth elements, and Nd Introduction, Sc, Y, La, Ce, Pr
, Pm, Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm。Eu, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Luのうちの1種または2種以上が用いられる。One or more of Yb and Lu are used.

また、上記一般式において、Fe(鉄)は、0.60≦
α≦0.85の範囲としている。ここで、Feの量が多
すぎると、残留磁束密度(Br)は向上するものの、保
磁力(BHC。
In addition, in the above general formula, Fe (iron) is 0.60≦
The range is α≦0.85. Here, if the amount of Fe is too large, the residual magnetic flux density (Br) will improve, but the coercive force (BHC) will increase.

工Hc)が極端に減少するため、すぐれた最大エネルギ
積((BH) maりは得られなくなるので、α≦0.
85とした。一方、Feの量が少なすぎると残留磁束密
度(Br)が低くなり、最大エネルギ積(’(B H)
 maw )が減少するので、0.60≦αとした。
Since the maximum energy product ((BH) ma) decreases extremely, it becomes impossible to obtain an excellent maximum energy product ((BH) ma), so α≦0.
It was set at 85. On the other hand, if the amount of Fe is too small, the residual magnetic flux density (Br) will be low, and the maximum energy product ('(B H)
maw ) decreases, so 0.60≦α is set.

さらに、上記一般式において、MはTi。Furthermore, in the above general formula, M is Ti.

Zr、Hf、V、Nb、Ta、Cr、Mo、Wの1種ま
たは2種以上であり、0.01≦β≦o、ioの範囲と
している。また、XはB、C。
It is one or more of Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and is in the range of 0.01≦β≦o, io. Also, X is B, C.

N、Si、Pの1種または2種以上であり、γく0.1
5の範囲としている。ここで、上記Mは上記X元素と複
合添加することによりMの一部が硼化物、炭化物、窒化
物、珪化物、燐化物となり、保磁力(B Hc 、 z
 Ha)の向上および残留磁束密度(Br)の温度係数
の向上に著しい効果をもたらす。しかし、Mの量が少な
すぎると残留磁束密度(Br)の温度係数の向上は望め
ないため、0.01≦βとし、Mの量が多すぎると前記
硼化物、炭化物、窒化物、珪化物、燐化物等の形成量が
多くなり、磁気特性が劣化するので、β≦0.10とし
た。また、上記X元素は希土類−鉄系磁石、たとえばN
d−Fe系磁石のキュリ一点を常温程度から300℃以
上に昇温させる効果を有するものであるが、Xの量が多
すぎると保磁力(BHC、rHc)および残留磁束密度
(B r)が減少し、すぐれた最大エネルギ積((BH
)WaX )が得られなくなるのでγ<0.15とした
One or more of N, Si, and P, and γ is 0.1
The range is 5. Here, by adding M in combination with the above element
This has a significant effect on improving the temperature coefficient of residual magnetic flux density (Br) and the residual magnetic flux density (Br). However, if the amount of M is too small, no improvement in the temperature coefficient of residual magnetic flux density (Br) can be expected, so it is set to 0.01≦β, and if the amount of M is too large, the borides, carbides, nitrides, and silicides Since the amount of formation of , phosphides, etc. increases and the magnetic properties deteriorate, β≦0.10 is set. In addition, the above X element is a rare earth-iron magnet, for example, N
It has the effect of raising the temperature of the Curie point of a d-Fe magnet from room temperature to over 300℃, but if the amount of X is too large, the coercive force (BHC, rHc) and residual magnetic flux density (Br) will decrease. reduced and excellent maximum energy product ((BH
) WaX ) could no longer be obtained, so γ<0.15 was set.

(実施例1) FeTiB なる組成 NdO,1?−β 0.75 β 0,08の合金をア
ルゴン雰囲気中に調整したボタン溶解炉を用いて溶製し
た。次いで、溶製合金を乳鉢内で粗粉砕した後、ジェッ
トミルにて平均粒径5pm程度まで微粉砕した。
(Example 1) FeTiB composition NdO, 1? -β 0.75 β 0.08 alloy was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 5 pm.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1000℃で
1時間の条件で焼結を行い、寥温ま−で急冷した後さら
に所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was sintered at 1000°C for 1 hour in an argon atmosphere, rapidly cooled to the bath temperature, and then further subjected to prescribed heat treatment. .

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、最大エネルギ積((B H)
 ll1ax )および残留磁束密度(Br)の温度係
数を調べたところ、第1表および第1図に示す結果とな
った。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((B H) of the obtained magnet material are
When the temperature coefficients of ll1ax) and residual magnetic flux density (Br) were investigated, the results were shown in Table 1 and FIG.

