JPS594107A - Manufacture of rare earth and cobalt group magnetic material - Google Patents

Manufacture of rare earth and cobalt group magnetic material

Info

Publication number
JPS594107A
JPS594107A JP57113683A JP11368382A JPS594107A JP S594107 A JPS594107 A JP S594107A JP 57113683 A JP57113683 A JP 57113683A JP 11368382 A JP11368382 A JP 11368382A JP S594107 A JPS594107 A JP S594107A
Authority
JP
Japan
Prior art keywords
rare earth
sintering
alloy
powder
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57113683A
Other languages
Japanese (ja)
Other versions
JPS6119084B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Kazuhiro Abe
和裕 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57113683A priority Critical patent/JPS594107A/en
Publication of JPS594107A publication Critical patent/JPS594107A/en
Publication of JPS6119084B2 publication Critical patent/JPS6119084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve characteristics of magnetic alloy by making an alloy powder that consists of specified amounts of R (yttrium and rare earth elements), Fe, Cu, Zr and Co and forming the powder under pressure and sintering the formed powder. CONSTITUTION:By the method to form by powder metallurgy a magnetic alloy that belongs to the group of R2T17 (R represents yttrium and rare earth and T a transition metal) an alloy powder is made with 22.5-27.5wt% of R, 15.0- 23.0wt% of Fe, 3.3-5.0wt% of Cu, 1.5-3.5wt% of Zr, and balance of Co. This alloy powder is formed under pressure, and after sintering it at 1,170-1,230 deg.C it is subject to solid solution treatment at 1,130-1,200 deg.C. After this heat treatment at the same temperature as the sintering temperature and heat treatment at the same temperature as the solid solution treatment temperature are repeated. After this the product is held at 600-950 deg.C for 0.2-30hr, and then it is cooled under 500 deg.C with the cooling speed in the range of 0.05-5 deg.C/min.

Description

【発明の詳細な説明】 ットリウム及び希土類元素の少くとも一種を表す)を主
体とするR−Co −Cu−Fe系粉末焼結型永久磁石
材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an R--Co--Cu--Fe-based powder sintered permanent magnet material mainly containing tttrium and at least one of rare earth elements.

R−Co−Cu−Fb合金磁石材料としては,従来では
Cu 1.Owj%程度以上+ Fe 6 wt%以下
とするのが普通であった。その理由はCuの添加量がこ
れより少ない場た。
As R-Co-Cu-Fb alloy magnet materials, Cu1. It was usual to set the content to about Owj% or more + Fe 6 wt% or less. The reason for this is that the amount of Cu added was less than this.

ところで+ Cu 1 0 wt%程度とし, Fe 
3 wt%以下とすると,必然的にCoの含有量が増加
し,高チ以下とした従来のR−Co−Cu−Fe系永久
磁石においては,その製造過程において,溶体化処理後
RCo5相の析出を抑えるため急冷しなければならなか
った。しかし々から1,急冷は,それ自体困難な操作で
あり,冷却媒体を多く必要とするばかりでなく。
By the way, + Cu is about 10 wt%, and Fe
If the Co content is less than 3 wt%, the Co content will inevitably increase, and in the conventional R-Co-Cu-Fe permanent magnets with a high Co content or less, in the manufacturing process, the RCo5 phase is increased after solution treatment. It had to be rapidly cooled to prevent precipitation. However, 1. Rapid cooling is itself a difficult operation and not only requires a large amount of cooling medium.

製品に割れを生じ易く歩留を低くする原因にもなってい
る。
This also tends to cause cracks in the product and lowers the yield.

丑だ、従来の製造方法では、溶体化処理後、多段時効を
行なっているが、その場合、高い保磁力が得られるが、
4πl5−H曲線の第2象限において角型性が悪く肩が
丸くなるという欠点があった。
Unfortunately, in the conventional manufacturing method, multi-stage aging is performed after solution treatment, but in that case, a high coercive force can be obtained.
In the second quadrant of the 4πl5-H curve, the squareness was poor and the shoulders were rounded.

