JPH0328504B2 - - Google Patents

Info

Publication number
JPH0328504B2
JPH0328504B2 JP61302626A JP30262686A JPH0328504B2 JP H0328504 B2 JPH0328504 B2 JP H0328504B2 JP 61302626 A JP61302626 A JP 61302626A JP 30262686 A JP30262686 A JP 30262686A JP H0328504 B2 JPH0328504 B2 JP H0328504B2
Authority
JP
Japan
Prior art keywords
weight
hours
stage aging
aging
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61302626A
Other languages
Japanese (ja)
Other versions
JPS63157845A (en
Inventor
Teruo Kyomya
Takaaki Yasumura
Yasutoshi Mizuno
Kazuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61302626A priority Critical patent/JPS63157845A/en
Publication of JPS63157845A publication Critical patent/JPS63157845A/en
Publication of JPH0328504B2 publication Critical patent/JPH0328504B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、希土類元素とコバルトを主成分とす
るR2Co17系(但しRはYを含む希土類元素)永
久磁石材料の製造方法に関し、更に詳しくは、そ
れに銅とバナジウムを添加した2−17型希土類磁
石合金の製造方法に関するものである。 [従来の技術] R−Co−Fe−Cu系の2−17型希土類永久磁石
合金は従来公知である。この系の合金材料におい
て、Cuの添加は保磁力を高める効果があり10重
量%以上は必要であるとされていた。しかし高い
残留磁化を得るためにはCuの添加量を減少させ
なければならない。 この問題を解決するため適量のV(バナジウム)
を複合添加する技術が報告されている(特公昭57
−37660号公報)。それによればCuを7〜19重量
%含有させ、Vを0.5〜6重量%添加している。 [発明が解決しようとする問題点] 上記の技術ではCuの含有量を減少させたとは
言え、まだ7重量%以上は必要であり残留磁化を
向上させ難い問題があつた。 本発明の目的は、Cuが7重量%以下という低
い組成領域のR−Co−Fe−Cu−V磁石合金材料
においても、熱処理条件を適切に設定することに
よつて永久磁石の保磁力を実用範囲まで高めるこ
とができ、結果として高エネルギー積を有するよ
うな永久磁石材料の製造方法を提供することにあ
る。 [問題点を解決するための手段] 本発明者等はR−Co−Fe−Cu−V系の希土類
永久磁石合金材料に関しCuの量を極力少なくし
つつ永久磁石としての保磁力を実用範囲まで高め
うる方法について種々検討した結果、特定の組成
領域で焼結し溶体化処理を施した材料について2
段時効を行い、第2段時効を第1段時効よりも高
い温度で行い所定の速度で冷却することによつて
前記目的を達成できることを見出し、本発明を完
成させるに至つたものである。 即ち本発明において素材となる原料とその重量
比率は、22〜28重量%のR(但しRはY(イツトリ
ウム)を含む希土類元素の1種もしくは2種以
上)、5〜25重量%のFe、0.1〜7重量%のCu、
0.1〜5重量%のV、残部がCoからなる組成であ
る。 このような組成の材料をまず1150〜1250℃で焼
結し、1100〜1230℃で且つ焼結温度より低い温度
で溶体化処理を行う。次に第1段時効として400
〜900℃で等温処理し、第2段時効として第1段
時効よりも高い温度でしかも700〜1000℃で等温
処理を行う。その後、毎分0.1〜10℃の冷却速度
で連続的に300〜600℃まで冷却するものである。 本発明の特徴は、上記のようにR−Co−Fe−
Cu組成にVを添加し、第1段時効よりも高い温
度で第2段時効を行い、引き続いて所定の速度で
冷却する点にある。 本発明における合金の組成比率や処理条件等は
全て以下に述べる実施例に示すような実験結果に
基づいている。R、Co、Feの比率は、この種の
三元系組成物で一般的に使用されているものとほ
ぼ同様である。Rを22〜28重量%としたのは22重
量%未満では保磁力が小さく、28重量%超えると
残留磁化が低下するからである。Feを5〜25重
量%としたのは、5重量%未満ではBrが低く25
重量%を超えるとiHcが低下するからである。 Cuの含有量を0.1〜7重量%としたのは、従来
は7重量%以上でないと保磁力が発生しなかつた
が、熱処理条件を適切に設定すれば保磁力を実用
範囲まで高められるとともにBrを向上させるこ
とができる。更に0.1〜7重量%の範囲において
熱処理を短時間で行う必要のある場合はCuの含
有量を多くし、その必要のない場合はCuの含有
量を少なくできる等の調整も可能である。Vの添
加量を0.1〜5重量%としたのは、添加量が少な
すぎると保磁力が小さくなり、5重量%を超える
とBrが小さくなるからである。 焼結温度を1150〜1250℃としたのは、1150℃未
満では焼結密度が上昇せずBrが低くなるし、焼
結温度が高いほど密度が上がり残留磁化が高くな
るが1250℃を超えると焼結体が溶け残留磁化がか
えつて低くなるからである。焼結温度より低い
1100〜1230℃で溶体化処理を行うのは、1100℃未
満や1230℃を超えると、あるいは焼結温度より高
い温度ではエネルギー積が改善されないからであ
る。 また第1段時効よりも高い温度で第2段時効を
行い、第2段時効温度から連続冷却するのは、そ
れによつてCuが7重量%以下の場合でも高い保
磁力を保たせることができるからである。 [作用] このような特定の合金組成と特殊な熱処理条件
を採用することによつて、R−Co−Fe−Cu−V
系の合金磁石材料においてCuを7重量%以下に
少なくしても、高い残留磁化を維持し保磁力を実
用性の範囲まで高めることができる。 実施例 1 (合金の組成) Sm=25.0重量%、Fe=10.4重量%、Cu=3.9重
量%、V=1.6重量%、残部がCoからなる。 (前工程) 必要とする合金材料を高周波溶解炉で溶解し、
ジヨークラツシヤーによつて粗粉砕した後、ジエ
トミルにより微粉砕した。この微粉砕粉体を
15kOeの磁場中で成形圧3ton/cm2で圧縮成形し
た。 (熱処理) 1210℃で5時間の焼結を行い、1180℃で4時間
の溶体化処理を行つた。 そして第1段時効を600〜850℃で2時間行い、
第2段時効として900℃で3時間保持し、引き続
いて0.5℃/分の冷却速度で400℃まで冷却した。
第1段時効の温度に対するbHcの測定結果を第1
表に示す。 第2表は700℃で1〜8時間の第1段時効処理
後、第2段時効として900℃で3時間処理し、引
き続いて0.5℃/分の冷却速度で400℃まで冷却し
た場合のbHcの測定結果である。 第3表は700℃で2時間の第1段時効処理後、
第2段時効として850〜950℃で3時間処理し、引
き続いて0.5℃/分の冷却速度で400℃まで冷却し
た場合のbHc、iHcの測定結果である。 第4表は700℃で2時間の第1段時効処理後、
第2段時効として900℃で1〜8時間処理し、引
き続いて0.5℃/分の冷却速度で400℃まで冷却し
た場合のbHc、iHcの測定結果である。 第5表は700℃で2時間の第1段時効処理後、
第2段時効として900℃で3時間処理し、引き続
いて0.1〜10℃/分の冷却速度で400℃まで冷却し
た場合のbHc、iHcの測定結果である。
[Industrial Application Field] The present invention relates to a method for producing an R 2 Co 17- based permanent magnet material whose main components are rare earth elements and cobalt (wherein R is a rare earth element containing Y), and more specifically, it relates to a method for producing a permanent magnet material containing rare earth elements and cobalt as main components (wherein R is a rare earth element containing Y). The present invention relates to a method for manufacturing a 2-17 type rare earth magnet alloy containing vanadium. [Prior Art] A 2-17 type rare earth permanent magnet alloy based on R-Co-Fe-Cu is conventionally known. In this type of alloy material, the addition of Cu has the effect of increasing the coercive force, and it has been said that 10% by weight or more of Cu is necessary. However, in order to obtain high residual magnetization, the amount of Cu added must be reduced. To solve this problem, an appropriate amount of V (vanadium)
A technology for compound addition of
-37660). According to this, Cu is contained in an amount of 7 to 19% by weight, and V is added in an amount of 0.5 to 6% by weight. [Problems to be Solved by the Invention] Although the above technique reduces the Cu content, it still requires a Cu content of 7% by weight or more, making it difficult to improve residual magnetization. The purpose of the present invention is to make the coercive force of a permanent magnet practical by appropriately setting heat treatment conditions even in R-Co-Fe-Cu-V magnet alloy materials with a low Cu content of 7% by weight or less. The object of the present invention is to provide a method for producing a permanent magnet material which can be increased to a range of 100 to 100 nm and has a high energy product as a result. [Means for Solving the Problems] The present inventors have reduced the amount of Cu in the R-Co-Fe-Cu-V rare earth permanent magnet alloy material to the extent possible while increasing the coercive force as a permanent magnet to a practical range. As a result of various studies on methods that could improve the
The inventors have discovered that the above object can be achieved by performing stage aging, performing the second stage aging at a higher temperature than the first stage aging, and cooling at a predetermined rate, leading to the completion of the present invention. That is, the raw materials and their weight ratios in the present invention are 22 to 28% by weight of R (wherein R is one or more rare earth elements including Y (yttrium)), 5 to 25% by weight of Fe, 0.1-7% by weight Cu,
The composition is 0.1 to 5% by weight of V and the balance is Co. A material having such a composition is first sintered at 1150 to 1250°C, and then subjected to solution treatment at 1100 to 1230°C and at a temperature lower than the sintering temperature. Next, 400 as the first stage statute of limitations.
Isothermal treatment is performed at ~900°C, and second stage aging is performed at a temperature higher than the first stage aging, and at 700~1000°C. Thereafter, it is continuously cooled to 300-600°C at a cooling rate of 0.1-10°C per minute. The characteristics of the present invention are as described above.
