JPH06275414A - Nd-fe-b based permanent magnet - Google Patents

Nd-fe-b based permanent magnet

Info

Publication number
JPH06275414A
JPH06275414A JP5082563A JP8256393A JPH06275414A JP H06275414 A JPH06275414 A JP H06275414A JP 5082563 A JP5082563 A JP 5082563A JP 8256393 A JP8256393 A JP 8256393A JP H06275414 A JPH06275414 A JP H06275414A
Authority
JP
Japan
Prior art keywords
coercive force
content
max
energy product
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5082563A
Other languages
Japanese (ja)
Other versions
JP3298219B2 (en
Inventor
Masahiro Takahashi
昌弘 高橋
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP08256393A priority Critical patent/JP3298219B2/en
Priority to US08/217,091 priority patent/US5472525A/en
Priority to CN94101181A priority patent/CN1120506C/en
Priority to DE4402783A priority patent/DE4402783B4/en
Publication of JPH06275414A publication Critical patent/JPH06275414A/en
Application granted granted Critical
Publication of JP3298219B2 publication Critical patent/JP3298219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a title magnet having a maximum energy product (BH)max of 42MGOe or more and a coercive force iHc of l2KOe or more. CONSTITUTION:An in-field press-molded compact of a powder obtained from an ingot of the composition of Nda-Dyb-B1.04-V0.59-Gac-Co0.20-Al0.35-Feba1(wt%) is sintered at 1080 deg.C X 3hr sintering under vacuum and heat-treated at 900 deg.C X2hr, 530 deg.C X 2hr, so that a sinter of 7.55-7.58g/cc density, 1100-4000ppm oxygen content is obtained. An examination result of the relation Nd content between magnetic characteristics with Dy=1.0wt.%, Ga=0.06wt.% with regard to that sinter shows that coercive force iHc increases with an increase in Nd content, but residual flux density Br decreases, and that lowering Dy+Nd content down to 32wt.% or less by complex addition of Nd, Dy, Ga can provide an excellent maximum energy product (BH)max and coercive force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はネオジム(Nd)、鉄
(Fe)、コバルト(Co)及びホウ素(B)を主成分
とする永久磁石に関し、特に優れたエネルギー積および
耐熱性を有するNd−Fe−B系焼結永久磁石に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet containing neodymium (Nd), iron (Fe), cobalt (Co) and boron (B) as main components, and particularly Nd- which has excellent energy product and heat resistance. The present invention relates to a Fe-B system sintered permanent magnet.

【0002】[0002]

【従来の技術】Nd−Fe−B系焼結磁石は、SmCo
5系焼結磁石或いはSm2Co17系焼結磁石と比較して高
いエネルギー積(BH)maxを有することから、種々
の用途に使用されるようになっている。しかしながら、
Nd−Fe−B系焼結磁石は、これらSm−Co系焼結
磁石に比較して熱安定性に劣ることから、その熱安定性
を増すために種々の試みが提案されている。その一例と
して特開昭64−7503号公報には、熱安定性の良好
な永久磁石として一般式: R(Fe1-x-y-zCoxyGazA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、0≦x≦0.7、0.02≦y≦0.3、0.001
≦z≦0.15、4.0≦A≦7.5である)、及び、 R(Fe1-x-y-zCoxyGazuA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、MはNb,W,V,Ta及びMoから選ばれた1
種または2種以上の元素であり、0≦x≦0.7、0.0
2≦y≦0.3、0.001≦z≦0.15、u≦0.1、
4.0≦A≦7.5である。)により表されるものが開示
されている。
2. Description of the Related Art Sintered Nd-Fe-B magnets are SmCo
Since it has a high energy product (BH) max as compared with a 5 series sintered magnet or a Sm 2 Co 17 series sintered magnet, it has come to be used in various applications. However,
Since Nd-Fe-B system sintered magnets are inferior in thermal stability to these Sm-Co system sintered magnets, various attempts have been proposed to increase the thermal stability. The JP 64-7503 Publication as an example, the general formula as a good permanent magnet thermal stability: R (Fe 1-xyz Co x B y Ga z) A ( Here, R is selected from rare earth elements And at least one, 0 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.3, 0.001
≦ z ≦ 0.15,4.0 a ≦ A ≦ 7.5), and, R (Fe 1-xyz Co x B y Ga z M u) A ( provided that at least R is selected from rare earth elements 1 type, M is selected from Nb, W, V, Ta and Mo 1
Element or two or more elements, 0 ≦ x ≦ 0.7, 0.0
2 ≦ y ≦ 0.3, 0.001 ≦ z ≦ 0.15, u ≦ 0.1,
4.0 ≦ A ≦ 7.5. ) Is disclosed.

【0003】[0003]