本発明者等は、同日付の別出願(特願昭57−号)にお
いて、粉末焼結型R2T17系磁石合金において、Rを
22.5〜27.5 wt%、 Fe  を15、 (
1〜23.0 wt%、CUを3.3〜5.0 wt%
 、 Zrを165〜3.5wt係+ Coを残部とし
たCoおよびCuの含有量の少ない組成において、従来
と同等以」−の磁気特性を得ながら、溶体化処理後の急
冷を必要としない希土類磁石合金とその製造方法を提案
している。
In a separate application filed on the same date (Japanese Patent Application No. 1983), the present inventors disclosed that in a powder sintered R2T17 magnet alloy, R was 22.5 to 27.5 wt%, Fe was 15 wt%,
1-23.0 wt%, CU 3.3-5.0 wt%
, a rare earth material that does not require rapid cooling after solution treatment while obtaining magnetic properties equivalent to or better than conventional ones in a composition with a low content of Co and Cu, with Zr being 165 to 3.5 wt + Co as the balance. We are proposing a magnetic alloy and its manufacturing method.

本発明は、上記組成の磁石合金の特性を更に向上させる
製造方法を提供し、前述の欠点を解決することを目的と
する。
The present invention aims to solve the above-mentioned drawbacks by providing a manufacturing method that further improves the characteristics of a magnetic alloy having the above-mentioned composition.

本発明の製造方法は、R2T17系磁石合金(ことおい
て、Rを22.5〜27.5 wt%Feを15.0〜
23.0wt%、 Cuを3.3〜5.0 wt% 、
 Zrを 1.5〜3.5wt%、 Coを残部とする
合金粉末を作り。
The manufacturing method of the present invention uses an R2T17 magnet alloy (in particular, R is 22.5 to 27.5 wt% Fe is 15.0 to 27.5 wt%)
23.0 wt%, Cu 3.3 to 5.0 wt%,
An alloy powder containing 1.5 to 3.5 wt% of Zr and the balance of Co is made.

該合金粉末を加圧成形して、1I70℃〜1230℃で
焼結した後、LI30℃〜1200℃で溶体化処理を行
ない、その後、前記焼結流度と同じ温度での熱処理と前
記溶体化処理温度と同じ温度での熱処理を繰り返し、そ
の後600℃〜950℃で02冷却速度で500℃以下
棟で冷却することを特徴とする希土類コバルト系磁石の
製造方法である。
The alloy powder is press-molded and sintered at 1I70°C to 1230°C, followed by solution treatment at LI30°C to 1200°C, followed by heat treatment at the same temperature as the sintering flow rate and the solution treatment. This is a method for producing a rare earth cobalt magnet, which is characterized by repeating heat treatment at the same temperature as the treatment temperature, and then cooling at a temperature of 600° C. to 950° C. at a cooling rate of 0.2° C. below 500° C.

次に、前述した特願昭57年   号の希土類磁石の製
造法を例1として説明する。
Next, the manufacturing method of the rare earth magnet disclosed in the above-mentioned Japanese Patent Application No. 1982 will be explained as Example 1.

例] Smが22.0〜28.0 wt% 、 Feが15.
0−24.0wt%、 CI]が3.0−5.0wt%
、 Zrが1.5〜3.5 wt% 。
Example] Sm is 22.0 to 28.0 wt%, Fe is 15.0 wt%.
0-24.0wt%, CI] is 3.0-5.0wt%
, Zr is 1.5 to 3.5 wt%.

残部・Coの組成で示される合金となるように原料を調
合し、この混合物をアルゴン雰囲気中で、高周波加熱に
よりR2T17系合金を溶解した。この合金を粗粉砕し
、ボールミルを用いて平均粒径約4μmに微粉砕した。
The raw materials were prepared so as to form an alloy having the composition of the remainder Co, and the R2T17 alloy was melted in this mixture by high-frequency heating in an argon atmosphere. This alloy was coarsely ground and then finely ground to an average particle size of about 4 μm using a ball mill.