第1表および第1図に示すように、Ti量が0.01≦
βで保磁力(BHC、IHC)および最大エネルギ積(
(B H) 11ax )が向上すると共に、とくに残
留磁束密度(B r)の温度係数が小さくなることが明
らかである。しかし、Ti量が多くなりすぎると保磁力
(BHC,IHC)および最大エネルギー積((BH)
 11ax )が著しく低下するので、β≦0.10と
するのが良いことが確かめられた。
As shown in Table 1 and Figure 1, the amount of Ti is 0.01≦
β is the coercive force (BHC, IHC) and the maximum energy product (
It is clear that (B H) 11ax) is improved and, in particular, the temperature coefficient of residual magnetic flux density (B r) is reduced. However, if the amount of Ti becomes too large, the coercive force (BHC, IHC) and the maximum energy product ((BH)
11ax) is significantly reduced, it was confirmed that it is better to set β≦0.10.

(実施例2) Nd Fe VB Stな 0.17−β 0.75 β 0.03 0..05る
組成の合金をアルゴン雰囲気中に調整し〜たボタン溶解
炉を用いて溶製した。次いで、溶製合金を乳鉢内で粗粉
砕した後、ジェットミルにて平均粒径57hm程度まで
微粉砕した。
(Example 2) Nd Fe VB St 0.17-β 0.75 β 0.03 0. .. An alloy having a composition of 0.05 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 57 hm.

次に、得られた粉末を15KOeの磁場中で約2ton
f/cm2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中においてaoo’cで1時
間の条件で焼結を行い、室温まで急冷した後さらに所定
の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press molding under a pressure of f/cm2, the obtained molded body was sintered in an argon atmosphere at AOO'C for 1 hour, rapidly cooled to room temperature, and then further subjected to a prescribed heat treatment.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)、最大エネルギ積((BH) 
max )および残留磁束密度(Br)の温度係数を調
べたところ、第2表および第2図に示す結果となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC), and maximum energy product ((BH) of the obtained magnet material are
max) and the residual magnetic flux density (Br), the results are shown in Table 2 and Figure 2.

第2表および第2図に示すように、V量が0.01≦β
で保磁力(BHC,IHC)および最大エネルギ積((
BH) wax )が向上すると共に、とくに残留磁束
密度(Br’)の温度係数が小さくなることが明らかで
ある。しかし、V量が多くなりすぎると磁気特性が著し
く低下するので、β≦0.lOとするのが良いことが確
かめられた。
As shown in Table 2 and Figure 2, the amount of V is 0.01≦β
coercive force (BHC, IHC) and maximum energy product ((
It is clear that the temperature coefficient of the residual magnetic flux density (Br') in particular decreases as the BH)wax) improves. However, if the amount of V becomes too large, the magnetic properties will deteriorate significantly, so β≦0. It was confirmed that it is good to set it to lO.

(実施例3) Ndo、17−β Feo、75CrβNo、o8なる
組成の合金をアルゴン雰囲気中に調整したボタン溶解炉
を用いて溶製した。次いで、溶製合金を乳鉢内で粗粉砕
した後、ジェットミルにて平均粒径5gm程度まで微粉
砕した。
(Example 3) An alloy having a composition of Ndo, 17-β Feo, 75CrβNo, and o8 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 5 gm.

次に、得られた粉末を15KOeの磁場中で約2 to
nf / cn+2の圧力をかけてプレス成形したのち
、得られた成形体をアルゴン雰囲気中において800°
Cで1時間の条件で焼結を行い、室温まで急冷した後さ
らに所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cn+2, the obtained molded body was heated at 800° in an argon atmosphere.
Sintering was performed at C for 1 hour, and after rapidly cooling to room temperature, a predetermined heat treatment was performed.

(Br)、保磁力(BHC、IHC)、最大エネルギ積
((BH) fllax )および残留磁束密度(Br
)の温度係数を調べたところ、第3表および第3図に示
す結果となった。
(Br), coercive force (BHC, IHC), maximum energy product ((BH) flax ) and residual magnetic flux density (Br
), the results are shown in Table 3 and Figure 3.

第3表および第3図に示すように、Cr量が0.01≦
βで保磁力(B Hc * I HC)および最大エネ
ルギ積((BH) wax )が向上すると共に、とく
に残留磁束密度(B r)の温度係数が著しく小さくな
ることが明らかである。しかし、Cr量が多くなりすぎ
ると磁気特性が著しく低下するので、β≦0.10とす
るのが良いことが確かめられた。
As shown in Table 3 and Figure 3, the amount of Cr is 0.01≦
It is clear that the coercive force (B Hc * I HC) and the maximum energy product ((BH) wax) are improved with β, and in particular, the temperature coefficient of the residual magnetic flux density (B r) is significantly reduced. However, if the amount of Cr becomes too large, the magnetic properties will deteriorate significantly, so it was confirmed that it is better to set β≦0.10.