【発明が解決しようとする課題】近時永久磁石を用いた
装置のより一層の小型化が要求されており、それにとも
ない優れた熱安定性を有し、かつ高エネルギー積を兼備
する永久磁石の登場が望まれている。前記特開昭64−
7503号に記載の永久磁石は、Gaを添加することに
より保磁力iHcを向上し優れた熱安定性を実現してい
るが、エネルギー積に関しては前記要求を満足すること
ができない。すなわち、実用上、保磁力iHcは12K
Oe以上有することが要求されるが、このレベルの保磁
力を有する磁石のエネルギ−積(BH)maxは40M
GOe以下である。そこで本発明は、42MGOe以上
の高い最大エネルギー積(BH)maxを有し、かつ1
2KOe以上と実用に対応することができる保磁力iH
cを有するNd−Fe−B系磁石の提供を課題とする。
Recently, there has been a demand for further miniaturization of a device using a permanent magnet. Along with this, a permanent magnet having excellent thermal stability and a high energy product is required. Appearance is desired. JP-A-64-
The permanent magnet described in No. 7503 has improved coercive force iHc and excellent thermal stability by adding Ga, but cannot satisfy the above requirement with respect to energy product. That is, in practice, the coercive force iHc is 12K.
Although it is required to have Oe or more, the energy product (BH) max of a magnet having this level of coercive force is 40M.
It is less than or equal to GOe. Therefore, the present invention has a high maximum energy product (BH) max of 42 MGOe or more, and
Coercive force iH that can be practically used with 2 KOe or more
An object is to provide an Nd-Fe-B system magnet having c.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決するためにNd−Fe−B系磁石の組成を詳細に検
討したところ以下の知見を得た。 (1)Nd量を少なくすればエネルギ−積(BH)ma
xは向上するが、その反面保磁力iHcは低下する。 (2)Nd量を少なくすることによる保磁力iHcの低
下を補うためにGaを添加することは有効であるが、G
aの保磁力iHc向上効果は一定量の添加で飽和してし
まい前記保磁力iHcの低下を十分に補うことができな
い。 (3)Gaの添加で補えない保磁力iHcの向上にはD
yが有効であり、残留磁束密度Brをあまり低下しない
範囲で添加することにより、42MGOe以上の高いエ
ネルギー積(BH)maxを有し、かつ12KOe以上
の保磁力iHcを有するNd−Fe−B系磁石が得られ
る。 本発明は以上の知見に基づきなされたものであり、Nd
およびDy28〜31wt%(ただしDyは0.4〜3
wt%)、Co6wt%以下、Al0.5%以下、B0.
9〜1.3wt%、V0.1〜2.0wt%、Ga0.02
〜0.5wt%、酸素500ppm〜5000ppm、
残部Feおよび不可避的不純物からなるNd−Fe−B
系磁石であり、保磁力iHcが12kOe以上、最大エ
ネルギー積(BH)maxが42MGOe以上のNd−
Fe−B系磁石である。
Means for Solving the Problems In order to solve the above problems, the present inventor has studied the composition of the Nd-Fe-B magnet in detail, and has obtained the following findings. (1) Energy product (BH) ma if Nd amount is reduced
Although x increases, its coercive force iHc decreases. (2) Although it is effective to add Ga in order to compensate for the decrease in coercive force iHc caused by decreasing the amount of Nd,
The effect of improving the coercive force iHc of a is saturated by the addition of a fixed amount, and the decrease in the coercive force iHc cannot be sufficiently compensated. (3) To improve the coercive force iHc that cannot be compensated by adding Ga, add D
Nd-Fe-B system having a high energy product (BH) max of 42 MGOe or more and a coercive force iHc of 12 KOe or more by adding y in a range in which y is effective and the residual magnetic flux density Br is not so lowered. A magnet is obtained. The present invention has been made based on the above findings, and Nd
And Dy 28 to 31 wt% (where Dy is 0.4 to 3
wt%), Co6 wt% or less, Al 0.5% or less, B0.
9-1.3 wt%, V0.1-2.0 wt%, Ga0.02
~ 0.5 wt%, oxygen 500 ppm ~ 5000 ppm,
Nd-Fe-B consisting of balance Fe and unavoidable impurities
Nd- which is a system magnet and has a coercive force iHc of 12 kOe or more and a maximum energy product (BH) max of 42 MGOe or more.
Fe-B type magnet.

【0005】以下に本発明のNd−Fe−B系永久磁石
の成分限定理由を記載する。NdおよびDy本発明にお
いてNdおよびDyは28〜32wt%の範囲(ただし
Dyは0.4〜3wt%)で含有される。後述の実施例
に示されるように、Nd量が少ないほど(BH)ma
x、残留磁束密度Brの向上に有効であるが、保磁力i
Hcを低下させる。本発明は保磁力iHcを向上するた
めにDyを添加する。このDyは、キュリー点Tcを上
昇させるとともに異方性磁場(HA)を増大して保磁力
iHcの向上に寄与する。しかし、含有量が多くなる
と、残留磁束密度Brが低下し最大エネルギー積(B
H)maxも低下させる。したがってDyの含有量は
0.4〜3.0wt%の範囲とする。Dyの最も望ましい
量は、0.7〜1.5wt%である。Ndの含有量が少な
くなるとインゴット中にα−Feが発生することにより
(BH)maxの増大は期待しにくく、一方多くなると
Ndリッチ相が増大することにより(BH)maxが低
下する。以上よりNdおよびDyの合計量を28〜32
wt%とする。なお、Ndの一部をPr等の他の希土類
元素(Dyを除く)で置換することもできる。
The reasons for limiting the components of the Nd-Fe-B system permanent magnet of the present invention will be described below. Nd and Dy In the present invention, Nd and Dy are contained in the range of 28 to 32 wt% (however, Dy is 0.4 to 3 wt%). As shown in Examples described later, the smaller the Nd amount, the (BH) ma
x is effective in improving the residual magnetic flux density Br, but the coercive force i
Decrease Hc. In the present invention, Dy is added to improve the coercive force iHc. This Dy raises the Curie point Tc and increases the anisotropic magnetic field (H A ) to contribute to the improvement of the coercive force iHc. However, as the content increases, the residual magnetic flux density Br decreases and the maximum energy product (B
H) max is also reduced. Therefore, the content of Dy is set in the range of 0.4 to 3.0 wt%. The most desirable amount of Dy is 0.7 to 1.5 wt%. When the Nd content decreases, α-Fe is generated in the ingot and it is difficult to expect an increase in (BH) max. On the other hand, when the Nd content increases, the Nd rich phase increases and (BH) max decreases. From the above, the total amount of Nd and Dy is 28 to 32.
wt%. Note that a part of Nd can be replaced with another rare earth element (excluding Dy) such as Pr.

【0006】本発明においてCoは、残留磁束密度Br
を殆ど低下させることなく磁石合金自身の耐食性を改善
するとともに、耐食コーティングであるNiメッキの密
着性を向上することにより耐食性を向上させる効果があ
る。また、主相(Nd2Fe14B)中のFe がCoに置
換されることによりキューリー点Tcを上昇させる効果
もある。しかしながらCoの置換量を多くすると、焼結
時の異常粒成長を原因とする粗大結晶粒が発生し、保磁
力iHc及びヒステリシスカーブの角型性が低下する。
したがってCo含有量は6.0wt%以下とする。
In the present invention, Co is the residual magnetic flux density Br.
The effect of improving the corrosion resistance of the magnet alloy itself with almost no decrease in the corrosion resistance and improving the corrosion resistance by improving the adhesion of the Ni plating which is the corrosion resistant coating. Further, Fe in the main phase (Nd2Fe14B) is replaced with Co, which also has the effect of raising the Curie point Tc. However, when the substitution amount of Co is increased, coarse crystal grains are generated due to abnormal grain growth during sintering, and the coercive force iHc and the squareness of the hysteresis curve are deteriorated.
Therefore, the Co content is 6.0 wt% or less.

【0007】本発明においてAlは、Co添加材の熱処
理時の温度条件を緩和する効果がある。すなわち、Co
を含有する材料は熱処理条件の変動に対して磁気特性の
変動が大きい。そこに適量のAlを添加すると、熱処理
条件が多少変動しても磁気特性が変動しなくなる。これ
により、永久磁石の生産管理が容易となり、品質の安定
した永久磁石を効率よく生産できるようになる。Alの
含有量が0.5wt%を超えると、残留磁束密度Brの
低下が顕著になる。従ってAlの含有量は0.5wt%
以下とする。
In the present invention, Al has the effect of relaxing the temperature conditions during the heat treatment of the Co-added material. That is, Co
The material containing P has large fluctuations in magnetic properties with respect to fluctuations in heat treatment conditions. If an appropriate amount of Al is added thereto, the magnetic characteristics will not change even if the heat treatment conditions change to some extent. As a result, the production management of the permanent magnets becomes easy, and the permanent magnets with stable quality can be efficiently produced. When the Al content exceeds 0.5 wt%, the residual magnetic flux density Br is significantly reduced. Therefore, the Al content is 0.5 wt%
Below.

