JP3298219B2 - Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet - Google Patents

Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet

Info

Publication number
JP3298219B2
JP3298219B2 JP08256393A JP8256393A JP3298219B2 JP 3298219 B2 JP3298219 B2 JP 3298219B2 JP 08256393 A JP08256393 A JP 08256393A JP 8256393 A JP8256393 A JP 8256393A JP 3298219 B2 JP3298219 B2 JP 3298219B2
Authority
JP
Japan
Prior art keywords
rare earth
coercive force
content
heat treatment
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08256393A
Other languages
Japanese (ja)
Other versions
JPH06275414A (en
Inventor
昌弘 高橋
茂穂 谷川
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP08256393A priority Critical patent/JP3298219B2/en
Priority to US08/217,091 priority patent/US5472525A/en
Priority to CN94101181A priority patent/CN1120506C/en
Priority to DE4402783A priority patent/DE4402783B4/en
Publication of JPH06275414A publication Critical patent/JPH06275414A/en
Application granted granted Critical
Publication of JP3298219B2 publication Critical patent/JP3298219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、優れたエネルギー積お
よび耐熱性および熱処理性を有する希土類−Fe−Co
−Al−V−Ga―B系焼結磁石に関するものである。
The present invention relates, -Fe- rare earth has excellent energy product and heat resistance and heat treatability Co
-Al-V-Ga- B based sintered magnet.

【0002】[0002]

【従来の技術】Nd−Fe−B系焼結磁石は、SmCo
5系焼結磁石或いはSm2Co17系焼結磁石と比較して高
いエネルギー積(BH)maxを有することから、種々
の用途に使用されるようになっている。しかしながら、
Nd−Fe−B系焼結磁石は、これらSm−Co系焼結
磁石に比較して熱安定性に劣ることから、その熱安定性
を増すために種々の試みが提案されている。その一例と
して特開昭64−7503号公報には、熱安定性の良好
な永久磁石として一般式: R(Fe1-x-y-zCoxyGazA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、0≦x≦0.7、0.02≦y≦0.3、0.001
≦z≦0.15、4.0≦A≦7.5である)、及び、 R(Fe1-x-y-zCoxyGazuA (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、MはNb,W,V,Ta及びMoから選ばれた1
種または2種以上の元素であり、0≦x≦0.7、0.0
2≦y≦0.3、0.001≦z≦0.15、u≦0.1、
4.0≦A≦7.5である。)により表されるものが開示
されている。
2. Description of the Related Art Nd-Fe-B sintered magnets are made of SmCo.
Since it has a higher energy product (BH) max than a 5- based sintered magnet or a Sm 2 Co 17- based sintered magnet, it has been used for various applications. However,
Nd-Fe-B based sintered magnets are inferior in thermal stability to these Sm-Co based sintered magnets, and various attempts have been made to increase the thermal stability. The JP 64-7503 Publication as an example, the general formula as a good permanent magnet thermal stability: R (Fe 1-xyz Co x B y Ga z) A ( Here, R is selected from rare earth elements 0 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.3, 0.001
≦ z ≦ 0.15,4.0 a ≦ A ≦ 7.5), and, R (Fe 1-xyz Co x B y Ga z M u) A ( provided that at least R is selected from rare earth elements M is one selected from Nb, W, V, Ta and Mo
A kind or two or more kinds of elements, 0 ≦ x ≦ 0.7, 0.0
2 ≦ y ≦ 0.3, 0.001 ≦ z ≦ 0.15, u ≦ 0.1,
4.0 ≦ A ≦ 7.5. ) Are disclosed.

【0003】[0003]

【発明が解決しようとする課題】近時永久磁石を用いた
装置のより一層の小型化が要求されており、それにとも
ない優れた熱安定性を有し、かつ高エネルギー積を兼備
する永久磁石の登場が望まれている。前記特開昭64−
7503号に記載の永久磁石は、Gaを添加することに
より保磁力iHcを向上し優れた熱安定性を実現してい
るが、エネルギー積に関しては前記要求を満足すること
ができない。すなわち、実用上、保磁力iHcは12K
Oe以上有することが要求されるが、このレベルの保磁
力を有する磁石のエネルギ−積(BH)maxは40M
GOe以下である。そこで本発明は、前記希土類(Nd
とDy、必要に応じてPrを含む)−Fe−Co−Al
−V−Ga−B系合金組成を選択し、かつ含有するGa
が所定量以上希土類リッチ相に濃縮されることにより、
常温において42MGOe以上の高い最大エネルギー積
(BH)max、12KOe以上実用に耐える保磁力
iHc、および優れた熱処理性を有する希土類−Fe−
Co−Al−V−Ga―B系焼結磁石提供すること
課題とする。
Recently, there has been a demand for further downsizing of a device using a permanent magnet, and accordingly, a permanent magnet having excellent thermal stability and a high energy product has been required. Appearance is desired. JP-A-64-
The permanent magnet described in No. 7503 improves the coercive force iHc by adding Ga and realizes excellent thermal stability, but cannot satisfy the above requirement with respect to the energy product. That is, in practice, the coercive force iHc is 12K
Although it is required to have Oe or more, the energy product (BH) max of the magnet having this level of coercive force is 40 M
GOe or less. Therefore, the present invention provides the above-mentioned rare earth (Nd
And Dy, optionally containing Pr) -Fe-Co-Al
-V-Ga-B based alloy composition is selected and contained Ga
Is concentrated to a rare earth rich phase over a predetermined amount,
Rare earth having 42MGOe or more high maximum energy product (BH) ma x, coercive force iHc practicable above 12 kOe, and excellent heat treatability at room temperature -Fe-
It is an object to provide a Co-Al-V-Ga- B based sintered magnet.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題
を解決するためにNd−Fe−B系磁石の組成およびミ
クロ組織を詳細に検討したところ以下の知見を得た。 (1)Nd含有量を少なくすればエネルギ−積(BH)
maxは向上するが、その反面保磁力iHcは低下す
る。 (2)Nd含有量を少なくすることによる保磁力iHc
の低下を補うためにGaを添加することは有効である
が、Gaの保磁力iHc向上効果は一定量の添加で飽和
してしまい前記保磁力iHcの低下を十分に補うことが
できない。 (3)Gaの添加で補えない保磁力iHcの向上にはD
の添加が有効であり、残留磁束密度Brをあまり低下
しない範囲で添加することにより、常温において42M
GOe以上の高いエネルギー積(BH)max、および
12KOe以上の実用に耐える保磁力iHcを有する
が得られる。ここで重要なことは、前記の良好な磁気
特性は含有されるGaが希土類リッチ相中に所定量以上
濃縮されたミクロ組織になる場合に実現されることであ
る。本発明は以上の知見に基づきなされたものであり、
実質的にNdおよびDyまたはNd、DyおよびPrか
らなる希土類元素28〜32wt%(ただしDyは0.
4〜3wt%)、Co6wt%以下(0を含まず)、A
l0.5wt%以下(0を含まず)、B0.9〜1.3w
t%、V0.05〜2.0wt%、Ga0.02〜0.5w
t%、酸素500ppm〜5000ppm、残部Feお
よび不可避的不純物からなり、常温において保磁力iH
cが12kOe以上、最大エネルギー積(BH)max
が42MGOe以上であり、熱処理性に優れた希土類
Fe−Co−Al−V−Ga―B系焼結磁石であって、
希土類リッチ相中の平均Ga量が前記焼結磁石の全Ga
含有量の2倍以上であることを特徴とする希土類−Fe
Co−Al−V−Ga―B系焼結磁石である。
Means for Solving the Problems The present inventors have found that the composition and Mi of Nd-Fe-B magnets in order to solve the problem
The following findings were obtained when the black tissue was examined in detail. (1) If the Nd content is reduced, the energy product (BH)
Although the max increases, the coercive force iHc decreases. (2) Coercive force iHc by reducing Nd content
It is effective to add Ga in order to compensate for the decrease in the coercive force iHc, but the effect of improving the coercive force iHc of Ga saturates with a certain amount of addition, and the decrease in the coercive force iHc cannot be sufficiently compensated. (3) To improve the coercive force iHc that cannot be compensated by the addition of Ga, D
The addition of y is valid, by adding in a range not less decreased residual magnetic flux density Br, 42M at room temperature
GOe higher than energy product (BH) max, and also have a coercive force iHc of withstanding more practical 12KOe
The can be obtained. The important thing here is that the good magnetic
Characteristic is that the contained Ga is more than a predetermined amount in the rare earth rich phase
Is realized when it becomes a concentrated microstructure.
You. The present invention has been made based on the above findings,
Substantially Nd and Dy or Nd, Dy and Pr
Ranaru rare earth element 28~32wt% (where Dy is 0.
4 to 3 wt%), Co 6 wt% or less (excluding 0) , A
l0.5 wt % or less (excluding 0) , B0.9 to 1.3w
t%, V 0.05-2.0 wt%, Ga 0.02-0.5 w
t%, oxygen 500Ppm~5000ppm, and a balance of Fe and unavoidable impurities, coercivity iH at room temperature
c is 12 kOe or more, maximum energy product (BH) max
Rare earth but Ri der more than 42MGOe, which is excellent in heat treatment of -
A Fe- Co-Al-V-Ga- B based sintered magnet ,
The average Ga content in the rare earth rich phase is equal to the total Ga content of the sintered magnet.
Rare earth- Fe characterized by being at least twice the content
-Co-Al-V-Ga- B based sintered magnet.