この粉末を10 koeの磁場中、 ] ton//7
!の圧力で成形した。成形物をAr雰囲気中、1170
℃〜1230℃で1〜2時間焼結した後、1130℃〜
1200℃で溶体化処理を行った後、ブロワ−で150
0℃〜1000℃/時間で空冷した。
]ton//7 of this powder in a magnetic field of 10 koe
! It was molded at a pressure of The molded product was placed in an Ar atmosphere at 1170°C.
After sintering at ℃~1230℃ for 1~2 hours, 1130℃~
After solution treatment at 1200°C, heat treatment at 150°C with a blower
Air cooling was performed at 0°C to 1000°C/hour.

次にこの試別を600〜950℃で02〜30時間保持
した後0.05〜b 度で500℃以下まで冷却した。試別の組成を種種変化
させた場合の磁気特性を夫々、第1図、第2図、第3図
、第4図に示す。
Next, this sample was held at 600 to 950°C for 02 to 30 hours, and then cooled to 500°C or less at 0.05 to 100°C. The magnetic properties when the sample composition is varied are shown in FIGS. 1, 2, 3, and 4, respectively.

第1図はSmを22.0〜28.0 wt%と変え、 
Fe] 9. Owt% 、 Cu 4.5 wt%l
zr26wt%残部coとした場合の特性である。第2
図は、 Sm 26.Owt条。
In Figure 1, Sm is changed from 22.0 to 28.0 wt%,
Fe] 9. Owt%, Cu 4.5 wt%l
These are the characteristics when zr is 26wt% balance co. Second
The figure shows Sm26. Article Owt.

Feを1.5.0〜24.0 wt%と変え、 Cu 
4.8wt%。
Fe was changed from 1.5.0 to 24.0 wt%, and Cu
4.8wt%.

Zr 2.4 wt%、残部coとした場合である。第
3図は、 Sm 26.3wt% 、 Fe 20.5
wt%+Cuを30〜50wt%と変え、 Zr 2.
5wt%、残部Coとした揚鉱ある。第4図は8m 2
6.2 wt%、 Fe 19.5 wt% 。
This is a case where Zr is 2.4 wt% and the balance is co. Figure 3 shows Sm 26.3wt%, Fe 20.5
Change wt%+Cu to 30-50wt%, Zr 2.
There is a pumped ore with 5wt% and the balance Co. Figure 4 is 8m2
6.2 wt%, Fe 19.5 wt%.

Cu 4.9 wt%、 Zrを1.5〜3.5 wt
%と変え、残部c。
Cu 4.9 wt%, Zr 1.5 to 3.5 wt%
% and the remainder is c.

とした場合である。第1図に関して、希土類金属(5) 以下あるいは275%以上ではBrおよびHeが低下し
、従って(BH)maXも低下する。この結果Smの量
は225〜27.5 wt%と限定される。
This is the case. Regarding FIG. 1, when the rare earth metal (5) is less than or equal to 275%, Br and He decrease, and therefore (BH)maX also decreases. As a result, the amount of Sm is limited to 225-27.5 wt%.

第2図に関して、 Fe含有量が23係よりも多くなる
と保磁力IHCが低下し、 (BH)maxも急激に低
下する。!、た15チより少ないとrHCが10kOe
にみたなくなる。従ってFeは15〜23%とする。
Regarding FIG. 2, when the Fe content exceeds 23 parts, the coercive force IHC decreases and (BH)max also decreases rapidly. ! , rHC is less than 15 kOe
It disappears. Therefore, Fe is set at 15 to 23%.

第3図に関して、 Cu量は3.3係以下ではIHcが
低下し5%以上とするとBrが低下してしまう。またC
uが5%より多いと、溶体化処理後の冷却時にRCo5
相が析出しやすくなり、急冷を必要とする。
Regarding FIG. 3, if the Cu amount is less than 3.3%, IHc will decrease, and if it is more than 5%, Br will decrease. Also C
When u is more than 5%, RCo5 decreases during cooling after solution treatment.
Phases tend to precipitate, requiring rapid cooling.

従ってCuは33〜5.Owt係とする。Therefore, Cu is 33-5. I will be in charge of Owt.

第4図に関しては、 Zrの含有量が15〜3.5wt
%の範囲を越えるとBrおよびエネルギー積(BH)m
aXが低下してしまう。
Regarding Figure 4, the Zr content is 15 to 3.5wt.
% range, Br and energy product (BH) m
aX will decrease.

