JPS61198704A - Manufacture of rare earth element-cobalt group magnet powder for resin magnet - Google Patents

Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Info

Publication number
JPS61198704A
JPS61198704A JP60037703A JP3770385A JPS61198704A JP S61198704 A JPS61198704 A JP S61198704A JP 60037703 A JP60037703 A JP 60037703A JP 3770385 A JP3770385 A JP 3770385A JP S61198704 A JPS61198704 A JP S61198704A
Authority
JP
Japan
Prior art keywords
powder
reaction product
magnet
samarium
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60037703A
Other languages
Japanese (ja)
Other versions
JPH0426523B2 (en
Inventor
Tatsuo Nate
名手 達夫
Koichi Oka
岡 公一
Takehiko Sato
佐藤 威彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60037703A priority Critical patent/JPS61198704A/en
Priority to US06/834,420 priority patent/US4689073A/en
Publication of JPS61198704A publication Critical patent/JPS61198704A/en
Priority to US07/219,856 priority patent/US4865660A/en
Publication of JPH0426523B2 publication Critical patent/JPH0426523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder

Abstract

PURPOSE:To obtain magnet powder for a resin magnet having large residual flux density and a high maximum energy product by thermally treating a reaction product from a mixture, in which a samarium oxide, a praseodymium oxide and cobalt powder are compounded, in a predetermined manner, crushing the reaction product and bringing a composition to a prescribed value. CONSTITUTION:A mixture in which a samarium oxide, a praseodymium oxide and cobalt powder are compounded is heated and reduced, samarium and praseodymium formed are diffused into cobalt powder, and a reaction product from the mixture is kept for 30min or 5hr at a temperature of 600-900 deg.C. The reaction product is quenched at speed of 10 deg.C/min or higher than said temperature, and a thermally treated material acquired is charged into water and brought to a slurry state, treated by water and an acid aqueous solution, and crushed so that mean grain size extends over 3-10mum, thus manufacturing magnetic powder, a composition thereof is represented by Sm1-x, PrxCOz (0.05<=x<=0.4, 4.7<=z<=5.3). The powder is mixed with epoxy resin through a normal method, thus preparing a resin magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた磁気的特性を有し、mBhf7ii石
用に好適の1−5系希土類元素−コバルト磁石粉禾を還
元拡散法によって製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of 1-5 rare earth element-cobalt magnet powder, which has excellent magnetic properties and is suitable for mBhf7ii stone, by a reduction diffusion method. Regarding how to.

〔従来の技術〕[Conventional technology]

樹脂磁石用の1−5系希土類元索−コバルト伍石粉末は
、2−17系のものに比較して、高い磁気的特性を得る
に最適な粉末の粒径がより小さく、従って樹脂とのなじ
みや混練成形時の#、動性、均一性などにおいて有利な
ことから好んで用いられている。このような1−5基磁
石粉宋を製造する方法として、希土類元素の酸化物、金
属カルシウムのような還元剤およびシバルト粉を混合し
、該混合物を容器に充填して常圧の不活性ガス芥囲気下
、900〜1100℃で加熱した恢、得られた反応生成
物を水中に投入しスラリー状にし、該スラリーを水およ
び酸水溶液で処理する、いわゆる還元拡散法等が採用さ
れている。
The 1-5 series rare earth base-cobalt gostone powder for resin magnets has a smaller particle size, which is optimal for obtaining high magnetic properties, compared to the 2-17 series, and therefore it has a smaller particle size than the 2-17 series. It is preferred because it is advantageous in terms of conformability, # during kneading and molding, dynamics, and uniformity. As a method of manufacturing such a 1-5 group magnet powder, rare earth element oxides, reducing agents such as metallic calcium, and Sibalt powder are mixed, and the mixture is filled into a container and heated with inert gas at normal pressure. A so-called reduction-diffusion method is employed, in which the reaction product is heated at 900 to 1100° C. in an atmosphere, the resulting reaction product is poured into water to form a slurry, and the slurry is treated with water and an aqueous acid solution.