The point is that V is added to the Cu composition, second stage aging is performed at a higher temperature than the first stage aging, and then cooling is performed at a predetermined rate. The alloy composition ratio, processing conditions, etc. in the present invention are all based on experimental results as shown in the Examples described below. The ratios of R, Co, and Fe are approximately similar to those commonly used in ternary compositions of this type. The reason why R is set to 22 to 28% by weight is that if it is less than 22% by weight, the coercive force will be small, and if it exceeds 28% by weight, the residual magnetization will be reduced. The reason why Fe is set at 5 to 25% by weight is that if it is less than 5% by weight, Br is low and 25
This is because if the amount exceeds % by weight, iHc decreases. The reason for setting the Cu content to 0.1 to 7% by weight is that conventionally coercive force was not generated unless it was 7% by weight or more, but if heat treatment conditions are appropriately set, coercive force can be increased to a practical range and Br. can be improved. Further, in the range of 0.1 to 7% by weight, adjustments can be made such as increasing the Cu content if heat treatment is required in a short time, and decreasing the Cu content if it is not necessary. The reason why the amount of V added is set to 0.1 to 5% by weight is because if the amount added is too small, the coercive force becomes small, and if it exceeds 5% by weight, Br becomes small. The reason why the sintering temperature was set at 1150 to 1250℃ is that below 1150℃, the sintered density does not increase and Br decreases, and the higher the sintering temperature, the higher the density and the higher the residual magnetization, but above 1250℃. This is because the sintered body melts and the residual magnetization becomes lower. lower than sintering temperature
The reason why the solution treatment is performed at 1100 to 1230°C is because the energy product cannot be improved at temperatures below 1100°C, above 1230°C, or at temperatures higher than the sintering temperature. Furthermore, performing the second aging at a higher temperature than the first aging and continuously cooling from the second aging temperature makes it possible to maintain high coercive force even when the Cu content is 7% by weight or less. It is from. [Function] By adopting such a specific alloy composition and special heat treatment conditions, R-Co-Fe-Cu-V
Even if Cu is reduced to 7% by weight or less in the alloy magnet material of the system, high residual magnetization can be maintained and the coercive force can be increased to a practical range. Example 1 (Composition of alloy) Sm=25.0% by weight, Fe=10.4% by weight, Cu=3.9% by weight, V=1.6% by weight, the balance being Co. (Pre-process) The required alloy material is melted in a high frequency melting furnace,
The mixture was coarsely pulverized using a diyoke crusher, and then finely pulverized using a diet mill. This finely pulverized powder
Compression molding was carried out at a molding pressure of 3 ton/cm 2 in a magnetic field of 15 kOe. (Heat treatment) Sintering was performed at 1210°C for 5 hours, and solution treatment was performed at 1180°C for 4 hours. Then, the first stage aging was performed at 600 to 850℃ for 2 hours.
As the second stage aging, the temperature was maintained at 900°C for 3 hours, and then the material was cooled to 400°C at a cooling rate of 0.5°C/min.
The measurement results of bHc with respect to the temperature of the first stage aging are
Shown in the table. Table 2 shows the bHc after the first aging treatment at 700℃ for 1 to 8 hours, followed by the second aging treatment at 900℃ for 3 hours, and then cooling to 400℃ at a cooling rate of 0.5℃/min. These are the measurement results. Table 3 shows that after the first stage aging treatment at 700℃ for 2 hours,
These are the measurement results of bHc and iHc when treated at 850 to 950°C for 3 hours as second stage aging, and subsequently cooled to 400°C at a cooling rate of 0.5°C/min. Table 4 shows the results after the first aging treatment at 700℃ for 2 hours.
These are the measurement results of bHc and iHc when the second stage aging was performed at 900°C for 1 to 8 hours, and subsequently cooled to 400°C at a cooling rate of 0.5°C/min. Table 5 shows that after the first aging treatment at 700℃ for 2 hours,
These are the measurement results of bHc and iHc when treated at 900°C for 3 hours as the second stage aging, and subsequently cooled to 400°C at a cooling rate of 0.1 to 10°C/min.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 これらの表から分かるように、1つの組成であ
つても熱処理条件を変えることによつて種々の用
途に適した高性能の磁石合金が得られる。 比較例 1 (合金の組成)……実施例1に同じ (前工程)……実施例1に同じ (熱処理) 1210℃で5時間の焼結を行い、1180℃で4時間
の溶体化処理を行つた。 そして900℃で5時間の時効処理を行い、引き
続いて0.5℃/分の冷却速度で400℃まで冷却し
た。得られた永久磁石合金の特性は次の通りであ
る。 iHc=2.1kOe Br=11.5kG この結果から、本発明範囲内の組成であつても
従来のような一段時効処理では高い特性を得るこ
とができないことが判る。 実施例 2 (焼結体の組成) Sm=25.0重量%、Fe=10.4重量%、Cu=3.9重
量%、V=0〜6重量%、残部がCoからなる。 (前工程)……実施例1に同じ (熱処理) Vの含有量に応じて1180〜1210℃で5時間焼結
し、1140〜1205℃で且つ焼結温度より低い温度で
5時間の溶体化処理を行つた後、第1段時効とし
て700℃で2時間保持し、第2段時効を900℃で3
時間行い、その温度から0.5℃/分の冷却速度で
400℃まで冷却した。Vの含有量に対するbHc、
iHc、Brの測定結果を第6表に示す。
[Table] As can be seen from these tables, high-performance magnetic alloys suitable for various uses can be obtained even with one composition by changing the heat treatment conditions. Comparative Example 1 (Alloy composition)...Same as Example 1 (Pre-process)...Same as Example 1 (Heat treatment) Sintering was performed at 1210°C for 5 hours, and solution treatment was performed at 1180°C for 4 hours. I went. Then, aging treatment was performed at 900°C for 5 hours, followed by cooling to 400°C at a cooling rate of 0.5°C/min. The properties of the obtained permanent magnet alloy are as follows. iHc=2.1kOe Br=11.5kG From these results, it can be seen that even if the composition is within the range of the present invention, high properties cannot be obtained by the conventional one-stage aging treatment. Example 2 (Composition of sintered body) Sm=25.0% by weight, Fe=10.4% by weight, Cu=3.9% by weight, V=0 to 6% by weight, and the balance is Co. (Pre-process)...Same as Example 1 (Heat treatment) Sintering at 1180 to 1210°C for 5 hours depending on the V content, and solution treatment for 5 hours at 1140 to 1205°C and at a temperature lower than the sintering temperature. After the treatment, the first stage aging was held at 700℃ for 2 hours, and the second stage aging was held at 900℃ for 3 hours.
from that temperature at a cooling rate of 0.5℃/min.
Cooled to 400°C. bHc for V content,
The measurement results of iHc and Br are shown in Table 6.