【0008】Bは、Nd−Fe−B系磁石において必須
の元素である。Bが0.9wt%未満の場合には高保磁
力が得られず、一方、1.3wt%を越えると、Bに富
む非磁性相が増加し、残留磁束密度Brが低下する。そ
のため、0.9〜1.3wt%とする。好ましいBの含有
量は0.95〜1.1wt%である。
B is an essential element in Nd-Fe-B system magnets. When B is less than 0.9 wt%, a high coercive force cannot be obtained, while when it exceeds 1.3 wt%, the B-rich nonmagnetic phase increases and the residual magnetic flux density Br decreases. Therefore, it is set to 0.9 to 1.3 wt%. The preferable content of B is 0.95 to 1.1 wt%.

【0009】Gaは、残留磁束密度Brを殆ど低下させ
ず、保磁力iHcを向上する効果がある。Ga含有量が
0.02wt%未満の場合は保磁力iHc向上効果が十
分でない。Ga含有量が0.5wt%を超えると、保磁
力iHc向上の効果が飽和するとともに残留磁束密度B
rが低下し、所望の高エネルギー積が得られない。よっ
て、Ga含有量は0.02〜0.5wt%とする。Gaの
望ましい範囲は、0.03〜0.2wt%である。Gaは
磁石体中のNdに富むNd相中に存在することによりそ
の効果が発揮され、特に、Nd相中の平均Ga量が全G
a添加量の2倍以上である場合にその効果が著しい。な
お、Nd相中のGaりょうは焼結条件、熱処理条件によ
って変動する。
Ga has the effect of improving the coercive force iHc without substantially reducing the residual magnetic flux density Br. If the Ga content is less than 0.02 wt%, the effect of improving the coercive force iHc is not sufficient. When the Ga content exceeds 0.5 wt%, the effect of improving the coercive force iHc is saturated and the residual magnetic flux density B
r decreases, and the desired high energy product cannot be obtained. Therefore, the Ga content is 0.02 to 0.5 wt%. The desirable range of Ga is 0.03 to 0.2 wt%. Ga exerts its effect by being present in the Nd-rich Nd phase in the magnet body, and in particular, the average Ga amount in the Nd phase is the total G
The effect is remarkable when the amount added is twice or more. The Ga content in the Nd phase varies depending on the sintering conditions and heat treatment conditions.

【0010】本発明の永久磁石は、上記成分の他に0.
05〜2.0wt%のVを含有する。Vは周期率表第V
a族に族する金属元素でこれを添加することで焼結時に
結晶粒が粗大化することを抑制する効果がある。この効
果により、保磁力iHcが向上し、ヒステリシスカーブ
の角型性が良好になる。また、着磁性の良好なNd−F
e−B系磁石は優れた耐熱性を有するが、焼結体の結晶
粒を微細にすると着磁性が向上する。よって、Vは耐熱
性向上に有効な元素である。Vの含有量が0.05wt
%未満の場合、粗大粒を抑制する効果が不十分である。
一方、Vの含有量が2.0wt%を超える場合には、V
もしくはV−Feの非磁性ホウ化物が多く発生し、残留
磁束密度Br及びキュリー点Tcが著しく低下し好まし
くない。よって、Vの含有量は0.05〜2.0wt%と
する。好ましくは、0.1〜1.0wt%である。
The permanent magnet of the present invention has a composition of 0.1
05-2.0 wt% V is contained. V is the periodic table V
Addition of a metal element belonging to group a has an effect of suppressing coarsening of crystal grains during sintering. This effect improves the coercive force iHc and improves the squareness of the hysteresis curve. In addition, Nd-F with good magnetizability
Although the e-B magnet has excellent heat resistance, the magnetizability is improved by making the crystal grains of the sintered body fine. Therefore, V is an element effective for improving heat resistance. V content is 0.05wt
If it is less than%, the effect of suppressing coarse particles is insufficient.
On the other hand, if the V content exceeds 2.0 wt%, V
Alternatively, a large amount of non-magnetic boride of V-Fe is generated, and the residual magnetic flux density Br and the Curie point Tc are significantly lowered, which is not preferable. Therefore, the content of V is set to 0.05 to 2.0 wt%. Preferably, it is 0.1 to 1.0 wt%.

【0011】本発明においては、酸素含有量を500p
pm〜5000ppmとする。酸素が500ppmより
少ない場合には磁石粉、及びその圧密体が発火しやすく
工業生産上危険がある。一方、5000ppmより多い
場合には酸素がNd、Dyと酸化物を形成することによ
り磁性に有効に作用するNd、Dyの量が減少し、高保
磁力及び高エネルギー積の磁石を得るのが困難になる。
In the present invention, the oxygen content is 500 p
pm-5000 ppm. If the oxygen content is less than 500 ppm, the magnet powder and its compacted body are easily ignited, which is dangerous in industrial production. On the other hand, when it is more than 5000 ppm, the amount of Nd and Dy that effectively acts on magnetism is reduced by the formation of oxides with oxygen and Nd and Dy, which makes it difficult to obtain a magnet with high coercive force and high energy product. Become.

【0012】本発明の焼結磁石は、次のようにして製造
することができる。即ち、一定の成分組成を有するイン
ゴットを真空溶解で製作し、次にこのインゴットを粗粉
砕することにより粒径500μm程度の粗粉を得る。こ
の粗粉をジェットミルを用い、不活性ガス雰囲気で微粉
砕し平均粒径3.0〜6.0μm(F.S.S.S.)の微粉
を得る。次にこの微粉を配向磁場15kOe、成形圧力
1.5ton/cm2の条件下で磁場中プレス成形後、1
000〜1150℃の温度範囲で焼結す る。
The sintered magnet of the present invention can be manufactured as follows. That is, an ingot having a constant composition is manufactured by vacuum melting, and then the ingot is roughly crushed to obtain a coarse powder having a particle size of about 500 μm. This coarse powder is finely pulverized in an inert gas atmosphere using a jet mill to obtain fine powder having an average particle size of 3.0 to 6.0 μm (FSSS). Next, this fine powder was press-molded in a magnetic field under the conditions of an orientation magnetic field of 15 kOe and a molding pressure of 1.5 ton / cm 2 , and then 1
Sinter in the temperature range of 000 to 1150 ° C.