しかしrzから、この方法は還元拡散による反応生成安
として1−5系の平均組成になるような磁石粉末を製造
するものに止まるものである。従って、この方法によっ
て得られた磁石粉末を、微粉砕しプレス成形した後、熱
処理することによシ磁気的特性を向上させ、焼結磁石用
として開用する場合には、他の公知の電解法や溶解法に
よって得られた磁石粉末を使用するのと比較して、磁気
的特性やコストの面で有用な方法であるが、該磁石粉末
を樹脂磁石用としてそのまま使用すると、熱処理によっ
て磁気的特性を向上させていない上に、樹脂と混練した
後にはこの熱処理工程を採用することかで@ないために
、その磁気的特性は、特に゛)曵留磁束密度が熱処理を
施した磁石粉末からの樹脂磁石のそれと比較して大幅に
劣るという欠点があった。
However, due to rz, this method is limited to producing magnet powder having an average composition of 1-5 based on the reaction produced by reduction and diffusion. Therefore, when the magnet powder obtained by this method is finely pulverized, press-formed, and then heat-treated to improve its magnetic properties and used for sintered magnets, other known electrolytic methods may be used. This method is more effective in terms of magnetic properties and cost than using magnet powder obtained by the method or melting method, but if the magnet powder is used as it is for resin magnets, the magnetic In addition to not improving the properties, since this heat treatment process is not required after kneading with the resin, the magnetic properties are particularly poor, especially in terms of the magnetic flux density that is lower than that of the heat-treated magnet powder. The drawback was that it was significantly inferior to that of resin magnets.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は、上記のよう72:事情に鑑み、残留磁束
密度が向上した高い最大エネルギー積を有する樹脂磁石
用磁石粉末を得るべく、鋭意研究した。
In view of the above-mentioned circumstances, the present inventors conducted extensive research in order to obtain magnet powder for resin magnets that has an improved residual magnetic flux density and a high maximum energy product.

〔問題点を解決するための手段〕 その結果、サマリウム酸化物、プラセオジム酸化物およ
びコバルト粉末を配合した混合物を加熱還元し生成した
サマリウムとプラセオジムを該コバルト粉末中に拡散さ
せ、その反応生成物に600〜900℃で30分〜5時
間保持後その温度から10C/分以上で急冷する熱処理
を施し、得られた熱処理物を水中に投入してスラリー状
にし、該スラリーを水および酸水溶液で処理した後、平
均粒径が3〜10μmとなるように粉砕して、その組成
がSm、1−、Pr、Co、 (但し、0.05≦x≦
0.4,4.7≦z≦5.3)で表わされる磁石粉末を
得るようにすることによって前記目的が達成され得るこ
とを見出したものである。
[Means for solving the problem] As a result, samarium and praseodymium produced by heating and reducing a mixture of samarium oxide, praseodymium oxide and cobalt powder are diffused into the cobalt powder, and the reaction product is After holding at 600 to 900°C for 30 minutes to 5 hours, heat treatment is performed by rapidly cooling at 10C/min or more from that temperature, the resulting heat-treated product is poured into water to form a slurry, and the slurry is treated with water and an acid aqueous solution. After that, it is crushed so that the average particle size is 3 to 10 μm, and the composition is Sm, 1-, Pr, Co, (however, 0.05≦x≦
The inventors have discovered that the above object can be achieved by obtaining magnetic powder having the following formula: 0.4, 4.7≦z≦5.3).

〔作 用〕[For production]

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明において、まず、サマリウム酸化物、プラセオジ
ム酸化物、カルシウムのような還元剤およびコバルト粉
を混合し、該混合物を容器に充填して常圧のアルゴンの
ような不活性ガス雰囲気下950〜1200℃で30分
〜4時間加熱する。
In the present invention, first, samarium oxide, praseodymium oxide, a reducing agent such as calcium, and cobalt powder are mixed, and the mixture is filled into a container and heated to 950 to 1200 ml under an inert gas atmosphere such as argon at normal pressure. Heat at ℃ for 30 minutes to 4 hours.