【0005】以下に本発明の焼結磁石の成分限定理由を
記載する。NdおよびDyまたはNd、DyおよびPr
本発明においてNdおよびDyまたはNd、Dyおよび
Prは28〜32wt%の範囲(ただしDyは0.4〜
3wt%)で含有される。後述の実施例に示されるよう
に、Nd量が少ないほど(BH)max、残留磁束密度
Brの向上に有効であるが、保磁力iHcを低下させ
る。本発明は保磁力iHcを向上するためにDyを添加
する。このDyは、キュリー点Tcを上昇させるととも
に異方性磁場(HA)を増大して保磁力iHcの向上に
寄与する。しかし、含有量が多くなると、残留磁束密度
Brが低下し最大エネルギー積(BH)maxも低下さ
せる。したがってDyの含有量は0.4〜3.0wt%の
範囲とする。Dyの最も望ましい量は、0.7〜1.5w
t%である。Ndの含有量が少なくなるとインゴット中
にα−Feが発生することにより(BH)maxの増大
は期待しにくく、一方多くなるとNdリッチ相が増大す
ることにより(BH)maxが低下する。以上よりNd
およびDy、またはNd、DyおよびPrの合計量を2
8〜32wt%とする。なお、Ndの一部を他の希土類
元素(Dy、Prを除く)で置換することもできる。
The reasons for limiting the components of the sintered magnet of the present invention are described below. Nd and Dy or Nd, Dy and Pr
In the present invention, Nd and Dy or Nd, Dy and
Pr is in the range of 28 to 32 wt% (however, Dy is 0.4 to
3 wt%). As will be described later in the examples, the smaller the amount of Nd is, the more effective it is to improve (BH) max and the residual magnetic flux density Br, but lower the coercive force iHc. In the present invention, Dy is added to improve the coercive force iHc. This Dy increases the Curie point Tc and increases the anisotropic magnetic field (HA), thereby contributing to the improvement of the coercive force iHc. However, when the content increases, the residual magnetic flux density Br decreases and the maximum energy product (BH) max also decreases. Therefore, the content of Dy is in the range of 0.4 to 3.0 wt%. The most desirable amount of Dy is 0.7-1.5w
t%. When the content of Nd decreases, it is difficult to expect an increase in (BH) max due to generation of α-Fe in the ingot, while when it increases, the (BH) max decreases due to an increase in the Nd-rich phase. Nd
And Dy , or the total amount of Nd, Dy and Pr is 2
8 to 32 wt%. Note that a part of Nd can be replaced with another rare earth element (excluding Dy and Pr ).

【0006】本発明においてCoは、残留磁束密度Br
を殆ど低下させることなく磁石合金自身の耐食性を改善
するとともに、耐食コーティングであるNiメッキの密
着性を向上することにより耐食性を向上させる効果があ
る。また、主相(Nd2Fe14B)中のFe がCoに置
換されることによりキューリー点Tcを上昇させる効果
もある。しかしながらCoの置換量を多くすると、焼結
時の異常粒成長を原因とする粗大結晶粒が発生し、保磁
力iHc及びヒステリシスカーブの角型性が低下する。
したがってCo含有量は6.0wt%以下とする。
In the present invention, Co is the residual magnetic flux density Br
In addition to improving the corrosion resistance of the magnetic alloy itself without substantially reducing the corrosion resistance, there is an effect of improving the corrosion resistance by improving the adhesion of Ni plating, which is a corrosion-resistant coating. Further, there is also an effect of increasing the Curie point Tc by replacing Fe in the main phase (Nd 2 Fe 14 B) with Co. However, when the substitution amount of Co is increased, coarse crystal grains are generated due to abnormal grain growth during sintering, and the coercive force iHc and the squareness of the hysteresis curve are reduced.
Therefore, the Co content is set to 6.0 wt% or less.