【表】 Vを含まない場合は保磁力が小さく、また5重
量%を超えて更に多くなると残留磁化が低下して
いく。より好ましいVの添加範囲は1.5〜3.5重量
%である。 実施例 3 (焼結体の組成) Sm=9.0〜25.0重量%、Ce=0〜16.0重量%
(但しSm+Ce=25.0重量%)、Fe=10.4重量%、
Cu=3.9重量%、V=1.6重量%、残部がCoからな
る。 (前工程)……実施例1に同じ (熱処理) Ceの含有量に応じて1180〜1210℃で5時間焼
結し、1140〜1205℃で且つ焼結温度より低い温度
で4時間の溶体化処理を行つた。その後、第1段
時効として700℃で2時間保持し、第2段時効を
900℃で3時間行い、その温度から0.5℃/分の冷
却速度で400℃まで冷却した。SmとCeの含有比
率に対するbHc、iHc、Brの測定結果を第7表に
示す。
[Table] When V is not included, the coercive force is small, and when the amount exceeds 5% by weight, the residual magnetization decreases. A more preferable addition range of V is 1.5 to 3.5% by weight. Example 3 (Composition of sintered body) Sm = 9.0 to 25.0% by weight, Ce = 0 to 16.0% by weight
(However, Sm + Ce = 25.0 weight%), Fe = 10.4 weight%,
Cu = 3.9% by weight, V = 1.6% by weight, the balance being Co. (Pre-process)...Same as Example 1 (Heat treatment) Sintering at 1180-1210℃ for 5 hours depending on the Ce content, and solution treatment for 4 hours at 1140-1205℃ and at a temperature lower than the sintering temperature. I processed it. After that, it was held at 700℃ for 2 hours as the first stage aging, and then the second stage aging was carried out.
It was heated at 900°C for 3 hours, and then cooled from that temperature to 400°C at a cooling rate of 0.5°C/min. Table 7 shows the measurement results of bHc, iHc, and Br with respect to the content ratio of Sm and Ce.

