JPS60144907A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS60144907A
JPS60144907A JP59000262A JP26284A JPS60144907A JP S60144907 A JPS60144907 A JP S60144907A JP 59000262 A JP59000262 A JP 59000262A JP 26284 A JP26284 A JP 26284A JP S60144907 A JPS60144907 A JP S60144907A
Authority
JP
Japan
Prior art keywords
alpha
permanent magnet
beta
rare earth
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000262A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59000262A priority Critical patent/JPS60144907A/en
Publication of JPS60144907A publication Critical patent/JPS60144907A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To enhance residual magnetic flux density and coersive force and further improve magnetic characteristic expressed by the maximum energy product by forming a permanent magnet using a material mainly composed of particular rare earth elements and iron. CONSTITUTION:As a material of permanent magnet, composition expressed by R1-alpha-beta-gammaFealphaMbetaXgamma is used. Here, R is one or two or more kinds rare earth elements and M is one or two or more kinds of Mn, Ni, Co. X is one or two or more kinds of B, C, N, Si, P and values of alpha, beta, gamma satisfy the relations, 0.60<= alpha<=0.85, 0.01<=beta<=0.20, gamma<=0.15. For example, an alloy having composition of Nd0.97-alpha-betaFealphaNibetaB003 is fused under the Ar ambient within a buttom dissolving furnace and is smashed into fine powder with a jet mill until the average grain size becomes about 4mum. Next, the powder is press-molded under the magnetic field of 15kOe and is then sintered for an hour under the Ar embient at a temperature of 1,000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、家庭電化製品、音響製品、時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料に関し、とくに希
土類元素(R)と鉄(F e)とを主体とする永久磁石
材料に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a permanent magnet that can be used in a wide range of applications such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. Regarding materials, in particular, it relates to permanent magnet materials mainly composed of rare earth elements (R) and iron (Fe).

(従来技術) 近年、永久磁石材料における最大エネルギ積((B H
) max )の向上はかってのアルニコ系磁石材料等
のそれに比べて著しいものがあり、とぐに家庭電化製品
、音響製品、時計部品、自動車部品、精密機器等々の小
型軽量化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((B H
) max ) has been significantly improved compared to that of the old alnico magnet materials, etc., and it is quickly being used to make home appliances, audio products, watch parts, automobile parts, precision equipment, etc. smaller, lighter, and higher in performance. He has contributed greatly.

従来、このような侵れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((B H) max)は18〜28MG−
Oe程度のかなり高い値を示している。しかし、最大エ
ネルギfjt((BH)maw)をさらに向上させるだ
めの研究はいぜんとして続けられ、一部では他の希土類
磁石の開発も進んでおり、なかには希土類−鉄系磁石材
料についての開発も行われている。この希土類−鉄系磁
石材料としては、Nd−Fe−B系のものもあるが、本
発明者らはこれを基にさらに研究を進めた結果、この発
明を完成するに致ったものである。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such corroded characteristics, and their maximum energy product ((B H) max) is 18 to 28 MG-
It shows a fairly high value of about Oe. However, research to further improve the maximum energy fjt ((BH)maw) continues, and some other rare earth magnets are being developed, and rare earth-iron magnet materials are also being developed. ing. As this rare earth-iron based magnet material, there is also a Nd-Fe-B based material, but the inventors conducted further research based on this, and as a result, they were able to complete this invention. .

(発明の目的) この発明は、上述したNd−Fe−B系を代表とするR
EM−Fe−B系の永久磁石材料において、残留磁束密
度(Br)、保磁力(BHC。
(Object of the Invention) The present invention provides an R
In EM-Fe-B-based permanent magnet materials, residual magnetic flux density (Br), coercive force (BHC).

x Ha)および最大エネルギ積((BH) max 
)で表わされる磁気特性をさらに向上させた希土類−鉄
系永久磁石材料を提供することを目的としている。
x Ha) and the maximum energy product ((BH) max
) The object of the present invention is to provide a rare earth-iron permanent magnet material with further improved magnetic properties expressed by:

(発明の構成) この発明による永久磁石材料は、一般式、R1−ct−
β−アFeoMβxアで表わされ、Rが希土類元素の1
種または2種以上、MがMn。
(Structure of the Invention) The permanent magnet material according to the present invention has a general formula: R1-ct-
β-A is represented by FeoMβxA, and R is 1 of a rare earth element.
species or two or more species, M is Mn.