【0013】焼結後の熱処理は、次のように行なうこと
ができる。成形体を焼結して得た焼結体をいったん室温
まで冷却する。焼結後の冷却速度は最終製品の保磁力i
Hcに殆ど影響を与えない。次いで、800〜1000
℃の温度に加熱し、0.2〜5時間保持する。これを第
1次熱処理とする。加熱温度が800℃未満または10
00℃を超える場合、充分な高保磁力が得られない。加
熱保持の後で0.3〜50℃/分の冷却速度で室温ない
し600℃の温度まで冷却する。冷却速度が50℃/分
を超える場合は、時効のために必要な平衡相が得られ
ず、充分な高保磁力が得られない。また、0.3℃/分
未満の冷却速度は熱処理に時間を要し、工業生産上経済
的でない。好ましくは、0.6〜2.0℃/分の冷却速度
が選ばれる。冷却終了温度は室温が望ましいが、多少保
磁力iHcを犠牲にすれば600℃までとし、その温度
以下は急冷してもよい。好ましくは、常温〜400℃の
温度まで冷却する。
The heat treatment after sintering can be performed as follows. The sintered body obtained by sintering the compact is once cooled to room temperature. The cooling rate after sintering depends on the coercive force i of the final product.
It has almost no effect on Hc. Then 800-1000
Heat to a temperature of ° C and hold for 0.2-5 hours. This is the first heat treatment. Heating temperature is less than 800 ℃ or 10
If it exceeds 00 ° C, a sufficiently high coercive force cannot be obtained. After the heating and holding, the temperature is cooled from room temperature to 600 ° C. at a cooling rate of 0.3 to 50 ° C./min. If the cooling rate exceeds 50 ° C./minute, the equilibrium phase required for aging cannot be obtained, and a sufficiently high coercive force cannot be obtained. Further, a cooling rate of less than 0.3 ° C./minute requires a long time for heat treatment, which is not economical in industrial production. Preferably, a cooling rate of 0.6 to 2.0 ° C./min is selected. The cooling end temperature is preferably room temperature, but if the coercive force iHc is sacrificed to some extent, the temperature may be up to 600 ° C., and the temperature below that temperature may be rapidly cooled. Preferably, the temperature is cooled to room temperature to 400 ° C.

【0014】熱処理は更に500〜650℃の温度で
0.2〜3時間行う。これを第2次熱処理とする。組成
によって異なるが、好ましくは540〜640℃での熱
処理が有効である。熱処理温度が500℃未満の場合及
び650℃より高い場合は、高保磁力が得られても不可
逆減磁率の低下がおきる。熱処理後は第1次熱処理と同
様、0.3〜400℃/分の冷却速度で冷却する。冷却
は水中、シリコンオイル中、アルゴン気流中等で行うこ
とができる。冷却速度が400℃/分を越える場合、急
冷により試料に亀裂が入り、工業的に価値のある永久磁
石材料が得られない。また、0.3℃/分未満の場合、
冷却過程で保磁力iHcに好ましくない相が出現する。
The heat treatment is further carried out at a temperature of 500 to 650 ° C. for 0.2 to 3 hours. This is the secondary heat treatment. Although it depends on the composition, heat treatment at 540 to 640 ° C. is effective. When the heat treatment temperature is lower than 500 ° C. or higher than 650 ° C., the irreversible demagnetization rate decreases even if a high coercive force is obtained. After the heat treatment, as in the first heat treatment, cooling is performed at a cooling rate of 0.3 to 400 ° C./min. Cooling can be performed in water, in silicone oil, in an argon stream, or the like. If the cooling rate exceeds 400 ° C./minute, the sample is cracked by the rapid cooling and an industrially valuable permanent magnet material cannot be obtained. If less than 0.3 ° C / min,
An unfavorable phase appears in the coercive force iHc during the cooling process.

【0015】[0015]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1)金属Nd、金属Dy、Fe、Co、fer
ro−B、ferro−V、金属Gaを所定の重量秤量
し、これを真空溶解して重量10kgのインゴットを作
製した。このインゴットの成分分析を行なうと重量比で
以下のような組成であった。 Nda−Dyb−B1.04−V0.59−GaC−Co0.20−A
0.35−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が5300ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
100〜4000ppmであった。これら試料につい
て、常温磁気特性を測定し、図1、図2及び図3に示す
ような結果を得た。図1はDy=1.0wt%、Ga=
0.06wt%としてNd量と磁気特性の関係を示した
グラフである。Nd量の増加にともなって保磁力iHc
は向上するが、逆に残留磁束密度Brは低下する傾向に
ある。図2はDy=1.0wt%、Nd=29wt%と
してGa量と磁気特性の関係を示したグラフである。G
a量の増加に伴い保磁力iHcは向上するが、0.08
wt%程度でその効果は飽和する。また、この間におけ
る残留磁束密度Brの低下はわずかである。図3はNd
=29wt%、Ga=0.06wt%としてDy量と磁
気特性の関係を示したグラフである。Dy量の増加に伴
い保磁力iHcは向上するが、残留磁束密度Brの低下
が顕著となり、最大エネルギ−積(BH)maxも劣化
する。 以上図1〜図3から、優れた最大エネルギ−積
(BH)maxおよび保磁力iHcを兼備するために
は、Nd量を最適化するとともに、DyおよびGaを適
量複合添加する必要があることがわかる。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Example 1) Metal Nd, metal Dy, Fe, Co, fer
A predetermined weight of ro-B, ferro-V, and metallic Ga was weighed and melted in vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd a -Dy b -B 1.04 -V 0.59 -Ga C -Co 0.20 -A
l 0.35- Fe bal. (wt%) This ingot was crushed with a hammer and then coarsely crushed in an inert gas atmosphere using a coarse crusher to obtain 500 μm.
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and contained oxygen of 5300 ppm. Next, this fine powder is subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press-molded in a magnetic field under the condition of n / cm 2 , 20 × 20
A × 15 molded body was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr, and then 530
A second heat treatment of ° C x 2 hours was performed. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
It was 100-4000 ppm. The ambient temperature magnetic characteristics of these samples were measured, and the results shown in FIGS. 1, 2 and 3 were obtained. Figure 1 shows Dy = 1.0 wt% and Ga =
6 is a graph showing the relationship between the amount of Nd and the magnetic characteristics as 0.06 wt%. The coercive force iHc increases as the amount of Nd increases.
, But the residual magnetic flux density Br tends to decrease. FIG. 2 is a graph showing the relationship between the Ga amount and the magnetic characteristics when Dy = 1.0 wt% and Nd = 29 wt%. G
The coercive force iHc improves as the amount of a increases, but it is 0.08.
The effect is saturated at about wt%. Further, the decrease of the residual magnetic flux density Br during this period is slight. Figure 3 shows Nd
6 is a graph showing the relationship between the amount of Dy and the magnetic characteristics, where = 29 wt% and Ga = 0.06 wt%. Although the coercive force iHc increases as the amount of Dy increases, the residual magnetic flux density Br decreases remarkably, and the maximum energy product (BH) max also deteriorates. From FIGS. 1 to 3, it is necessary to optimize the amount of Nd and to add an appropriate amount of Dy and Ga in combination in order to combine excellent maximum energy product (BH) max and coercive force iHc. Recognize.