本発明は1例1で示したごときR225〜275wj%
、 Fe 15.0〜23.0wt% 、Cu 3.3
〜5.0wt%+Zr1.5〜3.5wt’% + C
o残部とする焼結型磁石の磁気特性を向上させる製造方
法を提供するものである。
The present invention uses R225 to 275wj% as shown in Example 1.
, Fe 15.0-23.0wt%, Cu 3.3
~5.0wt% + Zr1.5~3.5wt'% + C
The present invention provides a manufacturing method for improving the magnetic properties of a sintered magnet.

(6) 従来、希土類コバルト磁石の焼結及び溶体化処理は第5
図に示すよう々時間一温度のプログラムで処理されるの
が一般的であったが1本発明は。
(6) Traditionally, sintering and solution treatment of rare earth cobalt magnets
As shown in the figure, treatment is generally performed using a one-time-temperature program, but the present invention.

前述のような組成において、第5図に示すような焼結、
溶体化処理を行なった後に、第6図に示すような熱処理
を行うものである。この熱処理は前述の焼結温度(T1
)と同じ温度(’r3)−1:で加熱して保持し、さら
に前記溶体化処理温度(T2)と同じ温度(T4)で保
持し、冷却後、再びT5″!、で加熱(但しT5は60
0〜950℃)して保持時間へを02〜30時間とする
よう保持後、冷却速度A以下)!f、で冷却することに
よって角形比を改善させ(BH)maXを向上させるも
のである。
In the composition as described above, sintering as shown in FIG.
After the solution treatment, a heat treatment as shown in FIG. 6 is performed. This heat treatment is carried out at the aforementioned sintering temperature (T1
) and held at the same temperature ('r3)-1:, further held at the same temperature (T4) as the solution treatment temperature (T2), and after cooling, heated again at T5''! (However, T5 is 60
0 to 950°C) and held for a holding time of 02 to 30 hours, then the cooling rate is below A)! By cooling with f, the squareness ratio is improved and (BH)maX is improved.

以下本発明の実施例について述べる。Examples of the present invention will be described below.

実施例1 Smが25.7wt%、Feが19.0wt%、Cuが
4.9 w t%、Zrが2.4wt%Co残部々る合
金を前述の例1と同様にして溶解、粉砕、磁場成形した
。この成形物をAr雰囲気中、1210℃で1時間焼結
した後、1180℃で1時間溶体化処理を行った。その
時の特性は表1のaでありさらにその試料を1210℃
で05時間保持した後、1180℃で1時間熱処理を行
った。この試料を850℃で6時間保持した後。
Example 1 An alloy containing 25.7 wt% Sm, 19.0 wt% Fe, 4.9 wt% Cu, and 2.4 wt% Zr with the balance being Co was melted, pulverized, and melted in the same manner as in Example 1 above. Magnetic field molding. This molded product was sintered at 1210° C. for 1 hour in an Ar atmosphere, and then subjected to solution treatment at 1180° C. for 1 hour. The characteristics at that time are a in Table 1, and the sample was heated to 1210°C.
After holding for 05 hours at 1180° C., heat treatment was performed for 1 hour. After holding this sample at 850°C for 6 hours.

005〜5℃h=範囲の冷却速度で500℃以下り まで冷却した。得られた磁気特性は表1のbの通りであ
った。
It was cooled to below 500° C. at a cooling rate in the range of 0.005° C. to 5° C.h. The obtained magnetic properties were as shown in Table 1b.

表  1 この様に、1210℃焼結、 ] ] 80℃で溶体化
した場合とさらに熱処理を加えた場合とを比べると熱処
理を加えた方が磁気特性がはるかに良い。
Table 1 In this way, when comparing the case of sintering at 1210°C and the case of solution treatment at 80°C and the case of further heat treatment, the magnetic properties are much better with heat treatment.