Ni、Coの1種または2種以上、XがB、C。One or more of Ni and Co, and X is B or C.

N、St、Pの1種または2種以上であり、0.60≦
α≦0.85、 o、oi≦β≦O,’20、 γ<0.15 でかつ0.65≦α+β<0.90、 であることを特徴としている。
One or more of N, St, and P, and 0.60≦
It is characterized in that α≦0.85, o, oi≦β≦O, '20, γ<0.15, and 0.65≦α+β<0.90.

この発明による永久磁石材料は、上記のように・一般式
・R1−α−β−γF8αMβXγ1表わされるが、式
中のRは希土類元素の1種または2種以上であることを
示し、Ndをはじめとし、Sc、Y、La、、Ce、P
r、Pm、sn。
The permanent magnet material according to the present invention is represented by the general formula R1-α-β-γF8αMβXγ1 as described above, and R in the formula represents one or more rare earth elements, including Nd. Sc, Y, La, , Ce, P
r, Pm, sn.

Eu、Gd、Tb、Dy、Ho、Er、Tm。Eu, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Luのうちの1種または2種以上が用いられる。One or more types of Yb and Lu are used.

また、上記一般式において、Fe(鉄)は、0.60≦
α≦0.85の範囲としている。ここで、Feの量が多
すぎると、残留磁束密度(Br)は向上するものの、保
磁力(BHC。
In addition, in the above general formula, Fe (iron) is 0.60≦
The range is α≦0.85. Here, if the amount of Fe is too large, the residual magnetic flux density (Br) will improve, but the coercive force (BHC) will increase.

IHc)が極端に減少するため、すぐれた最大エネルギ
積((BH) may )は得られなくなるので、α≦
0.85とした。一方、Feの量が少なすぎると残留磁
束密度(B r)が低くなり、最大ヱネルギa ((B
 H) rnax )が減少するので、0.60≦αと
した。
IHc) decreases extremely, so it is no longer possible to obtain an excellent maximum energy product ((BH) may), so α≦
It was set to 0.85. On the other hand, if the amount of Fe is too small, the residual magnetic flux density (Br) will be low, and the maximum energy a ((B
H) rnax) decreases, so 0.60≦α was set.

さらに、上記一般式において、MはMn。Furthermore, in the above general formula, M is Mn.

Ni 、Coの1種または2種以上であり、0.01≦
β≦0.20の範囲としている。また、XはB、C,N
、St、Pの1種または2種以上であり、γ<0.15
の範囲としている。ここで、上記Mは上記X元素と複合
添加することによりMの一部が前記X元素と化合物を形
成して磁気特性の向上に著しい効果をもたらす。しかし
、Mの量が少なすぎると磁気特性の向上は望めないため
、0.O1≦βとし、Mの量が多すぎると前記化合物の
形成量が多くなり、磁気特性が劣化するので、β≦0.
20とした。また、上記X元素は希土類−鉄系磁石、た
とえばNd=Fe系磁石の主磁石一点を常温程度から3
00°C以上に昇温させる効果を有するものであるが、
Xの量が多すぎると保磁力(BHC,1Hc)および残
留磁束密度(Br)が減少し、すぐれた最大エネルギ積
((BH) max )が得られなくなるのでγく0.
15とした。
One or more of Ni and Co, 0.01≦
The range is β≦0.20. Also, X is B, C, N
, St, and P, and γ<0.15
The range is as follows. Here, by adding the M in combination with the X element, a part of M forms a compound with the X element, resulting in a remarkable effect on improving the magnetic properties. However, if the amount of M is too small, no improvement in magnetic properties can be expected, so 0. O1≦β, and if the amount of M is too large, the amount of the compound formed will increase and the magnetic properties will deteriorate, so if β≦0.
It was set at 20. In addition, the above-mentioned
It has the effect of raising the temperature to 00°C or higher,
If the amount of X is too large, the coercive force (BHC, 1Hc) and residual magnetic flux density (Br) will decrease, making it impossible to obtain an excellent maximum energy product ((BH) max ), so γ is reduced to 0.
It was set at 15.