【0016】(実施例2)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−V、金属Gaを所
定の重量秤量し、これを真空溶解して重量10kgのイ
ンゴットを作製した。このインゴットの成分分析を行な
うと重量比で以下のような組成であった。 組成 : Nd29.5−Dy1.2−B1.03−V0.35−Ga
0.06−Co0.30−Al0.33−Febal.(wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この際不活性ガス中に微量の酸素を混入せしめるこ
とにより、種々の酸素量の微粉を得た。なお、微粉は平
均粒径4.0μm(F.S.S.S.)であった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
000〜5800ppmであった。これら試料について
常温磁気特性を測定した。結果を図4に示すが、含有酸
素量が5000ppmを越えると保磁力iHcの減少が
著しくなるため、酸素量は1000〜5000ppmと
する。図5に含有酸素量が5400ppmと2000p
pmと異なる2つの焼結体のNdおよび酸素のEPMA
(電子線マイクロアナライザ)の線分析の結果を示す。
含有酸素量の多い焼結体はほとんどのNdのピークと酸
素のピークが重なっており、多量のNd酸化物が形成さ
れているものと考えられる。一方、含有酸素量の少ない
焼結体は、Ndのピークと酸素のピークの重なりも観察
されるが、単独で存在するNdのピークもかなり観察さ
れる。すなわち、含有酸素量が多い焼結体はNdが磁気
特性に寄与しない酸化物として多く存在するのに対し、
含有酸素量が少ない焼結体は磁気特性に有効に寄与する
Ndが多く存在するのである。なお、図5中○が施され
た部分がNdが酸素と独立して存在するピークである。
(Example 2) Metal Nd, metal Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-V, and metallic Ga was weighed and melted under vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Composition: Nd 29.5 -Dy 1.2 -B 1.03 -V 0.35 -Ga
0.06 -Co 0.30 -Al 0.33 -Fe bal. (Wt%) After crushing this ingot with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain 500μ .
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. At this time, a minute amount of oxygen was mixed into the inert gas to obtain fine powder with various oxygen contents. The fine powder had an average particle size of 4.0 μm (FSSS). Next, this fine powder is subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press-molded in a magnetic field under the condition of n / cm 2 , 20 × 20
A × 15 molded body was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr, and then 530
A second heat treatment of ° C x 2 hours was performed. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
It was 000-5800 ppm. The ambient temperature magnetic properties of these samples were measured. The results are shown in FIG. 4, and when the oxygen content exceeds 5000 ppm, the coercive force iHc decreases remarkably, so the oxygen content is set to 1000 to 5000 ppm. Fig. 5 shows oxygen content of 5400ppm and 2000p
EPMA of Nd and oxygen of two sintered bodies different from pm
The result of the line analysis of (electron beam microanalyzer) is shown.
Most of the Nd peaks and oxygen peaks of the sintered body containing a large amount of oxygen overlap each other, and it is considered that a large amount of Nd oxide is formed. On the other hand, in the sintered body containing a small amount of oxygen, the Nd peak and the oxygen peak overlap with each other, but the Nd peak which exists alone is considerably observed. That is, in the sintered body containing a large amount of oxygen, Nd exists a lot as an oxide that does not contribute to the magnetic properties.
A sintered body containing a small amount of oxygen has a large amount of Nd that effectively contributes to the magnetic properties. In FIG. 5, the circled portion is a peak where Nd exists independently of oxygen.

【0017】(実施例3)ジジムメタル(Nd70wt
%−Pr30wt%)、金属Dy、Fe、Co、fer
ro−B、ferro−V、金属Gaを所定の重量秤量
し、これを真空溶解して重量10kgのインゴットを作
製した。このインゴットの成分分析を行なうと重量比で
以下のような組成であった。 組成 : (Nd+Pr)28.5−Dy0.6−B1.05−Vx
−Ga0.05−Co2.25−Al0.35−Febal.(wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この際不活性ガス中に微量の酸素を混入せしめるこ
とにより、種々の酸素量の微粉を得た。なお、微粉は平
均粒径4.0μm(F.S.S.S.)であった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は2
600〜4400ppmであった。これら試料につい
て、常温磁気特性、および平均粒径を測定し、図6に示
すような結果を得た。図6に示されるようにVを含有さ
せることにより焼結時の結晶粒成長を抑制でき、その結
果焼結体平均粒径を小さくできる。また、この効果によ
り保磁力iHcの向上を期待できる。2.0wt%以上
の含有によっても平均粒径の減少をさほど期待出来ず、
また最大エネルギ−積(BH)maxの低下も大きくな
るので0.1〜2.0wt%の添加が適量である。
(Example 3) Didymium metal (Nd 70 wt)
% -Pr30wt%), metal Dy, Fe, Co, fer
A predetermined weight of ro-B, ferro-V, and metallic Ga was weighed and melted in vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Composition: (Nd + Pr) 28.5 -Dy 0.6 -B 1.05 -Vx
-Ga 0.05 -Co 2.25 -Al 0.35- Fe bal. (Wt%) After crushing this ingot with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain 500μ .
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. At this time, a minute amount of oxygen was mixed into the inert gas to obtain fine powder with various oxygen contents. The fine powder had an average particle size of 4.0 μm (FSSS). Next, this fine powder is subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press-molded in a magnetic field under the condition of n / cm 2 , 20 × 20
A × 15 molded body was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr, and then 530
A second heat treatment of ° C x 2 hours was performed. The density of the obtained sintered body was 7.55 to 7.58 g / cc, and the oxygen content was 2
It was 600-4400 ppm. The magnetic properties at room temperature and the average particle size of these samples were measured, and the results shown in FIG. 6 were obtained. As shown in FIG. 6, by containing V, crystal grain growth during sintering can be suppressed, and as a result, the average grain size of the sintered body can be reduced. Further, this effect can be expected to improve the coercive force iHc. Even if the content is 2.0 wt% or more, the average particle size cannot be expected to be reduced so much.
Further, since the maximum energy product (BH) max also decreases greatly, addition of 0.1 to 2.0 wt% is an appropriate amount.