こうすることによって、サマリウム酸化物とプラセオジ
ム酸化物を還元し生成したサマリウムとプラセオジムを
コバルト粉末中に拡散させる。この反応によって生成し
た反応生成物には、600〜900℃に降温させその温
度で30分〜5時間保持後、その温度から 10℃/分
以上で急冷する熱処理を施す。この熱処理において加熱
が600℃未満、30分未満では、生成していた異相を
1=5系の単相にし、かつ熱歪を取って安定な保磁力を
得せしめるという熱処理の効果が十分得られず、一方9
00℃を超え、5時間を超えると、得られる磁石粉末の
組成が後記の限定範囲から外れ易く、1−5系以外の異
相が生成し易くなるため、加熱条件を600〜900℃
で30分〜5時間とした。また、訓熱後の冷却は、1・
O・℃/分以上の冷却速度で行なう必要がある。これは
、10℃/分未満では、1−5系以外の異相が生成し易
いからである。
By doing this, samarium and praseodymium produced by reducing samarium oxide and praseodymium oxide are diffused into the cobalt powder. The reaction product produced by this reaction is subjected to a heat treatment in which the temperature is lowered to 600 to 900°C, held at that temperature for 30 minutes to 5 hours, and then rapidly cooled from that temperature at a rate of 10°C/min or more. In this heat treatment, if the heating is less than 600°C and less than 30 minutes, the effect of the heat treatment, which is to change the generated heterophase to a single phase of 1 = 5 system and to remove thermal strain and obtain a stable coercive force, cannot be obtained. On the other hand 9
If the temperature exceeds 00°C and exceeds 5 hours, the composition of the obtained magnet powder will tend to deviate from the limited range described below, and different phases other than the 1-5 system will be likely to be generated, so the heating conditions should be adjusted to 600 to 900°C.
The duration was 30 minutes to 5 hours. In addition, cooling after heating is 1.
It is necessary to perform the cooling at a cooling rate of 0.degree. C./min or more. This is because if the temperature is less than 10° C./min, different phases other than the 1-5 system are likely to be generated.

得られた熱処理物を水中に投入しスラリー状にし、該ス
ラリーを水および酸水溶液例えば希酢酸で処理する。こ
の操作は通常採用されている方法によればよい。得られ
次粉末は、更に平均粒径が3〜10μmとなるように粉
砕する。平均粒径が3μm未満では残留磁束密度が低下
し、一方10μmを超えると保磁力が低下するため、平
均粒径が3〜10μmとなるようにした。
The obtained heat-treated product is poured into water to form a slurry, and the slurry is treated with water and an aqueous acid solution such as dilute acetic acid. This operation may be performed by a commonly used method. The resulting powder is further ground to an average particle size of 3 to 10 μm. If the average particle size is less than 3 μm, the residual magnetic flux density will decrease, while if it exceeds 10 μm, the coercive force will decrease, so the average particle size was adjusted to 3 to 10 μm.

このようにして得られた磁石粉末は、その組成がSm、
 、Pr、Coz(但し、0.05≦x≦0.4,4.
7≦z≦5.3)となりていることが必要である。Xが
0.05未満ではプラセオジムの添加による残留磁束密
度の向上が十分でなく、一方Xが0.4を超えると保磁
力が急激に低下するからで、また、2が4.7未満では
製造された磁石粉末中に1−3系や2−7系の異相が生
成して残留磁束密度が低下し易く、一方 Zが5.3を
超えると2−17系の異相が生成して保磁力が低下し易
いからである。
The magnetic powder thus obtained has a composition of Sm,
, Pr, Coz (however, 0.05≦x≦0.4, 4.
7≦z≦5.3). If X is less than 0.05, the improvement in residual magnetic flux density by the addition of praseodymium will not be sufficient, while if X exceeds 0.4, the coercive force will decrease rapidly, and if 2 is less than 4.7, the manufacturing Different phases of 1-3 series and 2-7 series are generated in the magnet powder, which tends to lower the residual magnetic flux density.On the other hand, when Z exceeds 5.3, different phases of 2-17 series are generated and the coercive force decreases. This is because it tends to decrease.

〔実施例〕〔Example〕

以下、本発明を実施例について説明する。 Hereinafter, the present invention will be explained with reference to examples.

実施例I Sm、03粉、Pr5o+を粉、Co粉および00粒を
所定の組成になるように配合して(全量120〜13Q
y)混合し、1100℃に保持された電気炉中、Ar 
雰囲気下で3時間保持した後、放冷し、900℃より水
冷した。得られた反応生成物を水およびpH約2−5の
希酢酸で処理して、該反応生成物中のCα0.未反応C
αを分離除去した。得られた粉末は、付着水分をエチル
アルコールで置換した後、乾燥した。
Example I Sm, 03 powder, Pr5o+ powder, Co powder and 00 grains were blended to a predetermined composition (total amount 120-13Q
y) Ar
After being kept in the atmosphere for 3 hours, it was allowed to cool, and then water-cooled from 900°C. The resulting reaction product was treated with water and dilute acetic acid at a pH of about 2-5 to reduce Cα0. Unreacted C
α was separated and removed. The obtained powder was dried after the adhering moisture was replaced with ethyl alcohol.