さらに、α+βの値が大きすぎると保磁力(zHc)が
急激に減少し、最大エネルギ積((BH) max )
も低下するので、α+βく0.90とする必要があり、
反対にα+βの値が小さすぎると残留磁束密度(B r
)が減少するため、最大エネルギ積((BH) max
 )も減少するので、0.65≦α+βとする必要があ
る。
Furthermore, if the value of α + β is too large, the coercive force (zHc) will decrease rapidly, and the maximum energy product ((BH) max )
Also decreases, so it is necessary to set α + β to 0.90,
On the other hand, if the value of α+β is too small, the residual magnetic flux density (Br
) decreases, so the maximum energy product ((BH) max
) also decreases, so it is necessary to satisfy 0.65≦α+β.

(実施例1) NdO,!37− a−j3 FeaNi73 Bo、
03なる組成の合金をアルゴン雰囲気に調整したボタン
溶解炉を用いて溶製した。次いで、溶製合金を乳鉢内で
粗粉砕した後、ジェットミルにて平均粒径47pm程度
まで微粉砕した。
(Example 1) NdO,! 37- a-j3 FeaNi73 Bo,
An alloy having a composition of 03 was melted using a button melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a jet mill to an average particle size of about 47 pm.

次に、得られた粉末を15KOeの磁場中で約2 to
nf/ cm2の圧力をかげてプレス成形したのち、得
られた成形体をアルゴン雰囲気中において1000°C
で1時間の条件で焼結を行い、室温まで急冷した後さら
に所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf/cm2, the obtained molded product was heated at 1000°C in an argon atmosphere.
Sintering was carried out under the conditions of 1 hour, and after rapidly cooling to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC、IHC)および最大エネルギ積((BH
) maw )を調べたところ、第1表に示す結果とな
った。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC) and maximum energy product ((BH
) maw ), the results are shown in Table 1.

第1表に示すように、本発明の範囲を満足する場合には
いずれもすぐれた磁気特性を示しているのに対して、N
i量が少なすぎるNo、1.5゜9、Ni量が多すぎる
No、12、Fe+Ni量が少なすぎるNo、i3、F
e+Ni量が多すぎるNo、 4 、8の場合にはいず
れも本発明のものよりも磁気特性が劣っていることが明
らかである。
As shown in Table 1, all of the cases that satisfy the scope of the present invention exhibit excellent magnetic properties, whereas N
Too little i amount No, 1.5゜9, Too much Ni amount No, 12, Too little Fe+Ni amount No, i3, F
It is clear that in the cases of Nos., 4, and 8, in which the amount of e+Ni is too large, the magnetic properties are inferior to those of the present invention.

(実施例2) NdO,84−a−βFea”/3B0.08なる組成
の合金をアルゴン雰囲気に調整したボタン溶解炉を用い
て溶製した。次いで、溶製合金を乳鉢内で粗粉砕した後
、ジェットミルにて平均粒径4pm程度まで微粉砕した
(Example 2) An alloy having a composition of NdO, 84-a-βFea''/3B0.08 was melted using a button melting furnace adjusted to an argon atmosphere.Then, the melted alloy was coarsely ground in a mortar. The mixture was pulverized to an average particle size of about 4 pm using a jet mill.

次に、得られた粉末を15KOeの磁場中で約2 to
nf / c+n2の圧力をかけてプレス成形したのち
、得られた成形体をアルゴン雰囲気中において1000
°Cで1時間の条件で焼結を行い、室温まで急冷した後
さらに所定の熱処理を施した。
Next, the obtained powder was heated in a magnetic field of 15 KOe for about 2 to
After press molding under a pressure of nf / c + n2, the obtained molded body was heated at 1000 °C in an argon atmosphere.
Sintering was performed at °C for 1 hour, and after rapidly cooling to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC,IHC)および最大エネルギ積((BH
) max )を調べたところ、第2表に示す結果とな
った。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC) and maximum energy product ((BH
) max ), the results are shown in Table 2.

第2表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、Mn
量が少なすぎるNo、、 21 、25 。
As shown in Table 2, all cases satisfying the scope of the present invention show excellent magnetic properties, whereas Mn
No. 21, 25, the amount is too small.