【0018】(実施例4)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−V、金属Gaを所
定の重量秤量し、これを真空溶解して重量10kgのイ
ンゴットを作製した。このインゴットの成分分析を行な
うと重量比で以下のような組成であった。 Nd27.5−Dy0.8−B1.00−V0.34−Ga0.20−Coy
−Alz−Febal. y=0 z=0 y=1.57 z=0 y=1.60 z=0.35 (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.8μm(F.S.S.S.)
であり、含有酸素量は4200〜5300ppmであっ
た。次に、この微粉を配向磁場強度15kOe、成形圧
力1.5ton/cm2の条件下で磁場中プレス成形し、
30×20×15の成形体を 作製した。この成形体は
実質的に真空の条件で1100℃×2hrの焼結を行
い、得られた焼結体に900℃×2hrの第1次熱処
理、次いで500〜600℃×2hrの第2次熱処理を
施した。得られた焼結体の密度は7.56〜7.59g/
cc、また含有酸素量は2100〜3300ppmであ
った。これら試料について常温磁気特性を測定し、図7
に示されるような結果を得た。図7に示されるように、
Coを単独で添加したものは磁気特性がCo及びAl無
添加のものと比較して第2次熱処理温度依存性が大きく
なる。これでは、工業生産上安定した特性の製品をつく
ることが困難である。そこで、Co及びAlを複合添加
すると図7のように第2次熱処理温度依存性を小さくす
ることができ、この問題を回避することができる。
(Example 4) Metal Nd, metal Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-V, and metallic Ga was weighed and melted under vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd 27.5 -Dy 0.8 -B 1.00 -V 0.34 -Ga 0.20 -Co y
-Al z -Fe bal. Y = 0 z = 0 y = 1.57 z = 0 y = 1.60 z = 0.35 (wt%) After crushing each ingot with a hammer, further using a coarse crusher and inert gas atmosphere Coarse crushing in 500
A coarse powder with a particle size of less than μm was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 3.8 μm (FSSS).
And the oxygen content was 4200 to 5300 ppm. Next, this fine powder was press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 ,
A 30 × 20 × 15 molded body was produced. This compact was sintered at 1100 ° C. × 2 hr under a substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr and then a second heat treatment at 500 to 600 ° C. × 2 hr. Was applied. The density of the obtained sintered body is 7.56 to 7.59 g /
The cc content and oxygen content were 2100 to 3300 ppm. The room temperature magnetic characteristics of these samples were measured, and the results shown in FIG.
The results are shown in. As shown in FIG.
The magnetic properties of the alloys containing Co alone have a greater dependence on the secondary heat treatment temperature than those of the alloys without Co and Al. In this case, it is difficult to produce a product having stable characteristics in industrial production. Therefore, the combined addition of Co and Al can reduce the temperature dependence of the secondary heat treatment as shown in FIG. 7, and this problem can be avoided.

【0019】次に前記(Co無添加)、(Co添
加)、(Co,Al添加)の組成を有する磁石にNi
メッキを施して、その密着性を評価した。Niメッキ
は、ワット浴による電解メッキで膜厚10μmとした。
メッキ処理後水洗いして100℃で5分間乾燥後メッキ
密着性試験を行った。結果は下記の通りであり、Co添
加材が優れたメッキ密着性を有することがわかる。 材 質 密着強度(Kgf/cm2) (Co無添加) 150 (Co添加) 660 (Co,Al添加) 685
Next, Ni is added to the magnet having the above composition (no addition of Co), (addition of Co) and (addition of Co, Al).
Plating was performed and the adhesion was evaluated. The Ni plating was electrolytically plated with a watt bath to a film thickness of 10 μm.
After the plating treatment, the plate was washed with water, dried at 100 ° C. for 5 minutes, and then subjected to a plating adhesion test. The results are as follows, and it can be seen that the Co additive has excellent plating adhesion. Material Adhesion strength (Kgf / cm 2 ) (No Co added) 150 (Co added) 660 (Co, Al added) 685

【0020】(実施例5)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−V、金属Gaを所
定の重量秤量し、これを真空溶解して重量10kgのイ
ンゴットを作製した。このインゴットの成分分析を行な
うと重量比で以下のような組成であった。 Nd28.5−Dy0.80−B1.20−V1.05−Gac−Co
0.15−Al0.32−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が4300ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。 この成形体は実質的に
真空の条件で1070℃×3hrの焼結を行い、得られ
た焼結体に930℃×2hrの第1次熱処理、次いで5
20℃×2hrの第2次熱処理を施した。得られた焼結
体の密度は7.54〜7.57g/cc、また含有酸素量
は1000〜3200ppmであった。これら試料につ
いて、Nd相中のGa量と保磁力iHcの関係を調査し
た。結果を表1に示す。
(Example 5) Metal Nd, metal Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-V, and metallic Ga was weighed and melted under vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd 28.5 -Dy 0.80 -B 1.20 -V 1.05 -Gac-Co
0.15- Al 0.32- Fe bal. (Wt%) After crushing this ingot with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain 500 μm.
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and contained oxygen of 4300 ppm. Next, this fine powder is subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press-molded in a magnetic field under the condition of n / cm 2 , 20 × 20
A × 15 molded body was produced. This compact was sintered at 1070 ° C. × 3 hr under a substantially vacuum condition, and the resulting sintered compact was subjected to a primary heat treatment at 930 ° C. × 2 hr, then 5
A second heat treatment was performed at 20 ° C. for 2 hours. The density of the obtained sintered body was 7.54 to 7.57 g / cc, and the oxygen content was 1000 to 3200 ppm. For these samples, the relationship between the amount of Ga in the Nd phase and the coercive force iHc was investigated. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例6)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−V、金属Gaを所
定の重量秤量し、これを真空溶解して重量10kgのイ
ンゴットを作製した。このインゴットの成分分析を行な
うと重量比で以下のような組成であった。 Nd28.0−Dy1.0−B1.03−V0.67−Ga0.1−Co
0.21−Al0.35−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が4800ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
000〜3600ppmであった。これら試料につい
て、Nd相中の平均Ga量と保磁力iHcおよびHkの
関係を調査した。結果を表2に示すが、Nd相中の平均
Ga量がGa添加量の1.7倍では保磁力iHcが11.
7 KOeと12KOeには達していないことがわか
る。
(Example 6) Metal Nd, metal Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-V, and metallic Ga was weighed and melted under vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd 28.0 -Dy 1.0 -B 1.03 -V 0.67 -Ga 0.1 -Co
0.21- Al 0.35- Fe bal. (Wt%) After crushing this ingot with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain 500 μm.
A coarse powder having a particle size of m or less was obtained. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder had an average particle diameter of 4.0 μm (FSSS) and contained oxygen of 4800 ppm. Next, this fine powder is subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press-molded in a magnetic field under the condition of n / cm 2 , 20 × 20
A × 15 molded body was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum condition, and the obtained sintered compact was subjected to a first heat treatment at 900 ° C. × 2 hr, and then 530
A second heat treatment of ° C x 2 hours was performed. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
It was 000-3600 ppm. For these samples, the relationship between the average Ga amount in the Nd phase and the coercive forces iHc and Hk was investigated. The results are shown in Table 2, and when the average Ga amount in the Nd phase is 1.7 times the Ga addition amount, the coercive force iHc is 11.
It can be seen that it has not reached 7 KOe and 12 KOe.