実施例2 実施例1と同様にして作成した成形体を+ Ar雰囲気
中1200℃で2時間焼結した後、1165℃で1時間
溶体化処理を行なった。その時の磁気特性は表2のaの
通シである。この試料を1210℃で05時間保持した
後、1165℃で1時間熱処理を行なった。この試料を
800℃で10時間保持した後、2℃/キの冷却速度で
400℃以下壕で扮 冷却した。得られた磁気特性は表2のbの通りであった
Example 2 A molded body produced in the same manner as in Example 1 was sintered at 1200° C. for 2 hours in a +Ar atmosphere, and then subjected to solution treatment at 1165° C. for 1 hour. The magnetic properties at that time are as shown in a of Table 2. After holding this sample at 1210°C for 05 hours, it was heat-treated at 1165°C for 1 hour. This sample was held at 800° C. for 10 hours, and then cooled down to 400° C. in a trench at a cooling rate of 2° C./ki. The obtained magnetic properties were as shown in Table 2b.

表  2 以下余日 (9) 実施例3 実施例1と同様にして作成した成形体を、 Ar雰囲気
中1210℃で1時間焼結した後、11.80℃で1時
間溶体化処理を行なった。この時の磁気特性は表3のa
の通シである。この試料を1180℃で2時間熱処理し
た後、830℃で5時間保持し表  3 (10) この様に1210℃焼結、1180℃で溶体化した場合
とさらに熱処理を加えた場合とを比べると熱処理を加え
た方が磁気特性がはるかに良い。
Table 2 (9) Example 3 A molded body prepared in the same manner as in Example 1 was sintered at 1210°C for 1 hour in an Ar atmosphere, and then subjected to solution treatment at 11.80°C for 1 hour. . The magnetic properties at this time are a in Table 3.
This is the general rule. This sample was heat treated at 1180°C for 2 hours and then held at 830°C for 5 hours. Table 3 (10) Comparing the cases of sintering at 1210°C and solution treatment at 1180°C and the case of further heat treatment. Magnetic properties are much better with heat treatment.

この発明はR2T17系磁石合金(ここで、Rはイッ)
 l)ラム及び希土類元素Tは遷移金属を表わす。)を
粉末冶金法によって製造するにあたって、Rを22.5
〜27.5 wt % 、 Feを15.0〜23.0
wt%。
This invention is an R2T17-based magnet alloy (here, R is "i").
l) Ram and rare earth elements T represent transition metals. ) by powder metallurgy, R is 22.5.
~27.5 wt%, Fe 15.0~23.0
wt%.

Cuを3.3〜5.0 wt % 、 Zrを1.5〜
3.5 wt % 。
Cu: 3.3-5.0 wt%, Zr: 1.5-5.0 wt%
3.5 wt%.

Coを残部とする合金を成形し、1170℃〜1230
℃で焼結した後、1130℃〜1200℃で溶体化処理
を行った後、前記焼結温度及び溶体化処理温度での熱処
理を繰り返し、その後600℃〜950℃で02〜30
時間保持した後、005冷却することによシ高い保磁力
を得ることができその結果高エネルギー積が得られると
いう優れた効果を有している。
The alloy with the balance being Co is molded and heated to 1170°C to 1230°C.
After sintering at 1130°C to 1200°C, heat treatment at the sintering temperature and solution treatment temperature is repeated, and then 02 to 30°C at 600°C to 950°C.
After holding for a period of time, it is possible to obtain a high coercive force by cooling with 005, and as a result, it has the excellent effect of obtaining a high energy product.

なお、溶体化処理後の冷却は急冷によらず空冷(150
0〜b 異相(RCo5 )の析出がなかった。従って急冷とい
う困難な方法を取らなくても良い。
Note that cooling after solution treatment is not done by rapid cooling but by air cooling (150
0-b There was no precipitation of a different phase (RCo5). Therefore, there is no need to take the difficult method of rapid cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は1本発明の実施例の磁気特性を示すグラフ
で、第1図はSmの量に対する最大エネルギー積(BH
)max 、残留磁束密度Br 、および保磁力IHc
の変化を示し、第2〜4図は、それぞれ。 Fe + Cu +およびZrの量に対する(BH)m
aX、 Er +IHcの変化を示すグラフである。第
5図は、従来の希土類磁石の製造における焼結−溶体化
処理の温度時間のプログラムを示す図で、第6図は、溶
体化処理後本発明によって行なわれる熱処理の温度時間
プログラムを示す。 第1図 Sm(wt%つ 第2図 Fe (vvt%)
1 to 4 are graphs showing the magnetic properties of an embodiment of the present invention, and FIG. 1 shows the maximum energy product (BH
)max, residual magnetic flux density Br, and coercive force IHc
Figures 2 to 4 show the changes in , respectively. (BH)m for the amount of Fe + Cu + and Zr
It is a graph showing changes in aX, Er + IHc. FIG. 5 is a diagram showing a temperature and time program for sintering and solution treatment in the production of conventional rare earth magnets, and FIG. 6 is a diagram showing a temperature and time program for heat treatment performed according to the present invention after solution treatment. Figure 1 Sm (wt%) Figure 2 Fe (vvt%)