29、Mn量が多すぎるNo、33.34、Fe+Mn
量が少なすぎるNo、30、Fe+Mn量が多すぎるN
o、24.28の場合にはいずれも本発明のものよりも
磁気特性が劣っていることが明らかである。
29, No. with too large amount of Mn, 33.34, Fe+Mn
No.30 with too little amount, N with too much Fe+Mn amount
o, 24.28, it is clear that the magnetic properties are inferior to those of the present invention.

(実施例3) NdO,2−7FeO,75Mn0.05B、なる組成
の合金をアルゴン雰囲気に調整したポクン溶解炉を用い
て溶製した。次いで、溶製合金を乳鉢内で粗粉砕した後
、ジェ・、トミルにて平均粒径4pm程度まで微粉砕し
た。
(Example 3) An alloy having a composition of NdO, 2-7FeO, 75Mn0.05B was melted using a Pokun melting furnace adjusted to an argon atmosphere. Next, the molten alloy was roughly pulverized in a mortar, and then finely pulverized in a J-tomill to an average particle size of about 4 pm.

次に、得られた粉末を15KOeの磁場中で約2 Lo
nf/ cm2の圧力をかけてプレス成形したのち、得
られた成形体をアルゴン罪囲気中において1000’c
で1時間の条件で焼結を行い、室温まで急冷した後さら
に所定の熱処理を施した。
Next, the obtained powder was heated to about 2 Lo in a magnetic field of 15 KOe.
After press molding under a pressure of nf/cm2, the obtained molded body was heated at 1000'c in an argon atmosphere.
Sintering was carried out under the conditions of 1 hour, and after rapidly cooling to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC,IHC)および最大エネルギ積((BH
) mat )を調べたところ、第3表に示す結果とな
った。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC) and maximum energy product ((BH
) mat ), the results are shown in Table 3.

第3表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、B量
が少なすぎるNo、41およびB量が多すぎるNo、4
5の場合にはいずれも本発明のものよりも磁気特性が劣
っていることが明らかである。
As shown in Table 3, all cases satisfying the scope of the present invention show excellent magnetic properties, whereas No. 41 has too little B amount and No. 4 has too much B amount.
It is clear that in all cases No. 5, the magnetic properties are inferior to those of the present invention.

(実施例4) 第4表に示す組成の合金をアルゴン雰囲気に調整したボ
タン溶解炉を用いて溶製した。次いで、溶製合金を乳鉢
内で粗粉砕した後、ジェ−/ )ミルにて平均粒軽41
1.m程度まで微粉砕した。
(Example 4) Alloys having the compositions shown in Table 4 were melted using a button melting furnace adjusted to an argon atmosphere. Next, after coarsely pulverizing the molten alloy in a mortar, an average particle size of 41
1. It was pulverized to about m.

次に、得られた粉末を15KOeの磁場中で約2ton
f/am2の圧力をかけてプレス成形したのち、得られ
た成形体をアルゴン雰囲気中において1000°Cで1
時間の条件で焼結を行い、室温まで急冷した後さらに所
定の熱処理を施した。
Next, the obtained powder was heated to approximately 2 tons in a magnetic field of 15 KOe.
After press molding under a pressure of f/am2, the obtained molded body was heated at 1000°C in an argon atmosphere for 1
Sintering was carried out under the conditions of a certain amount of time, and after being rapidly cooled to room temperature, a predetermined heat treatment was performed.

次いで、得られた磁石材料の残留磁束密度(Br)、保
磁力(BHC,IHC)および最大エネルギ積((BH
) wax )を調べたところ、第4表に示す結果とな
った。
Next, the residual magnetic flux density (Br), coercive force (BHC, IHC) and maximum energy product ((BH
) was investigated, and the results are shown in Table 4.

第4表に示すように、本発明の範囲を満足する場合はい
ずれもすぐれた磁気特性を示しているのに対して、α+
βの値が低すぎるNo、51゜54.57、およびα+
βの値が高すぎるNo。
As shown in Table 4, all cases satisfying the scope of the present invention exhibit excellent magnetic properties, whereas α+
No. where the value of β is too low, 51°54.57, and α+
No. The value of β is too high.

53.56.59の場合にはいずれも本発明のものより
も磁気特性が劣っていることが明らかである。
53, 56, and 59, it is clear that the magnetic properties are all inferior to those of the present invention.