【0023】[0023]

【表2】 [Table 2]

【0024】(実施例7)金属Nd、金属Dy、Fe、
Co、ferro−B、ferro−V、金属Gaを所
定の重量秤量し、これを真空溶解して重量10kgのイ
ンゴットを作製した。このインゴットの成分分析を行な
うと重量比で以下のような組成であった。Nd27.5−D
2.0−B1.1/1.4−V1.6−Ga0.08−Co0.22−Al
0.30−Feb al. このインゴットをハンマーで解砕した
後、さらに粗粉砕機を用い不活性ガス雰囲気中での粗粉
砕を行い500μm以下の粒度の粗粉を得た。この粗粉
を同じくジェットミルを用い不活性ガス雰囲気中で微粉
砕をして微粉を得た。この微粉は平均粒径4.0μm
(F.S.S.S.)であり、含有酸素量が4800ppm
であった。次に、この微粉を配向磁場強度15kOe、
成形圧力1.5ton/cm2の条件下で磁場中プレス成
形し、20×20×15の成形体を作製した。この成形
体は実質的に真空の条件で1080℃×3hrの焼結を
行い、得られた焼結体に900℃×2hrの第1次熱処
理、次いで530℃×2hrの第2次熱処理を施した。
得られた焼結体の密度は7.55〜7.58g/cc、ま
た含有酸素量は1000〜3600ppmであった。こ
れら試料について、Bリッチ相の体積%と残留磁束密度
Br、最大エネルギ−積(BH)maxの関係を調査し
た。結果を表3に示すが、Bリッチ相が増加するにつれ
残留磁束密度Br、最大エネルギ−積(BH)maxが
減少し、2.4体積%となると最大エネルギ−積(B
H)maxが42MGOe未満となる。
(Example 7) Metal Nd, metal Dy, Fe,
A predetermined weight of Co, ferro-B, ferro-V, and metallic Ga was weighed and melted under vacuum to produce an ingot having a weight of 10 kg. When the composition of this ingot was analyzed, it had the following composition by weight ratio. Nd 27.5- D
y 2.0 -B 1.1 / 1.4 -V 1.6 -Ga 0.08 -Co 0.22- Al
0.30- Fe b al. This ingot was disintegrated with a hammer and then coarsely pulverized in an inert gas atmosphere using a coarse pulverizer to obtain coarse powder having a particle size of 500 μm or less. This coarse powder was finely pulverized in the same inert gas atmosphere using a jet mill to obtain fine powder. This fine powder has an average particle size of 4.0 μm
(FSSS) and oxygen content is 4800ppm
Met. Next, this fine powder is applied with an orientation magnetic field strength of 15 kOe,
Press molding was performed in a magnetic field under a molding pressure of 1.5 ton / cm 2 to prepare a 20 × 20 × 15 compact. This molded body was sintered at 1080 ° C. for 3 hours under substantially vacuum conditions, and the obtained sintered body was subjected to a first heat treatment at 900 ° C. for 2 hours and then a second heat treatment at 530 ° C. for 2 hours. did.
The density of the obtained sintered body was 7.55 to 7.58 g / cc, and the oxygen content was 1000 to 3600 ppm. For these samples, the relationship between the volume% of the B-rich phase, the residual magnetic flux density Br, and the maximum energy product (BH) max was investigated. The results are shown in Table 3, and the residual magnetic flux density Br and the maximum energy product (BH) max decrease as the B-rich phase increases, and the maximum energy product (B
H) max is less than 42 MGOe.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば4
2MGOe以上の高いエネルギー積(BH)maxを有
し、かつ12KOe以上の保磁力(iHc)を有するN
d−Fe−B系磁石が得られる。
As described above, according to the present invention, 4
N having a high energy product (BH) max of 2 MGOe or more and a coercive force (iHc) of 12 KOe or more
A d-Fe-B system magnet is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Nd−Fe−Co−B系焼結磁石のNd含有
量と最大エネルギ−積(BH)max、残留磁束密度B
r、保磁力iHc、角形比の変化を示したグラフ。
FIG. 1 is an Nd content, maximum energy product (BH) max, and residual magnetic flux density B of an Nd-Fe-Co-B system sintered magnet.
A graph showing changes in r, coercive force iHc, and squareness ratio.

【図2】 Nd−Fe−Co−B系焼結磁石のGa含有
量と最大エネルギ−積(BH)max、残留磁束密度B
r、保磁力iHc、角形比の関係を示したグラフ。
FIG. 2 is a Ga content, maximum energy product (BH) max, and residual magnetic flux density B of an Nd-Fe-Co-B system sintered magnet.
The graph which showed the relationship of r, coercive force iHc, and squareness ratio.

【図3】 Nd−Fe−Co−B系焼結磁石のDy含有
量と最大エネルギ−積(BH)max、残留磁束密度B
r、保磁力iHc、角形比の関係を示したグラフ。
FIG. 3 is a graph showing the Dy content, the maximum energy product (BH) max, and the residual magnetic flux density B of the Nd-Fe-Co-B system sintered magnet.
The graph which showed the relationship of r, coercive force iHc, and squareness ratio.

【図4】 Nd−Fe−Co−B系焼結磁石の酸素含有
量と最大エネルギ−積(BH)max、保磁力iHcの
関係を示したグラフ。
FIG. 4 is a graph showing the relationship between the oxygen content, the maximum energy product (BH) max, and the coercive force iHc of the Nd-Fe-Co-B system sintered magnet.

【図5】 含有酸素量が5600ppmと2000pp
mと異なる2つの焼結体のNdおよび酸素のEPMA
(電子線マイクロアナライザ)の線分析の結果を示すグ
ラフ。
FIG. 5: Oxygen content of 5600 ppm and 2000 pp
EPMA of Nd and oxygen of two sintered bodies different from m
The graph which shows the result of the line analysis of (electron beam microanalyzer).

【図6】 Nd−Fe−Co−B系焼結磁石のV含有量
に対する焼結体平均結晶粒径、最大エネルギ−積(B
H)maxの変化を示したグラフ。
FIG. 6 is an average crystal grain size of the sintered body and a maximum energy product (B) with respect to the V content of the Nd-Fe-Co-B system sintered magnet.
H) A graph showing changes in max.