Claims (1)

【特許請求の範囲】[Claims] 1、  R2T、7系磁石合金(ここで、Rはイノトリ
〜27.5 wt% 、 Feを] 5.0〜23.0
 wt%、 Cuを3、3〜5.0 wt% 、 Zr
を1.5〜3.5 wt%、 Coを残部とする合金粉
末を作り、該合金粉末を加圧成形して、1170℃〜1
230℃で焼結した後、1.130℃〜1200℃で溶
体化処理を行ない、その後、前記焼結温度と同じ温度で
の熱処理と前記溶体化処理温度と同じ温度での熱処理を
繰り返し、その後600℃〜950℃で02〜30時間
保持した後磁石の製造方法。
1, R2T, 7-based magnet alloy (here, R is Inotri ~ 27.5 wt%, Fe] 5.0 ~ 23.0
wt%, Cu 3, 3-5.0 wt%, Zr
An alloy powder containing 1.5 to 3.5 wt% of Co and the balance of
After sintering at 230°C, solution treatment is performed at 1.130°C to 1200°C, then heat treatment at the same temperature as the sintering temperature and heat treatment at the same temperature as the solution treatment temperature are repeated, and then A method for producing a magnet after being held at 600°C to 950°C for 02 to 30 hours.
JP57113683A 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material Granted JPS594107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113683A JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113683A JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Publications (2)

Publication Number Publication Date
JPS594107A true JPS594107A (en) 1984-01-10
JPS6119084B2 JPS6119084B2 (en) 1986-05-15

Family

ID=14618526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113683A Granted JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Country Status (1)

Country Link
JP (1) JPS594107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214504A (en) * 1984-04-10 1985-10-26 Seiko Epson Corp Manufacture of rare earth magnet
JPH01151934A (en) * 1987-12-08 1989-06-14 Dai Ichi Kogyo Seiyaku Co Ltd Method for stabilizing dispersoid
CN112582121A (en) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh-performance sintered samarium-cobalt magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214504A (en) * 1984-04-10 1985-10-26 Seiko Epson Corp Manufacture of rare earth magnet
JPH01151934A (en) * 1987-12-08 1989-06-14 Dai Ichi Kogyo Seiyaku Co Ltd Method for stabilizing dispersoid
CN112582121A (en) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh-performance sintered samarium-cobalt magnet
CN112582121B (en) * 2019-09-27 2022-12-02 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh-performance sintered samarium-cobalt magnet

Also Published As

Publication number Publication date
JPS6119084B2 (en) 1986-05-15

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
US4375996A (en) Rare earth metal-containing alloys for permanent magnets
JPS5952822A (en) Manufacture of permanent magnet
JPS6052555A (en) Permanent magnet material and its production
JPS6077961A (en) Permanent magnet material and its manufacture
JPS63157844A (en) Manufacture of permanent magnet material
KR860001237B1 (en) Permanent magnet
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPS61143553A (en) Production of material for permanent magnet
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPH0227425B2 (en)
JPS59154004A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH03198302A (en) Permanent magnet
JPS5848606A (en) Production of permanent magnet of rare earths
JPH0298101A (en) Permanent magnet
JPS6134241B2 (en)
JPS58108709A (en) Manufacture of rare earth permanent magnet
JPS63157845A (en) Manufacture of permanent magnet material
JPS58108710A (en) Manufacture of rare earth permanent magnet
JPS5874005A (en) Permanent magnet
JPH05234733A (en) Sintered magnet
JPS62167842A (en) Production of rare earth magnet