【表】 Ceの置換量が多くなるほど特性は悪くなるが、
Smの一部をCeで置換しても実用上は十分な特性
が得られる。つまりSm以外のYを含む希土類元
素においても本発明方法は有効である。 実施例 4 (焼結体の組成) Sm=25.0重量%、Fe=10.4重量%、Cu=0〜
8重量%、V=1.6重量%、残部がCoからなる。 (前工程)……実施例1に同じ (熱処理) Cuの含有量に応じて1180〜1210℃で5時間の
焼結を行い、1140〜1205℃で且つ焼結温度より低
い温度で4時間の溶体化処理を行つた。その後、
第1段時効として700℃で2時間保持し、第2段
時効を900℃で3時間行い、その温度から0.5℃/
分の冷却速度で400℃まで冷却した。Cuの含有量
に対するiHc、Br、(BH)naxの測定結果を第8表
に示す。
[Table] The characteristics worsen as the amount of Ce substitution increases, but
Even if a part of Sm is replaced with Ce, sufficient characteristics can be obtained for practical use. In other words, the method of the present invention is also effective for rare earth elements containing Y other than Sm. Example 4 (Composition of sintered body) Sm=25.0% by weight, Fe=10.4% by weight, Cu=0~
8% by weight, V = 1.6% by weight, the balance being Co. (Pre-process)...Same as Example 1 (Heat treatment) Sintering was performed at 1180-1210℃ for 5 hours depending on the Cu content, and 4 hours at 1140-1205℃ and lower than the sintering temperature. Solution treatment was performed. after that,
The first stage aging was held at 700℃ for 2 hours, the second stage aging was performed at 900℃ for 3 hours, and from that temperature 0.5℃/
It was cooled to 400°C at a cooling rate of 1 minute. Table 8 shows the measurement results of iHc, Br, and (BH) nax with respect to the Cu content.

【表】 このようにCuの含有量が7重量%以下でもV
が添加され、かつ本発明の熱処理方法が採られる
ならば高い保磁力が得られる。しかしCuが全く
含まれていないと保磁力が低くなる。 比較例 2 (合金の組成) Sm=25.0重量%、Fe=10.4重量%、Cu=8重
量%、残部がCoからなる。 (前工程)……実施例1に同じ (熱処理) 1175℃で5時間の焼結を行い、1135℃で4時間
の溶体化処理を行つた。 そして700℃で2時間の時効処理を行い、850℃
で4時間の時効処理をし、引き続いて0.5℃/分
の冷却速度で400℃まで冷却した。得られた永久
磁石合金の特性は次の通りである。 iHc=3.5kOe Br=8.0kG (BH)nax=12.5MGOe この結果から、従来の熱処理条件で高い保磁力
が得られていたCuの多い領域で本発明のような
熱処理を施すと、逆に保磁力が低下することが判
る。 [発明の効果] 本発明は上記のように特定の合金組成を採用し
焼結後に溶体化処理を行い、先ず第1段時効を行
い次にその第1段時効よりも高い温度で第2段時
効を行つてから連続的に所定温度まで冷却する熱
処理工程を採用したことによつて、Cuの量を7
重量%以下に低くしても従来技術と同程度の永久
磁石に必要な保磁力を発現させることができ、し
かもCuが低い分だけ高い残留磁化が得られ、高
いエネルギー積を発生させることができる優れた
効果が生じる。
[Table] In this way, even if the Cu content is 7% by weight or less, V
is added and the heat treatment method of the present invention is employed, a high coercive force can be obtained. However, if Cu is not included at all, the coercive force will be low. Comparative Example 2 (Composition of Alloy) Sm=25.0% by weight, Fe=10.4% by weight, Cu=8% by weight, the balance being Co. (Pre-process) Same as Example 1 (Heat treatment) Sintering was performed at 1175°C for 5 hours, and solution treatment was performed at 1135°C for 4 hours. Then, it was aged at 700℃ for 2 hours, and then aged at 850℃.
Aging treatment was performed for 4 hours at 100° C., followed by cooling to 400° C. at a cooling rate of 0.5° C./min. The properties of the obtained permanent magnet alloy are as follows. iHc = 3.5kOe Br = 8.0kG (BH) nax = 12.5MGOe From these results, it can be seen that when heat treatment as in the present invention is applied to the Cu-rich region where high coercive force was obtained under conventional heat treatment conditions, conversely, the coercive force is It can be seen that the magnetic force decreases. [Effects of the Invention] As described above, the present invention employs a specific alloy composition, performs solution treatment after sintering, first performs first stage aging, and then performs second stage aging at a higher temperature than the first stage aging. By adopting a heat treatment process that involves aging and then continuously cooling to a predetermined temperature, the amount of Cu can be reduced by 70%.
Even if it is reduced to less than % by weight, it is possible to produce the coercive force required for a permanent magnet equivalent to that of conventional technology, and because the Cu content is low, a high residual magnetization can be obtained and a high energy product can be generated. Excellent effects occur.