【0007】本発明においてCoとAlとを適量添加す
ることにより第2次熱処理温度の許容範囲を広げること
ができる。希土類−Fe−B系焼結磁石にCoのみ
加した場合、第2次熱処理温度の変動に対する磁気特性
の変動が大きくなる。所定量のCoを含有するとともに
Alを0.5wt%以下(0を含まず)含有すると、
2次熱処理温度が変動しても磁気特性の変動を小さく抑
えられて安定した品質のものを生産することができる。
Alの含有量が0.5wt%超では残留磁束密度Brの
低下が顕著になる。したがって、Alの含有量は0.5
wt%以下(0 を含まず)がよい
In the present invention, Co and Al are added in appropriate amounts.
The allowable range of the secondary heat treatment temperature
Can be. Attachment of Co only to the rare earth -Fe-B based sintered magnet
If you pressure, variation of the magnetic characteristics against the variations in the secondary heat treatment temperature is large Kunar. (Not including 0) 0.5 wt% or less Al with containing a predetermined amount of Co-containing Accordingly, the
Even if the secondary heat treatment temperature fluctuates, the fluctuation in magnetic properties is suppressed to a small extent
As a result , products of stable quality can be produced.
If the Al content exceeds 0.5 wt% , the decrease in the residual magnetic flux density Br becomes remarkable. Therefore, the content of Al is 0.5
% or less ( not including 0 ) is preferred .

【0008】Bは、希土類−Fe−B系磁石において必
須の元素である。Bが0.9wt%未満の場合には高保
磁力が得られず、一方、1.3wt%を越えると、Bに
富む非磁性相が増加し、残留磁束密度Brが低下する。
そのため、0.9〜1.3wt%とする。好ましいBの含
有量は0.95〜1.1wt%である。
[0008] B is an essential element in the rare earth- Fe-B based magnet. If B is less than 0.9 wt%, a high coercive force cannot be obtained, while if it exceeds 1.3 wt%, the B-rich nonmagnetic phase increases and the residual magnetic flux density Br decreases.
Therefore, the content is set to 0.9 to 1.3 wt%. The preferred B content is 0.95 to 1.1 wt%.

【0009】Gaは、残留磁束密度Brを殆ど低下させ
ず、保磁力iHcを向上する効果がある。Ga含有量が
0.02wt%未満の場合は保磁力iHc向上効果が十
分でない。Ga含有量が0.5wt%を超えると、保磁
力iHc向上の効果が飽和するとともに残留磁束密度B
rが低下し、所望の高エネルギー積が得られない。よっ
て、Ga含有量は0.02〜0.5wt%とする。Gaの
望ましい範囲は、0.03〜0.2wt%である。Gaは
磁石体中のNdに富むNdリッチ相中に存在することに
よりその効果が発揮され、特に、Ndリッチ相中の平均
Ga量が全Ga添加量の2倍以上である場合にその効果
が著しい。なお、Ndリッチ相中のGa量は焼結条件、
熱処理条件によって変動する。
[0009] Ga has the effect of improving the coercive force iHc without substantially reducing the residual magnetic flux density Br. If the Ga content is less than 0.02 wt%, the effect of improving the coercive force iHc is not sufficient. If the Ga content exceeds 0.5 wt%, the effect of improving the coercive force iHc is saturated and the residual magnetic flux density B
r decreases, and a desired high energy product cannot be obtained. Therefore, the Ga content is set to 0.02 to 0.5 wt%. A desirable range of Ga is 0.03 to 0.2 wt%. Ga exhibits its effect by being present in the Nd-rich Nd- rich phase in the magnet body. In particular, when the average Ga amount in the Nd- rich phase is twice or more the total Ga addition amount, the effect is exhibited. Remarkable. The amount of Ga in the Nd- rich phase depends on the sintering conditions,
It varies depending on the heat treatment conditions.

【0010】本発明の焼結磁石は、上記成分の他に0.
05〜2.0wt%のVを含有する。Vは周期率表第V
a族に族する金属元素でこれを添加することで焼結時に
結晶粒が粗大化することを抑制する効果がある。この効
果により、保磁力iHcが向上し、ヒステリシスカーブ
の角型性が良好になる。また、着磁性の良好なNd−F
e−B系磁石は優れた耐熱性を有するが、焼結体の結晶
粒を微細にすると着磁性が向上する。よって、Vは耐熱
性向上に有効な元素である。Vの含有量が0.05wt
%未満の場合、粗大粒を抑制する効果が不十分である。
一方、Vの含有量が2.0wt%を超える場合には、V
もしくはV−Feの非磁性ホウ化物が多く発生し、残留
磁束密度Br及びキュリー点Tcが著しく低下し好まし
くない。よって、Vの含有量は0.05〜2.0wt%と
する。好ましくは、0.1〜1.0wt%である。
[0010] The sintered magnet of the present invention has a content of 0.1% in addition to the above components.
It contains 0.5 to 2.0 wt% V. V is periodic table number V
Addition of a metal element belonging to group a has an effect of suppressing the crystal grains from becoming coarse during sintering. By this effect, the coercive force iHc is improved, and the squareness of the hysteresis curve is improved. In addition, Nd-F with good magnetizability
The eB-based magnet has excellent heat resistance, but when the crystal grains of the sintered body are made fine, the magnetization is improved. Therefore, V is an element effective for improving heat resistance. V content is 0.05wt
%, The effect of suppressing coarse grains is insufficient.
On the other hand, when the content of V exceeds 2.0 wt%, V
Alternatively, a large amount of nonmagnetic boride of V-Fe is generated, and the residual magnetic flux density Br and the Curie point Tc are remarkably reduced, which is not preferable. Therefore, the content of V is set to 0.05 to 2.0 wt%. Preferably, it is 0.1 to 1.0 wt%.

【0011】本発明においては、酸素含有量を500p
pm〜5000ppmとする。酸素が500ppmより
少ない場合には磁石粉、及びその圧密体が発火しやすく
工業生産上危険がある。一方、5000ppmより多い
場合には酸素がNd、DyまたはNd、DyおよびPr
と酸化物を形成することにより磁性に有効に作用するN
d、DyまたはNd、DyおよびPrの量が減少し、高
保磁力及び高エネルギー積の磁石を得るのが困難にな
る。
In the present invention, the oxygen content is set to 500 p
pm to 5000 ppm. If the amount of oxygen is less than 500 ppm, the magnet powder and its compact are liable to catch fire, which is dangerous for industrial production. On the other hand, when it is more than 5000 ppm, oxygen is Nd, Dy or Nd, Dy and Pr.
N that effectively acts on magnetism by forming oxides with
The amount of d, Dy or Nd, Dy and Pr is reduced, making it difficult to obtain a magnet with high coercive force and high energy product.

【0012】本発明の焼結磁石は、次のようにして製造
することができる。即ち、一定の成分組成を有するイン
ゴットを真空溶解で製作し、次にこのインゴットを粗粉
砕することにより粒径500μm程度の粗粉を得る。こ
の粗粉をジェットミルを用い、不活性ガス雰囲気で微粉
砕し平均粒径3.0〜6.0μm(F.S.S.S.)の微粉
を得る。次にこの微粉を配向磁場15kOe、成形圧力
1.5ton/cm2の条件下で磁場中プレス成形後、1
000〜1150℃の温度範囲で焼結する。
The sintered magnet of the present invention can be manufactured as follows. That is, an ingot having a certain component composition is produced by vacuum melting, and then the ingot is roughly pulverized to obtain a coarse powder having a particle size of about 500 μm. The coarse powder is finely pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder having an average particle size of 3.0 to 6.0 μm (FSSS). Next, this fine powder was press-molded in a magnetic field under the conditions of an orientation magnetic field of 15 kOe and a molding pressure of 1.5 ton / cm 2 ,
Sintering is performed in a temperature range of 000 to 1150 ° C.

【0013】焼結後の熱処理は、次のように行なうこと
ができる。成形体を焼結して得た焼結体をいったん室温
まで冷却する。焼結後の冷却速度は最終製品の保磁力i
Hcに殆ど影響を与えない。次いで、800〜1000
℃の温度に加熱し、0.2〜5時間保持する。これを第
1次熱処理とする。加熱温度が800℃未満または10
00℃を超える場合、充分な高保磁力が得られない。加
熱保持の後で0.3〜50℃/分の冷却速度で室温ない
し600℃の温度まで冷却する。冷却速度が50℃/分
を超える場合は、時効のために必要な平衡相が得られ
ず、充分な高保磁力が得られない。また、0.3℃/分
未満の冷却速度は熱処理に時間を要し、工業生産上経済
的でない。好ましくは、0.6〜2.0℃/分の冷却速度
が選ばれる。冷却終了温度は室温が望ましいが、多少保
磁力iHcを犠牲にすれば600℃までとし、その温度
以下は急冷してもよい。好ましくは、常温〜400℃の
温度まで冷却する。
The heat treatment after sintering can be performed as follows. The sintered body obtained by sintering the compact is once cooled to room temperature. The cooling rate after sintering depends on the coercive force i of the final product.
Has little effect on Hc. Then, 800-1000
Heat to a temperature of ° C. and hold for 0.2-5 hours. This is the first heat treatment. Heating temperature less than 800 ° C or 10
If the temperature exceeds 00 ° C., a sufficiently high coercive force cannot be obtained. After the heating and holding, it is cooled to a temperature of from room temperature to 600 ° C. at a cooling rate of 0.3 to 50 ° C./min. When the cooling rate exceeds 50 ° C./min, an equilibrium phase required for aging cannot be obtained, and a sufficiently high coercive force cannot be obtained. On the other hand, a cooling rate of less than 0.3 ° C./minute requires a long time for heat treatment, which is not economical for industrial production. Preferably, a cooling rate of 0.6 to 2.0 ° C / min is selected. The cooling end temperature is desirably room temperature, but may be up to 600 ° C. if the coercive force iHc is somewhat sacrificed, and may be rapidly cooled below that temperature. Preferably, it cools to the temperature of normal temperature-400 degreeC.

【0014】熱処理は更に500〜650℃の温度で
0.2〜3時間行う。これを第2次熱処理とする。組成
によって異なるが、好ましくは540〜640℃での熱
処理が有効である。熱処理温度が500℃未満の場合及
び650℃より高い場合は、高保磁力が得られても不可
逆減磁率の低下がおきる。熱処理後は第1次熱処理と同
様、0.3〜400℃/分の冷却速度で冷却する。冷却
は水中、シリコンオイル中、アルゴン気流中等で行うこ
とができる。冷却速度が400℃/分を越える場合、急
冷により試料に亀裂が入り、工業的に価値のある永久磁
石材料が得られない。また、0.3℃/分未満の場合、
冷却過程で保磁力iHcに好ましくない相が出現する。
The heat treatment is further performed at a temperature of 500 to 650 ° C. for 0.2 to 3 hours. This is a second heat treatment. Although it depends on the composition, a heat treatment at 540 to 640 ° C. is preferably effective. When the heat treatment temperature is lower than 500 ° C. or higher than 650 ° C., the irreversible demagnetization rate decreases even if a high coercive force is obtained. After the heat treatment, cooling is performed at a cooling rate of 0.3 to 400 ° C./min, as in the first heat treatment. Cooling can be performed in water, in silicon oil, in a stream of argon, or the like. When the cooling rate exceeds 400 ° C./min, the sample is cracked by rapid cooling, and an industrially valuable permanent magnet material cannot be obtained. When the temperature is lower than 0.3 ° C./minute,
An unfavorable phase appears in the coercive force iHc during the cooling process.

【0015】[0015]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 Nda−Dyb−B1.04−V0.59−GaC−Co0.20−A
0.35−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が5300ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
100〜4000ppmであった。これら試料につい
て、常温磁気特性を測定し、図1、図2及び図3に示す
ような結果を得た。図1はDy=1.0wt%、Ga=
0.06wt%としてNd量と磁気特性の関係を示した
グラフである。Nd量の増加にともなって保磁力iHc
は向上するが、逆に残留磁束密度Brは低下する傾向に
ある。図2はDy=1.0wt%、Nd=29wt%と
してGa量と磁気特性の関係を示したグラフである。G
a量の増加に伴い保磁力iHcは向上するが、0.08
wt%程度でその効果は飽和する。また、この間におけ
る残留磁束密度Brの低下はわずかである。図3はNd
=29wt%、Ga=0.06wt%としてDy量と磁
気特性の関係を示したグラフである。Dy量の増加に伴
い保磁力iHcは向上するが、残留磁束密度Brの低下
が顕著となり、最大エネルギ−積(BH)maxも劣化
する。以上図1〜図3から、優れた最大エネルギ−積
(BH)maxおよび保磁力iHcを兼備するために
は、Nd量を最適化するとともに、DyおよびGaを適
量複合添加する必要があることがわかる。
The present invention will be described in more detail with reference to the following examples. (Example 1) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd a -Dy b -B 1.04 -V 0.59 -Ga C -Co 0.20 -A
l 0.35 -Fe bal. (wt%) After crushing this ingot with a hammer, it was further coarsely crushed in an inert gas atmosphere by using a coarse crusher to obtain 500 μm.
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and an oxygen content of 5300 ppm. Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum conditions, and the resulting sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to 530 ° C.
A second heat treatment was performed at 2 ° C. × 2 hours. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
It was 100 to 4000 ppm. At room temperature, the magnetic properties of these samples were measured, and the results shown in FIGS. 1, 2 and 3 were obtained. FIG. 1 shows Dy = 1.0 wt%, Ga =
It is the graph which showed the relationship between the amount of Nd and magnetic characteristics as 0.06 wt%. As the Nd amount increases, the coercive force iHc
, But the residual magnetic flux density Br tends to decrease. FIG. 2 is a graph showing the relationship between the amount of Ga and the magnetic characteristics when Dy = 1.0 wt% and Nd = 29 wt%. G
The coercive force iHc increases with an increase in the amount a, but is 0.08.
The effect saturates at about wt%. During this time, the decrease in the residual magnetic flux density Br is slight. FIG. 3 shows Nd
7 is a graph showing the relationship between the Dy amount and the magnetic properties when = 29 wt% and Ga = 0.06 wt%. Although the coercive force iHc increases as the Dy amount increases, the decrease in the residual magnetic flux density Br becomes remarkable, and the maximum energy product (BH) max also deteriorates. As described above, from FIGS. 1 to 3, it is necessary to optimize the amount of Nd and to add an appropriate amount of Dy and Ga in combination to optimize both the maximum product of energy (BH) max and the coercive force iHc. Understand.

【0016】(実施例2) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 組成 : Nd29.5−Dy1.2−B1.03−V0.35−Ga
0.06 −Co0.30−Al0.33−Febal.(wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この際不活性ガス中に微量の酸素を混入せしめるこ
とにより、種々の酸素量の微粉を得た。なお、微粉は平
均粒径4.0μm(F.S.S.S.)であった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
000〜5800ppmであった。これら試料について
常温磁気特性を測定した。結果を図4に示すが、含有酸
素量が5000ppmを越えると保磁力iHcの減少が
著しくなるため、酸素量は1000〜5000ppmと
する。図5に含有酸素量が5400ppmと2000p
pmと異なる2つの焼結体のNdおよび酸素のEPMA
(電子線マイクロアナライザ)の線分析の結果を示す。
含有酸素量の多い焼結体はほとんどのNdのピークと酸
素のピークが重なっており、多量のNd酸化物が形成さ
れているものと考えられる。一方、含有酸素量の少ない
焼結体は、Ndのピークと酸素のピークの重なりも観察
されるが、単独で存在するNdのピークもかなり観察さ
れる。すなわち、含有酸素量が多い焼結体はNdが磁気
特性に寄与しない酸化物として多く存在するのに対し、
含有酸素量が少ない焼結体は磁気特性に有効に寄与する
Ndが多く存在するのである。なお、図5中○が施され
た部分がNdが酸素と独立して存在するピークである。
Example 2 Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Composition: Nd 29.5 -Dy 1.2 -B 1.03 -V 0.35 -Ga
0.06 -Co 0.30 -Al 0.33 -Fe bal. (Wt%) After crushing this ingot with a hammer, it was further coarsely crushed in an inert gas atmosphere by using a coarse crusher to obtain 500 μm .
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. At this time, by adding a small amount of oxygen to the inert gas, fine powders of various oxygen contents were obtained. The fine powder had an average particle size of 4.0 μm (FSSS). Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum conditions, and the resulting sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to 530 ° C.
A second heat treatment was performed at 2 ° C. × 2 hours. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
000-5800 ppm. Room-temperature magnetic properties of these samples were measured. The results are shown in FIG. 4. When the oxygen content exceeds 5000 ppm, the coercive force iHc is significantly reduced, so the oxygen content is set to 1000 to 5000 ppm. FIG. 5 shows that the oxygen content is 5400 ppm and 2000p.
EPMA of Nd and oxygen of two sintered bodies different from pm
(Electron beam microanalyzer) shows the results of line analysis.
In the sintered body containing a large amount of oxygen, most of the peaks of Nd overlap with the peaks of oxygen, and it is considered that a large amount of Nd oxide is formed. On the other hand, in the sintered body having a small oxygen content, the Nd peak and the oxygen peak overlap with each other, but the Nd peak present alone is considerably observed. That is, while the sintered body having a large oxygen content is present as an oxide in which Nd does not contribute to the magnetic properties,
A sintered body having a small oxygen content contains a large amount of Nd which effectively contributes to magnetic properties. In FIG. 5, the circles indicate peaks in which Nd exists independently of oxygen.

【0017】(実施例3) ジジムメタル(Nd70wt%−Pr30wt%)、金
属Dy、Fe、Co、ferro−B、ferro−
V、金属Gaを所定の重量秤量し、これを真空溶解して
重量10kgのインゴットを作製した。このインゴット
の成分分析を行なうと重量比で以下のような組成であっ
た。 組成 : (Nd+Pr)28.5−Dy0.6−B1.05−Vx
−Ga0.05 −Co2.25−Al0.35−Febal.(wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この際不活性ガス中に微量の酸素を混入せしめるこ
とにより、種々の酸素量の微粉を得た。なお、微粉は平
均粒径4.0μm(F.S.S.S.)であった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は2
600〜4400ppmであった。これら試料につい
て、常温磁気特性、および平均粒径を測定し、図6に示
すような結果を得た。図6に示されるようにVを含有さ
せることにより焼結時の結晶粒成長を抑制でき、その結
果焼結体平均粒径を小さくできる。また、この効果によ
り保磁力iHcの向上を期待できる。2.0wt%以上
の含有によっても平均粒径の減少をさほど期待出来ず、
また最大エネルギ−積(BH)maxの低下も大きくな
るので0.1〜2.0wt%の添加が適量である。
(Example 3) Didymium metal (Nd 70 wt% -Pr 30 wt%), metal Dy, Fe, Co, ferro-B, ferro-
V and metal Ga were weighed to a predetermined weight, and were vacuum-dissolved to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Composition: (Nd + Pr) 28.5 -Dy 0.6 -B 1.05 -V x
-Ga 0.05 -Co 2.25 -Al 0.35 -Fe bal. (Wt%) After crushing this ingot with a hammer, it was further coarsely crushed in an inert gas atmosphere by using a coarse crusher and 500 µm .
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. At this time, by adding a small amount of oxygen to the inert gas, fine powders of various oxygen contents were obtained. The fine powder had an average particle size of 4.0 μm (FSSS). Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 to.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum conditions, and the resulting sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to 530 ° C.
A second heat treatment was performed at 2 ° C. × 2 hours. The density of the obtained sintered body was 7.55 to 7.58 g / cc, and the oxygen content was 2
It was 600 to 4400 ppm. With respect to these samples, the room temperature magnetic characteristics and the average particle size were measured, and the results as shown in FIG. 6 were obtained. As shown in FIG. 6, by adding V, crystal grain growth during sintering can be suppressed, and as a result, the average grain size of the sintered body can be reduced. In addition, this effect can be expected to improve the coercive force iHc. Even with a content of 2.0 wt% or more, a decrease in the average particle size cannot be expected so much.
Further, since the reduction of the maximum energy product (BH) max becomes large, the addition of 0.1 to 2.0 wt% is an appropriate amount.

【0018】(実施例4) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 Nd27.5−Dy0.8−B1.00−V0.34−Ga0.20 −Coy−Alz−Febal. y=0 z=0 y=1.57 z=0 y=1.60 z=0.35 (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中での粗粉砕を行い500
μm以下の粒度の粗粉を得た。この粗粉を同じくジェッ
トミルを用い不活性ガス雰囲気中で微粉砕をして微粉を
得た。この微粉は平均粒径3.8μm(F.S.S.S.)
であり、含有酸素量は4200〜5300ppmであっ
た。次に、この微粉を配向磁場強度15kOe、成形圧
力1.5ton/cm2の条件下で磁場中プレス成形し、
30×20×15の成形体を作製した。この成形体は実
質的に真空の条件で1100℃×2hrの焼結を行い、
得られた焼結体に900℃×2hrの第1次熱処理、次
いで500〜600℃×2hrの第2次熱処理を施し
た。得られた焼結体の密度は7.56〜7.59g/c
c、また含有酸素量は2100〜3300ppmであっ
た。これら試料について常温磁気特性を測定し、図7に
示されるような結果を得た。図7に示されるように、C
oを単独で添加したもの(△)は磁気特性がCo及びA
l無添加のもの(○)と比較して第2次熱処理温度依存
性が大きくなる。すなわち、第2次熱処理温度が変動し
た場合のiHcの低下が顕著である。つぎに、Co及び
Alを複合添加したもの(□)はCoを単独で添加した
もの(△)に比べて同一の第2次熱処理温度に対してi
Hcを高められるとともに第2次熱処理温度が変動した
場合のiHcが緩やかであることがわかる。このように
AlおよびCoを複合添加することは有用である。
(Embodiment 4) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd 27.5 -Dy 0.8 -B 1.00 -V 0.34 -Ga 0.20 -Co y -Al z -Fe bal. Y = 0 z = 0 y = 1.57 z = 0 y = 1.60 z = 0.35 (wt%) After crushing with a hammer, coarse crushing is performed in an inert gas atmosphere using
A coarse powder having a particle size of not more than μm was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder has an average particle size of 3.8 μm (FSSS).
And the oxygen content was 4200 to 5300 ppm. Next, this fine powder was press-molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 .
A 30 × 20 × 15 compact was produced. This molded body is subjected to sintering at 1100 ° C. × 2 hours under a substantially vacuum condition,
The obtained sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to a second heat treatment at 500 to 600 ° C. × 2 hr. The density of the obtained sintered body is 7.56 to 7.59 g / c.
c and the oxygen content was 2100 to 3300 ppm. The magnetic properties at room temperature were measured for these samples, and the results shown in FIG. 7 were obtained. As shown in FIG.
o alone (△) has magnetic properties of Co and A
l The temperature dependency of the second heat treatment is larger than that of the case without (o) . That is, the temperature of the second heat treatment fluctuates.
In this case, the decrease in iHc is remarkable. Next , the composite addition of Co and Al (□) was obtained by adding Co alone.
I for the same second heat treatment temperature as compared to
Hc could be increased and secondary heat treatment temperature fluctuated
It can be seen that the iHc in the case is moderate. in this way
It is useful to add Al and Co in combination.

【0019】次に前記(Co無添加)、(Co添
加)、(Co,Al添加)の組成を有する磁石にNi
メッキを施して、その密着性を評価した。Niメッキ
は、ワット浴による電解メッキで膜厚10μmとした。
メッキ処理後水洗いして100℃で5分間乾燥後メッキ
密着性試験を行った。結果は下記の通りであり、Co添
加材が優れたメッキ密着性を有することがわかる。 材 質 密着強度(Kgf/cm2) (Co無添加) 150 (Co添加) 660 (Co,Al添加) 685
Next, Ni was added to the magnet having the composition of (Co-free), (Co-added), (Co, Al-added).
After plating, the adhesion was evaluated. Ni plating was performed to a film thickness of 10 μm by electrolytic plating using a Watts bath.
After the plating treatment, the plate was washed with water, dried at 100 ° C. for 5 minutes, and then subjected to a plating adhesion test. The results are as follows, and show that the Co additive has excellent plating adhesion. Material Adhesion strength (Kgf / cm2) (no Co added) 150 (Co added) 660 (Co, Al added) 685

【0020】(実施例5) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 Nd28.5−Dy0.80−B1.20−V1.05−Gac −Co0.15−Al0.32−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が4300ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。 この成形体は実質的に真
空の条件で1070℃×3hrの焼結を行い、得られた
焼結体に930℃×2hrの第1次熱処理、次いで52
0℃×2hrの第2次熱処理を施した。得られた焼結体
の密度は7.54〜7.57g/cc、また含有酸素量は
1000〜3200ppmであった。これら試料につい
て、試料全体のGa含有量、Ndリッチ相中のGa量と
保磁力iHcの関係を調査した。結果を表1に示す。
(Embodiment 5) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd 28.5 -Dy 0.80 -B 1.20 -V 1.05 -Ga c -Co 0.15 -Al 0.32 -Fe bal. (Wt%) The ingot was crushed by a hammer, further crusher used in an inert gas atmosphere 500μ
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and an oxygen content of 4300 ppm. Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1070 ° C. × 3 hrs under substantially vacuum conditions, and the obtained sintered compact was subjected to a first heat treatment at 930 ° C. × 2 hrs, followed by 52 hrs.
A second heat treatment at 0 ° C. × 2 hr was performed. The density of the obtained sintered body was 7.54 to 7.57 g / cc, and the oxygen content was 1000 to 3200 ppm. For these samples, the relationship between the Ga content of the entire sample, the Ga content in the Nd- rich phase and the coercive force iHc was investigated. Table 1 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例6) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 Nd28.0−Dy1.0−B1.03−V0.67−Ga0.1 −Co0.21−Al0.35−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が4800ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
000〜3600ppmであった。これら試料につい
て、Ndリッチ相中の平均Ga量と保磁力iHcおよび
Hkの関係を調査した。結果を表2に示すが、Ndリッ
相中の平均Ga量が全体のGa含有量の1.7倍以下
では保磁力iHcが11.7 KOe以下であり12KO
eには達していないことがわかる。
Example 6 Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd 28.0 -Dy 1.0 -B 1.03 -V 0.67 -Ga 0.1 -Co 0.21 -Al 0.35 -Fe bal. (Wt%) After crushing this ingot with a hammer, further using a coarse crusher in an inert gas atmosphere. 500μ
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and an oxygen content of 4800 ppm. Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum conditions, and the resulting sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to 530 ° C.
A second heat treatment was performed at 2 ° C. × 2 hours. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
000-3600 ppm. For these samples, the relationship between the average Ga content in the Nd- rich phase and the coercive forces iHc and Hk was investigated. Results are illustrated in Table 2, Nd ripple
When the average Ga content in the h phase is 1.7 times or less of the total Ga content , the coercive force iHc is 11.7 KOe or less and 12 KO
e is not reached.

【0023】[0023]

【表2】 [Table 2]

【0024】(実施例7) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−V、金属Gaを所定の重量秤量し、これを真
空溶解して重量10kgのインゴットを作製した。この
インゴットの成分分析を行なうと重量比で以下のような
組成であった。 Nd27.5−Dy2.0−B1.1/1.4−V1.6−Ga0.08 −Co0.22−Al0.30−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中での粗粉砕を行い500μ
m以下の粒度の粗粉を得た。この粗粉を同じくジェット
ミルを用い不活性ガス雰囲気中で微粉砕をして微粉を得
た。この微粉は平均粒径4.0μm(F.S.S.S.)で
あり、含有酸素量が4800ppmであった。次に、こ
の微粉を配向磁場強度15kOe、成形圧力1.5to
n/cm2の条件下で磁場中プレス成形し、20×20
×15の成形体を作製した。この成形体は実質的に真空
の条件で1080℃×3hrの焼結を行い、得られた焼
結体に900℃×2hrの第1次熱処理、次いで530
℃×2hrの第2次熱処理を施した。得られた焼結体の
密度は7.55〜7.58g/cc、また含有酸素量は1
000〜3600ppmであった。これら試料につい
て、Bリッチ相の体積%と残留磁束密度Br、最大エネ
ルギ−積(BH)maxの関係を調査した。結果を表3
に示すが、Bリッチ相が増加するにつれ残留磁束密度B
r、最大エネルギ−積(BH)maxが減少し、2.4
体積%となると最大エネルギ−積(BH)maxが42
MGOe未満となる。
(Example 7) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-V and metal Ga were weighed to a predetermined weight and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd 27.5 -Dy 2.0 -B 1.1 / 1.4 -V 1.6 -Ga 0.08 -Co 0.22 -Al 0.30 -Fe bal. (Wt%) After crushing this ingot with a hammer, further use a coarse crusher and inert gas atmosphere. 500μ
A coarse powder having a particle size of not more than m was obtained. The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder had an average particle size of 4.0 μm (FSSS) and an oxygen content of 4800 ppm. Next, this fine powder was subjected to an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton.
Press molding in a magnetic field under the condition of n / cm 2 , 20 × 20
A molded body of × 15 was produced. This compact was sintered at 1080 ° C. × 3 hr under substantially vacuum conditions, and the resulting sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to 530 ° C.
A second heat treatment was performed at 2 ° C. × 2 hours. The density of the obtained sintered body is 7.55 to 7.58 g / cc, and the oxygen content is 1
000-3600 ppm. For these samples, the relationship between the volume% of the B-rich phase, the residual magnetic flux density Br, and the maximum energy-product (BH) max was investigated. Table 3 shows the results
, The residual magnetic flux density B increases as the B-rich phase increases.
r, the maximum energy product (BH) max is reduced to 2.4
When the volume% is reached, the maximum energy product (BH) max is 42
It is less than MGOe.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば
有のミクロ組織を有し、常温において42MGOe以上
の高い最大エネルギー積(BH)max、12KOe以
実用に耐える保磁力iHc、および優れた熱処理性
を有する希土類−Fe−Co−Al−V−Ga―B系
磁石を提供することができる
As described in the foregoing, especially according to the present invention
It has a chromatic microstructure, rare earth having a maximum energy product 42MGOe higher than at normal temperature (BH) ma x, coercive force iHc practicable above 12 kOe, and excellent heat treatability <br/> -Fe- Co- Al-V-Ga- B based firing
A magnet can be provided .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の焼結磁石のNd含有量と最大エネル
ギ−積(BH)max、残留磁束密度Brおよび保磁力
iHcとの相関の一例を示グラフである
[1] Nd content of the sintered magnet of the present invention and the maximum energy - which is a view to graph an example of correlation between product (BH) max, the residual magnetic flux density Br and coercive force iHc.

【図2】 本発明の焼結磁石のGa含有量と最大エネル
ギ−積(BH)max、残留磁束密度Brおよび保磁力
iHcとの相関の一例を示グラフである
Ga content of the sintered magnet of the present invention; FIG and maximum energy - which is a view to graph an example of correlation between product (BH) max, the residual magnetic flux density Br and coercive force iHc.

【図3】 本発明の焼結磁石のDy含有量と最大エネル
ギ−積(BH)max、残留磁束密度Brおよび保磁力
iHcとの相関の一例を示グラフである
[Figure 3] Dy content of the sintered magnet of the present invention and the maximum energy - which is a view to graph an example of correlation between product (BH) max, the residual magnetic flux density Br and coercive force iHc.

【図4】 本発明の焼結磁石の酸素含有量と最大エネル
ギ−積(BH)max、残留磁束密度Brおよび保磁力
iHcとの相関の一例を示グラフである
[4] the oxygen content of the sintered magnet of the present invention and the maximum energy - which is a view to graph an example of correlation between product (BH) max, the residual magnetic flux density Br and coercive force iHc.

【図5】 含有酸素量が5600ppmと2000pp
mと異なる2つの焼結体のNdおよび酸素のEPMA
(電子線マイクロアナライザ)の線分析の結果を示すグ
ラフである
FIG. 5 shows that the oxygen content is 5600 ppm and 2000 pp.
EPMA of Nd and oxygen of two sintered bodies different from m
It is a graph which shows the result of the line analysis of (electron beam microanalyzer).

【図6】 本発明の焼結磁石のV含有量焼結体平均結
晶粒径との相関の一例を示グラフである
6 is a view to graph an example of correlation between the V content and sintered average grain size of the sintered magnet of the present invention.