【図7】 Nd−Fe−Co−B系焼結磁石のCo、A
l添加による第2次熱処理温度依存性の変化を示したグ
ラフ。
FIG. 7: Co and A of Nd-Fe-Co-B system sintered magnet
The graph which showed the change of the secondary heat treatment temperature dependence by 1 addition.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月12日[Submission date] October 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図7】 [Figure 7]

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 7/02 Z Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // H01F 7/02 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 NdおよびDy28〜32wt%(ただ
しDyは0.4〜3wt%)、Co6wt%以下、Al
0.5%以下、B0.9〜1.3wt%、V0.05〜2.
0wt%、Ga0.02〜0.5wt%、酸素500pp
m〜5000ppm、残部Feおよび不可避的不純物か
らなり、保磁力iHcが12kOe以上、最大エネルギ
ー積(BH)maxが42MGOe以上であることを特
徴とするNd−Fe−B系永久磁石。
1. Nd and Dy 28 to 32 wt% (where Dy is 0.4 to 3 wt%), Co 6 wt% or less, Al
0.5% or less, B 0.9 to 1.3 wt%, V 0.05 to 2.
0 wt%, Ga 0.02-0.5 wt%, oxygen 500 pp
An Nd-Fe-B based permanent magnet, characterized in that it has a coercive force iHc of 12 kOe or more and a maximum energy product (BH) max of 42 MGOe or more and is composed of m to 5000 ppm, the balance Fe and unavoidable impurities.
【請求項2】 Ga含有量が0.03〜0.2wt%であ
る請求項1に記載したNd−Fe−B系永久磁石。
2. The Nd—Fe—B system permanent magnet according to claim 1, wherein the Ga content is 0.03 to 0.2 wt%.
【請求項3】 Nd相中の平均Ga量が全Ga添加量の
2倍以上である請求項1または請求項2に記載のNd−
Fe−B系永久磁石。
3. The Nd- according to claim 1, wherein the average Ga amount in the Nd phase is at least twice the total Ga addition amount.
Fe-B system permanent magnet.
【請求項4】 Bリッチ相が2vol.%以下である請
求項1〜3のいずれかに記載の記載のNd−Fe−B系
永久磁石。
4. The Nd—Fe—B system permanent magnet according to claim 1, wherein the B-rich phase is 2 vol.% Or less.
【請求項5】 Ndの一部をPrで置換した請求項1〜
4のいずれかに記載の記載のNd−Fe−B系永久磁
石。
5. The method according to claim 1, wherein a part of Nd is replaced with Pr.
4. The Nd-Fe-B based permanent magnet according to any one of 4 above.
【請求項6】 表面にNiメッキを施した請求項1〜5
のいずれかに記載のNd−Fe−B系焼結磁石。
6. The surface of the plate is plated with Ni.
Nd-Fe-B type | system | group sintered magnet in any one of.
JP08256393A 1993-01-29 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet Expired - Lifetime JP3298219B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08256393A JP3298219B2 (en) 1993-03-17 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
US08/217,091 US5472525A (en) 1993-01-29 1994-01-28 Nd-Fe-B system permanent magnet
CN94101181A CN1120506C (en) 1993-01-29 1994-01-29 Nd-Fe-B permanent magnet
DE4402783A DE4402783B4 (en) 1993-01-29 1994-01-31 Nd-Fe-B system permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08256393A JP3298219B2 (en) 1993-03-17 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet

Publications (2)

Publication Number Publication Date
JPH06275414A true JPH06275414A (en) 1994-09-30
JP3298219B2 JP3298219B2 (en) 2002-07-02

Family

ID=13777963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08256393A Expired - Lifetime JP3298219B2 (en) 1993-01-29 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet

Country Status (1)

Country Link
JP (1) JP3298219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017709A1 (en) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETIC MATERIAL AND PERMANENT MAGNET OF THE NdFeB TYPE
EP0788119A1 (en) * 1996-02-02 1997-08-06 Vacuumschmelze GmbH Permanent magnet alloy with good magnetic stability

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417632B2 (en) 2008-03-18 2014-02-19 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
WO2011125582A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125584A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
KR101189856B1 (en) 2010-03-31 2012-10-10 닛토덴코 가부시키가이샤 Permanent magnet and manufacturing method for permanent magnet
EP2503566B1 (en) 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
US9048014B2 (en) 2010-03-31 2015-06-02 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
CN102549680A (en) 2010-03-31 2012-07-04 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
JP4923147B2 (en) 2010-03-31 2012-04-25 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
US20120182109A1 (en) 2010-03-31 2012-07-19 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
CN102549686A (en) 2010-03-31 2012-07-04 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
CN102549684A (en) 2010-03-31 2012-07-04 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
KR101196565B1 (en) 2010-03-31 2012-11-01 닛토덴코 가부시키가이샤 Permanent magnet and manufacturing method for permanent magnet
EP2503572B1 (en) 2010-03-31 2015-03-25 Nitto Denko Corporation Manufacturing method for permanent magnet
JP4923153B2 (en) 2010-03-31 2012-04-25 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5011420B2 (en) 2010-05-14 2012-08-29 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5908246B2 (en) 2011-09-30 2016-04-26 日東電工株式会社 Rare earth permanent magnet manufacturing method
JP5878325B2 (en) 2011-09-30 2016-03-08 日東電工株式会社 Method for manufacturing permanent magnet
JP5908247B2 (en) 2011-09-30 2016-04-26 日東電工株式会社 Method for manufacturing permanent magnet
JP5969750B2 (en) 2011-10-14 2016-08-17 日東電工株式会社 Rare earth permanent magnet manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017709A1 (en) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETIC MATERIAL AND PERMANENT MAGNET OF THE NdFeB TYPE
EP0788119A1 (en) * 1996-02-02 1997-08-06 Vacuumschmelze GmbH Permanent magnet alloy with good magnetic stability

Also Published As

Publication number Publication date
JP3298219B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
EP0126802B1 (en) Process for producing of a permanent magnet
EP0126179B1 (en) Process for producing permanent magnet materials
US4684406A (en) Permanent magnet materials
EP0134304B1 (en) Permanent magnets
JP4648192B2 (en) R-T-B rare earth permanent magnet
JP3298219B2 (en) Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
EP0177371B1 (en) Process for manufacturing a permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
US20040094237A1 (en) R-Fe-B sintered magnet
US5472525A (en) Nd-Fe-B system permanent magnet
US4369075A (en) Method of manufacturing permanent magnet alloys
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP3080275B2 (en) R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet
JPH0794311A (en) Nd-fe-co-b type sintered magnet
JPH0535211B2 (en)
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2577373B2 (en) Sintered permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11