(実施例4) NdO,16FeO,?5MO,03S’ 0.08な
る組成の合金をアルゴン雰囲気中に調整したボタン溶解
炉を用いて溶製した。次いで、溶製合金を乳鉢内で粗粉
砕した後、ジェットミルにて平均粒径54m程度まで微
粉砕した。
(Example 4) NdO, 16FeO,? An alloy having a composition of 5MO, 03S' 0.08 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 54 m.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ am2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において800℃で1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/am2, the obtained molded body was heated at 800°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(Bl(c 、zHc)、最大エネルギ積((B 
H) maw )および残留磁束密度(Br)の温度係
数を調べたところ、第4表に示す結果となった。− 第4表に示すように、Mが前記Ti 、V、Crのほか
、Zr、Hf、Nb、Ta、Mo、Wであっても保磁力
(nHc、zHc)および最大エネルギ積((B H)
 wax )に優れていると共に、とくに残留磁束密度
(B r)の温度係数が小さくなることが明らかである
Next, the residual magnetic flux density (Br), coercive force (Bl (c, zHc), maximum energy product ((B
When the temperature coefficients of H) maw ) and residual magnetic flux density (Br) were investigated, the results are shown in Table 4. - As shown in Table 4, even if M is not only Ti, V, and Cr but also Zr, Hf, Nb, Ta, Mo, and W, the coercive force (nHc, zHc) and maximum energy product ((B H )
It is clear that the temperature coefficient of residual magnetic flux density (Br) is particularly small.

(実施例5) Nd0.17 FeO,75M0.02 CO,02N
O,04なる組成の合金をアルゴン雰囲気中に調整した
ボタン溶解炉を用いて溶製した。次いで、溶製合金を乳
鉢内で粗粉砕した後、ジェットミルにて平均粒径5Ji
、m程度まで微粉砕した。
(Example 5) Nd0.17 FeO,75M0.02 CO,02N
An alloy having a composition of O.04 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then a jet mill was used to reduce the average particle size to 5Ji.
It was finely ground to about .

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において800°Cで
1時間の条件で焼結を行い、室温まで急冷した後さらに
所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded body was sintered at 800°C for 1 hour in an argon atmosphere, and after being rapidly cooled to room temperature, it was further subjected to a prescribed heat treatment.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、rHc)、最大エネルギltr ((B
H)saw )およrx−*wm宙sg(Br)の温度
係数を調べたところ、第5表に示す結果となった。
Next, the residual magnetic flux density (Br), coercive force (BHC, rHc), and maximum energy ltr ((B
When the temperature coefficients of H) saw) and rx-*wm air sg (Br) were investigated, the results are shown in Table 5.

第5表に示すように、実施例4におけるStの代わりに
C,Nを添加したときでも保磁力(BHC,IHC)お
よび最大エネルギ積((BH) max )に優れてい
ると共に、とくに残留磁束密度(B r)の温度係数が
小さくなることが明らかである。
As shown in Table 5, even when C and N were added in place of St in Example 4, the coercive force (BHC, IHC) and maximum energy product ((BH) max) were excellent, and the residual magnetic flux was particularly good. It is clear that the temperature coefficient of density (Br) becomes smaller.

(発明の効果) 以上説明してきたように、この発明による永久磁石材料
は、一般式 %式% が希土類元素の1種または2種以上、F6が鉄、MがT
i、Zr、Hf、V、Nb、Ta、Cr。
(Effects of the Invention) As explained above, in the permanent magnet material according to the present invention, the general formula % is one or more rare earth elements, F6 is iron, and M is T.
i, Zr, Hf, V, Nb, Ta, Cr.

MO,W(7)L種マタは2種以上、XがB、C。MO, W (7) L type mata is 2 or more types, X is B, C.