Claims (1)

【特許請求の範囲】[Claims] 1 22〜28重量%のR(但しRはYを含む希土類
元素の1種もしくは2種以上)、5〜25重量%の
Fe、0.1〜7重量%のCu、0.1〜5重量%のV、残
部がCoからなる組成の合金を、1150〜1250℃で
焼結し、1100〜1230℃で且つ焼結温度より低い温
度で溶体化処理を行い、次に第1段時効として
400〜900℃で1時間以上等温処理し、第2段時効
として第1段時効よりも高い温度でしかも700〜
1000℃で等温処理し、引き続いて毎分0.1〜10℃
の冷却速度で連続的に300〜600℃まで冷却するこ
とを特徴とする永久磁石材料の製造方法。
1 22-28% by weight of R (where R is one or more rare earth elements including Y), 5-25% by weight
An alloy with a composition consisting of Fe, 0.1 to 7% by weight of Cu, 0.1 to 5% by weight of V, and the balance Co is sintered at 1150 to 1250℃, and then at 1100 to 1230℃ and at a temperature lower than the sintering temperature. Solution treatment followed by first stage aging
Isothermal treatment is performed at 400 to 900℃ for more than 1 hour, and the second stage aging is performed at a temperature higher than the first stage aging at 700 to 700℃.
Isothermal treatment at 1000℃ followed by 0.1-10℃ per minute
A method for producing a permanent magnet material, characterized by continuously cooling it to 300 to 600°C at a cooling rate of .
JP61302626A 1986-12-18 1986-12-18 Manufacture of permanent magnet material Granted JPS63157845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302626A JPS63157845A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302626A JPS63157845A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS63157845A JPS63157845A (en) 1988-06-30
JPH0328504B2 true JPH0328504B2 (en) 1991-04-19

Family

ID=17911245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302626A Granted JPS63157845A (en) 1986-12-18 1986-12-18 Manufacture of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS63157845A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730361B2 (en) * 1989-05-09 1995-04-05 富士電気化学株式会社 Method for manufacturing magnet powder
WO2015037041A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet, motor, and power generator

Also Published As

Publication number Publication date
JPS63157845A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPS61174364A (en) Permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
US4116726A (en) As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching
JPH0328504B2 (en)
JPH0328503B2 (en)
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPH0568841B2 (en)
JPS62291903A (en) Permanent magnet and manufacture of the same
JP3222919B2 (en) Method for producing nitride-based magnetic material
JPS63216307A (en) Alloy powder for magnet
JPS6263645A (en) Production of permanent magnet material
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPS5848607A (en) Production of rare earth cobalt magnet
JPS6238841B2 (en)
JPS62291902A (en) Manufacture of permanent magnet
JPH02263937A (en) Manufacture of rare earth magnetic alloy
JPS5874005A (en) Permanent magnet
JPS6221858B2 (en)
JPH02240232A (en) Permanent magnet material
JPS6135259B2 (en)
JPS6395611A (en) Manufacture of rare-earth magnet