更に、これらの粉末を、回転ボールミルで微粉砕した。Furthermore, these powders were pulverized using a rotating ball mill.

こうして得られた微粉末試料の組成および平均粒径を第
1表に示す。
Table 1 shows the composition and average particle size of the fine powder sample thus obtained.

第  1  表 また、前記操作で1100℃で3時間加熱した後、反応
生成物はそのままKして1時間を要して電気炉中の温度
をSOO℃に降温させその温度で2時間保持し、更にA
t  ガスを送風することによジ急冷し、得られた熱処
理物を水および酸水溶液の処理に供した以外は、前記操
作と同様にして、微粉末試料を作成した。これらの粉末
の組成および千羽粒径を第2表に示す。
Table 1 Also, after heating at 1100°C for 3 hours in the above operation, the reaction product was heated as it was, taking 1 hour to lower the temperature in the electric furnace to SOO°C, and holding at that temperature for 2 hours. Further A
A fine powder sample was prepared in the same manner as described above, except that the sample was rapidly cooled by blowing t gas and the obtained heat-treated product was treated with water and an aqueous acid solution. The compositions and particle sizes of these powders are shown in Table 2.

第  2  表 以上のようにして用意した磁石粉末に対して、樹脂とし
てエポキシ樹脂を外削で5.0重量%添加混合し、13
 KOeの磁場中4tOn/crlの圧力で圧縮成形し
た後、成形体120℃のオーブン中で2時間保持してエ
ポキシ樹脂を硬化させた。得られた樹脂磁石の磁気的特
性を測定した結果を第3表に示す。
Table 2 To the magnet powder prepared as described above, 5.0% by weight of epoxy resin was added and mixed as a resin by external cutting.
After compression molding in a KOe magnetic field at a pressure of 4 tOn/crl, the molded product was held in an oven at 120° C. for 2 hours to harden the epoxy resin. Table 3 shows the results of measuring the magnetic properties of the obtained resin magnet.

第  3  表 実施例2 実施例1の試験N11lおよび2の配合で混合しく但し
、全量120〜2609)、1100℃に保持された電
気炉中、At 雰囲気下で2時間保持した後、試N7I
Lmlの方は実施例1で熱処理しない方の操作と同様に
微粉砕まで行ない(試験部17)、試験部2の方は、所
定のAr中加熱後Arガスを送風する急冷を行なう熱処
理を施し、更に実施例1で熱処理した方の操作と同様に
微粉砕まで行なった(試験部18〜27)。
Table 3 Example 2 Tests N11l and 2 of Example 1 were mixed together (however, the total amount was 120-2609), and after being kept in an electric furnace maintained at 1100°C for 2 hours under At atmosphere, test N7I was mixed.
Lml was subjected to fine pulverization in the same manner as in Example 1 without heat treatment (test section 17), and test section 2 was heat treated by heating in a predetermined Ar atmosphere and then quenching by blowing Ar gas. Further, fine pulverization was performed in the same manner as in the heat-treated portion in Example 1 (test sections 18 to 27).

以上のようにして用意した磁石粉末に対して、樹脂とし
てポリアミド樹脂(ナイロン6)を外削で9.0重量%
添加混疎し、ベレット化した後、10KOeの磁場中で
射出成形した。得られた樹脂磁石の磁気的特性を測定し
た結果を第4表に示す。
To the magnet powder prepared as above, 9.0% by weight of polyamide resin (nylon 6) was added as a resin by external cutting.
After addition, mixing, and pelletizing, injection molding was performed in a magnetic field of 10 KOe. Table 4 shows the results of measuring the magnetic properties of the obtained resin magnet.

(以下余白) 第  4  表 〔発明の効果〕 以上から明らかなように、本発明は、還元拡散法によっ
て、残留磁束密度が向上した高い最大エネルギー損を有
する樹脂磁石用に好適の1−5系希土類元素−コバルト
磁石粉末を熱処理を行なうことによって製造することが
できるものである。
(The following is a blank space) Table 4 [Effects of the Invention] As is clear from the above, the present invention has developed a 1-5 system suitable for resin magnets having improved residual magnetic flux density and high maximum energy loss by the reduction diffusion method. It can be manufactured by heat-treating rare earth element-cobalt magnet powder.