【図7】 本発明の焼結磁石における保磁力iHcと第
2次熱処理温度との相関に及ぼすCo及びAlの複合
の効果の一例をグラフである
FIG. 7 shows the coercive force iHc of the sintered magnet of the present invention and
An example of a composite added <br/> effect of addition of Co and Al on the correlation between the second heat treatment temperature is shown to graph.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−7503(JP,A) 特開 平5−47529(JP,A) 特開 昭63−18603(JP,A) 特開 平1−304713(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/032 - 1/08 C22C 33/02,38/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-7503 (JP, A) JP-A-5-47529 (JP, A) JP-A-63-18603 (JP, A) JP-A-1- 304713 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/032-1/08 C22C 33 / 02,38 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実質的にNdおよびDyまたはNd、Dy
およびPrからなる希土類元素28〜32wt%(ただ
しDyは0.4〜3wt%)、Co6wt%以下(0を
含まず)、Al0.5wt%以下(0を含まず)、B0.
9〜1.3wt%、V0.05〜2.0wt%、Ga0.0
2〜0.5wt%、酸素500ppm〜5000pp
m、残部Feおよび不可避的不純物からなり、常温にお
いて保磁力iHcが12kOe以上、最大エネルギー積
(BH)maxが42MGOe以上であり、熱処理性に
優れた希土類−Fe−Co−Al−V−Ga―B系焼結
磁石であって、希土類リッチ相中の平均Ga量が前記焼
結磁石の全Ga含有量の2倍以上であることを特徴とす
希土類−Fe−Co−Al−V−Ga―B系焼結
石。
1. The method according to claim 1 , wherein said Nd and Dy are substantially Nd and Dy.
And Pr rare earth elements of 28 to 32 wt% (Dy is 0.4 to 3 wt%), Co 6 wt% or less (0
Not including) , Al 0.5 wt % or less (not including 0) , B0.
9 to 1.3 wt%, V 0.05 to 2.0 wt%, Ga 0.0
2 to 0.5 wt%, oxygen 500 ppm to 5000 pp
m, the balance being Fe and unavoidable impurities .
There coercive force iHc is more than 12kOe, the maximum energy product (BH) max Ri der least 42MGOe, the heat treatability
An excellent rare earth- Fe- Co-Al-V- Ga - B based sintered magnet , wherein the average Ga content in the rare earth rich phase
Rare earth -Fe- Co-Al-V-Ga- B based sintered magnetic <br/> stone, characterized in that at least twice the total Ga content of sintered magnets.
【請求項2】Bリッチ相が2vol.%以下である請求
項1に記載の記載の希土類−Fe−Co−Al−V−G
a―B系焼結磁石。
2. The rare earth- Fe- Co-Al- VG according to claim 1, wherein the B-rich phase is 2 vol.% Or less.
a- B-based sintered magnet.
【請求項3】表面にNiメッキを被覆した請求項1また
は請求項2に記載の希土類−Fe−Co−Al−V−G
a―B系焼結磁石。
3. A process according to claim 1 also coated with Ni plating on the surface
Is a rare earth- Fe- Co-Al- VG according to claim 2.
a- B-based sintered magnet.
JP08256393A 1993-01-29 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet Expired - Lifetime JP3298219B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08256393A JP3298219B2 (en) 1993-03-17 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
US08/217,091 US5472525A (en) 1993-01-29 1994-01-28 Nd-Fe-B system permanent magnet
CN94101181A CN1120506C (en) 1993-01-29 1994-01-29 Nd-Fe-B permanent magnet
DE4402783A DE4402783B4 (en) 1993-01-29 1994-01-31 Nd-Fe-B system permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08256393A JP3298219B2 (en) 1993-03-17 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet

Publications (2)

Publication Number Publication Date
JPH06275414A JPH06275414A (en) 1994-09-30
JP3298219B2 true JP3298219B2 (en) 2002-07-02

Family

ID=13777963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08256393A Expired - Lifetime JP3298219B2 (en) 1993-01-29 1993-03-17 Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet

Country Status (1)

Country Link
JP (1) JP3298219B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125594A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125586A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125588A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125583A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125587A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125593A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125595A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125592A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125589A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125591A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125585A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125582A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125584A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011142275A1 (en) 2010-05-14 2011-11-17 日東電工株式会社 Permanent magnet, and method for producing permanent magnet
WO2013047470A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
WO2013047467A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
WO2013047469A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
WO2013054678A1 (en) 2011-10-14 2013-04-18 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US9275778B2 (en) 2008-03-18 2016-03-01 Nitto Denko Corporation Permanent magnet and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541948A1 (en) * 1995-11-10 1997-05-15 Schramberg Magnetfab Magnetic material and permanent magnet of the NdFeB type
DE19603813A1 (en) * 1996-02-02 1997-08-07 Vacuumschmelze Gmbh Alloy for a permanent magnet with special magnetic stability

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9275778B2 (en) 2008-03-18 2016-03-01 Nitto Denko Corporation Permanent magnet and method for manufacturing the same
US8500920B2 (en) 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2011125586A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
US9053846B2 (en) 2010-03-31 2015-06-09 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2011125587A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125593A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125595A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125592A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125589A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125591A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125585A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125582A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125584A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125583A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
WO2011125588A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
US9048014B2 (en) 2010-03-31 2015-06-02 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US9039920B2 (en) 2010-03-31 2015-05-26 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US9005374B2 (en) 2010-03-31 2015-04-14 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US8480816B2 (en) 2010-03-31 2013-07-09 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US8491728B2 (en) 2010-03-31 2013-07-23 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US8500921B2 (en) 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2011125594A1 (en) 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
US8524013B2 (en) 2010-05-14 2013-09-03 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2011142275A1 (en) 2010-05-14 2011-11-17 日東電工株式会社 Permanent magnet, and method for producing permanent magnet
WO2013047467A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
WO2013047469A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
WO2013047470A1 (en) 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
WO2013054678A1 (en) 2011-10-14 2013-04-18 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet

Also Published As

Publication number Publication date
JPH06275414A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
JP3298219B2 (en) Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
EP0126179B1 (en) Process for producing permanent magnet materials
US4684406A (en) Permanent magnet materials
US4975129A (en) Permanent magnet
EP0134304B1 (en) Permanent magnets
EP0153744B1 (en) Process for producing permanent magnets
EP0126802B1 (en) Process for producing of a permanent magnet
CA1315571C (en) Magnetic materials and permanent magnets
JP4648192B2 (en) R-T-B rare earth permanent magnet
US7988795B2 (en) R-T-B—C rare earth sintered magnet and making method
US5472525A (en) Nd-Fe-B system permanent magnet
US3997371A (en) Permanent magnet
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
EP0386286B1 (en) Rare earth iron-based permanent magnet
US5230749A (en) Permanent magnets
EP4130300A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
EP4130301A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet
JP3080275B2 (en) R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH0794311A (en) Nd-fe-co-b type sintered magnet
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
EP4092693A1 (en) Anisotropic rare earth sintered magnet and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11