N、St、Pの1種または2種以上であり、0.60≦
α≦0.85. 0.01≦β≦0.10、 γ<0.15 であるようにしたから、残留磁束密度(Br)および保
磁力(RHC,IHC)に優れていると共に、とくに最
大エネルギ積((B’H) maw )が大きな値を示
し、しかも残留磁束密度(Br)の温度係数が著しく良
好であり、家庭電化製品 音響製品、時計部品、自動車
部品、精密機器等々の小型軽量化を永久磁石の面から実
現することが可能であると共に、特に温度による残留磁
束密度(B r)への影響が著しく小さいため高性能を
発揮することが可能であるという非常に優れた効果をも
たらしうるものである。
One or more of N, St, and P, and 0.60≦
α≦0.85. Since 0.01≦β≦0.10 and γ<0.15 are satisfied, it is excellent in residual magnetic flux density (Br) and coercive force (RHC, IHC), and especially has a maximum energy product ((B' H) maw ) shows a large value, and the temperature coefficient of residual magnetic flux density (Br) is extremely good. In addition, since the influence of temperature on the residual magnetic flux density (Br) is extremely small, it is possible to achieve a very excellent effect in that it is possible to exhibit high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および83図はこの発明の実施例1,2
.3においてそれぞれM含有量(β値)による保磁力、
最大エネルギー積および残留磁束密度の温度係数への影
響を調べた結果を示すグラフである。 特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊
1, 2 and 83 are embodiments 1 and 2 of this invention.
.. In 3, the coercive force depending on the M content (β value),
7 is a graph showing the results of investigating the influence of maximum energy product and residual magnetic flux density on temperature coefficient. Patent applicant: Daido Steel Co., Ltd. Representative patent attorney: Yutaka Oshio

Claims (1)

【特許請求の範囲】[Claims] (1)式、R□−ct−β−アFe、Mβxアで表わさ
れ、R1が希土類元素の1種または2種以上、MがTi
 、Zr、Hf、V、Nb、Ta、Cr。 Mo、Wの1種マタは2種以上、XがB、C。 N、S’i、Pの1種または2′、!以上であり、0.
60≦α≦0.85、。 0.01≦β≦0.10、 γ<0.15 であることを特徴とする永久磁石材料。
Formula (1) is represented by R□-ct-β-aFe, Mβxa, where R1 is one or more rare earth elements, and M is Ti.
, Zr, Hf, V, Nb, Ta, Cr. 1 type of Mo, W is 2 or more types, X is B, C. One of N, S'i, P or 2',! That's all, 0.
60≦α≦0.85. A permanent magnetic material characterized in that 0.01≦β≦0.10 and γ<0.15.
JP59000261A 1984-01-06 1984-01-06 Permanent magnet material Pending JPS60144906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000261A JPS60144906A (en) 1984-01-06 1984-01-06 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000261A JPS60144906A (en) 1984-01-06 1984-01-06 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS60144906A true JPS60144906A (en) 1985-07-31

Family

ID=11468969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000261A Pending JPS60144906A (en) 1984-01-06 1984-01-06 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS60144906A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219142A (en) * 1988-02-26 1989-09-01 Sumitomo Special Metals Co Ltd Rare earth magnetic material excellent in corrosion resistance
JPH0257663A (en) * 1987-09-18 1990-02-27 Asahi Chem Ind Co Ltd Magnetic anisotropy material and its manufacture
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
US5041171A (en) * 1986-07-18 1991-08-20 U.S. Philips Corporation Hard magnetic material
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5217541A (en) * 1990-05-03 1993-06-08 High End Metals Corp. Permanent magnet and the method for producing the same
US5403407A (en) * 1993-04-08 1995-04-04 University Of Delaware Permanent magnets made from iron alloys
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041171A (en) * 1986-07-18 1991-08-20 U.S. Philips Corporation Hard magnetic material
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets
JPH0257663A (en) * 1987-09-18 1990-02-27 Asahi Chem Ind Co Ltd Magnetic anisotropy material and its manufacture
JPH01219142A (en) * 1988-02-26 1989-09-01 Sumitomo Special Metals Co Ltd Rare earth magnetic material excellent in corrosion resistance
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
US5217541A (en) * 1990-05-03 1993-06-08 High End Metals Corp. Permanent magnet and the method for producing the same
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders
US5403407A (en) * 1993-04-08 1995-04-04 University Of Delaware Permanent magnets made from iron alloys
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Similar Documents

Publication Publication Date Title
JPS60254708A (en) Manufacture of permanent magnet
JPS60144909A (en) Manufacture of permanent magnet material
JPS60144906A (en) Permanent magnet material
JPS6110209A (en) Permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPS62136551A (en) Permanent magnet material
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS60144908A (en) Permanent magnet material
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
JPS60144907A (en) Permanent magnet material
JPS6151901A (en) Manufacture of permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS63128606A (en) Permanent magnet
JPS6180805A (en) Permanent magnet material
JPS60254709A (en) Permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS62181403A (en) Permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JPS62136550A (en) Permanent magnet material
JPS62136553A (en) Permanent magnet material
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPS6178102A (en) Permanent magnet material
JPS59215460A (en) Permanent magnet material and its production