(発明の効果) 以上説明してきたように、この発明による永久磁石材料
は、一般式 %式% が希土類元素の1種または2種以上、MがMn。
(Effects of the Invention) As explained above, in the permanent magnet material according to the present invention, the general formula % is one or more rare earth elements, and M is Mn.

Ni、Coの1種または2種以上、XがB、C。One or more of Ni and Co, and X is B or C.

N、St、Pの1種または2種以上であり、0.60≦
α≦0.85. 0.01≦β≦0.20、 γ<0.15 でかつ0165≦α+β<0.90、 であるようにしたから、残留磁束密度(Br)、保磁力
(BHC、I He)、最大エネルギ積((BH)ma
x)で表わされる磁気特性に著しく優れたものであり、
家庭電化製品、音響製品、時計部品、自動車部品、精密
機器等々の小型軽量化および高性能化等を永久磁石の面
から実現することが可能であるという非常に優れた効果
をもたらしうるものである。
One or more of N, St, and P, and 0.60≦
α≦0.85. Since 0.01≦β≦0.20, γ<0.15, and 0165≦α+β<0.90, the residual magnetic flux density (Br), coercive force (BHC, I He), and maximum energy Product ((BH)ma
It has extremely excellent magnetic properties expressed by x),
It is possible to bring about extremely excellent effects such as making home appliances, audio products, watch parts, automobile parts, precision equipment, etc. smaller, lighter, and higher in performance from the perspective of permanent magnets. .

特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊Patent applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Shio

Claims (1)

【特許請求の範囲】[Claims] (1)式、R□−o−β−アFeQ:M/3x、yで表
わされ、Rが希土類元素の1種または2種以上、MがM
n、Ni、Coの1種または2種以上、XがB、C,N
、Si 、Pの1種または2種以上であり、 0.60≦α≦0.85. 0.01≦β≦0.20、 γ<0.15、 でかつ0.65≦α+β<0.90、 であることを特徴とする永久磁石材料。
(1) Formula, R□-o-β-aFeQ: M/3x, y, where R is one or more rare earth elements, and M
One or more of n, Ni, Co, X is B, C, N
, Si, and P, and 0.60≦α≦0.85. A permanent magnetic material characterized in that 0.01≦β≦0.20, γ<0.15, and 0.65≦α+β<0.90.
JP59000262A 1984-01-06 1984-01-06 Permanent magnet material Pending JPS60144907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000262A JPS60144907A (en) 1984-01-06 1984-01-06 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000262A JPS60144907A (en) 1984-01-06 1984-01-06 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS60144907A true JPS60144907A (en) 1985-07-31

Family

ID=11468994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000262A Pending JPS60144907A (en) 1984-01-06 1984-01-06 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS60144907A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105808A (en) * 1986-10-22 1988-05-11 Masao Kubota Front clamp type drill
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
US5180445A (en) * 1989-06-13 1993-01-19 Sps Technologies, Inc. Magnetic materials
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
JPH06280605A (en) * 1993-03-30 1994-10-04 Komatsu Zenoah Co Auxiliary engine device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105808A (en) * 1986-10-22 1988-05-11 Masao Kubota Front clamp type drill
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5180445A (en) * 1989-06-13 1993-01-19 Sps Technologies, Inc. Magnetic materials
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
US5085716A (en) * 1990-02-20 1992-02-04 General Motors Corporation Hot worked rare earth-iron-carbon magnets
JPH06280605A (en) * 1993-03-30 1994-10-04 Komatsu Zenoah Co Auxiliary engine device

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
JPS60144909A (en) Manufacture of permanent magnet material
JPH06275414A (en) Nd-fe-b based permanent magnet
US4135953A (en) Permanent magnet and method of making it
JPS60254708A (en) Manufacture of permanent magnet
JPS60144906A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPS62136551A (en) Permanent magnet material
JPS60144908A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JPS63128606A (en) Permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS6180805A (en) Permanent magnet material
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPS62136553A (en) Permanent magnet material
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS62116756A (en) Permanent magnet alloy
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPS62188757A (en) Fluorine-containing alloy-type permanent magnet material
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JPS60254707A (en) Manufacture of permanent magnet
JPS62136550A (en) Permanent magnet material