また、サマリウムを一部置換するプラセオジムはサマリ
ウムより豊富で安価であり、従って、樹脂磁石用に好適
の1−5系希土類元素−コノ(ルト磁石粉末を安価にM
造することのできる本発明の工業的意義は非常に犬であ
る。
In addition, praseodymium, which partially replaces samarium, is more abundant and cheaper than samarium.
The industrial significance of the invention that can be made is very significant.

Claims (1)

【特許請求の範囲】[Claims] (1)サマリウム酸化物、プラセオジム酸化物およびコ
バルト粉末を配合した混合物を加熱還元し生成したサマ
リウムとプラセオジムを該コバルト粉末中に拡散させ、
その反応生成物に600〜900℃で30分〜5時間保
持後その温度から10℃/分以上で急冷する熱処理を施
し、得られた熱処理物を水中に投入してスラリー状にし
、該スラリーを水および酸水溶液で処理した後、平均粒
径が3〜10μmとなるように粉砕して、その組成がS
m_1_−_xPr_xCo_z(但し、0.05≦x
≦0.4、4.7≦z≦5.3)で表わされる磁石粉末
を得ることを特徴とする樹脂磁石用希土類元素−コバル
ト系磁石粉末の製造方法。
(1) A mixture of samarium oxide, praseodymium oxide and cobalt powder is heated and reduced, and the generated samarium and praseodymium are diffused into the cobalt powder,
The reaction product is heated at 600 to 900°C for 30 minutes to 5 hours and then rapidly cooled from that temperature at a rate of 10°C/minute or more.The resulting heat-treated product is poured into water to form a slurry. After treatment with water and acid aqueous solution, it is ground to an average particle size of 3 to 10 μm, and its composition is S
m_1_−_xPr_xCo_z (however, 0.05≦x
A method for producing rare earth element-cobalt-based magnet powder for resin magnets, characterized by obtaining magnet powder represented by the following formulas: ≦0.4, 4.7≦z≦5.3).
JP60037703A 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet Granted JPS61198704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60037703A JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet
US06/834,420 US4689073A (en) 1985-02-28 1986-02-28 Method for production of rare-earth element/cobalt type magnetic powder for resin magnet
US07/219,856 US4865660A (en) 1985-02-28 1988-07-13 Rare-earth element/cobalt type magnet powder for resin magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037703A JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61040847A Division JPS61199607A (en) 1986-02-26 1986-02-26 Rare earth element/cobalt magnet powder for resinous magnet

Publications (2)

Publication Number Publication Date
JPS61198704A true JPS61198704A (en) 1986-09-03
JPH0426523B2 JPH0426523B2 (en) 1992-05-07

Family

ID=12504886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037703A Granted JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Country Status (1)

Country Link
JP (1) JPS61198704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489503A (en) * 1987-09-30 1989-04-04 Omron Tateisi Electronics Co Permanent magnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489503A (en) * 1987-09-30 1989-04-04 Omron Tateisi Electronics Co Permanent magnet material

Also Published As

Publication number Publication date
JPH0426523B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
JPH07509103A (en) Magnetic materials and their manufacturing methods
US4082582A (en) As - cast permanent magnet sm-co-cu material, with iron, produced by annealing and rapid quenching
US4116726A (en) As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching
JPS61198704A (en) Manufacture of rare earth element-cobalt group magnet powder for resin magnet
JPH0372124B2 (en)
US4689073A (en) Method for production of rare-earth element/cobalt type magnetic powder for resin magnet
JPS6320411A (en) Production of material for permanent magnet
US4865660A (en) Rare-earth element/cobalt type magnet powder for resin magnets
JPH1060505A (en) Production of rare-earth element-transition metal alloy powder for permanent magnet
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS61203603A (en) Preparation of rare-earth element-cobalt magnet powder for resin magnet
JPH05148517A (en) Production of rare earth-transition metal-nitrogen alloy powder
JPS60246603A (en) Manufacture of rare earth-cobalt magnet powder for resin magnet
JPS62122106A (en) Sintered permanent magnet
JPS6037602B2 (en) Permanent magnet material and its manufacturing method
KR20010057613A (en) Fabrication method of thermosetting bonded Fe-Cr-Co magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS63216307A (en) Alloy powder for magnet
JPH0328504B2 (en)
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof
JPS6245686B2 (en)
JPS61198703A (en) Manufacture of rare earth element-cobalt group magnet powder for resin magnet
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPH05243025A (en) Permanent magnet material and manufacture thereof
JPH01179305A (en) Manufacture of anisotropic permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees