JPS61198703A - Manufacture of rare earth element-cobalt group magnet powder for resin magnet - Google Patents

Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Info

Publication number
JPS61198703A
JPS61198703A JP60037702A JP3770285A JPS61198703A JP S61198703 A JPS61198703 A JP S61198703A JP 60037702 A JP60037702 A JP 60037702A JP 3770285 A JP3770285 A JP 3770285A JP S61198703 A JPS61198703 A JP S61198703A
Authority
JP
Japan
Prior art keywords
magnet
resin
powder
magnet powder
samarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60037702A
Other languages
Japanese (ja)
Inventor
Tatsuo Nate
名手 達夫
Koichi Oka
岡 公一
Takehiko Sato
佐藤 威彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60037702A priority Critical patent/JPS61198703A/en
Publication of JPS61198703A publication Critical patent/JPS61198703A/en
Priority to US07/219,856 priority patent/US4865660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To obtain magnetic powder for a resin magnet having large residual flux density and a high maximum energy product by specifying the composition of samarium, praseodymium and cobalt when a samarium-praseodymium-cobalt alloy ingot is acquired through dissolving and casting, heated and quenched while specifying a temperature and the time and crushed and magnet powder is manufactured. CONSTITUTION:A samarium-praseodymium-cobalt alloy ingot is obtained by using a high-frequency melting furnace, and heated for 30min or 5hr at 600-900 deg.C and quenched. The quenched ingot is crushed, thus manufacturing magnet powder represented by Sm1-x, PrxCOz (0.05<=x<=0.4, 4.7<=z<=5.3). Epoxy resin is added to the powder and compression-molded in a magnetic field, and the resin is cured through heating. Accordingly, magnet powder for a resin magnet, residual flux density thereof is increased and which has a high maximum energy product, is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた磁気的特性を有し樹脂磁石用に好適の
1−5系希土類元素−コバルト磁石粉末を溶解法により
て製造する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing 1-5 rare earth element-cobalt magnet powder, which has excellent magnetic properties and is suitable for use in resin magnets, by a melting method. Regarding.

〔従来の技術〕[Conventional technology]

樹脂磁石用の1−5系希土類元素−コバルト磁石粉末は
、2−17系のものに比較して、高い磁気的特性を得る
に最適な粉末の粒径がより小さく、従って樹脂とのなじ
みや混練成形時の流動性、均一性などにおいて有利なこ
とから好んで用いられている。このような1−5基磁石
粉末としては、従来、希土類元素をサマリウムのみとし
たものが用いられており、また、この磁石粉末を製造す
る際には、高周波溶解、アーク溶解のような溶解法によ
りて溶解−造して得たサマリウム−コバルト合金鋳塊を
熱処理をすることなく粉砕する方法が採用されている。
The 1-5 series rare earth element-cobalt magnet powder for resin magnets has a smaller particle size, which is optimal for obtaining high magnetic properties, than the 2-17 series, and therefore it is less compatible with the resin. It is preferably used because it is advantageous in terms of fluidity and uniformity during kneading and molding. Conventionally, such 1-5 base magnet powder is made using only samarium as the rare earth element, and when producing this magnet powder, melting methods such as high frequency melting and arc melting are used. A method has been adopted in which a samarium-cobalt alloy ingot obtained by melting and forming is pulverized without heat treatment.

しかしながら、このようにして得た磁石粉末は、保磁力
は高いが、残留磁束密度が低いという欠点がありた。
However, the magnetic powder obtained in this manner has a high coercive force, but has the drawback of a low residual magnetic flux density.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は、上記のエラな観点から、残留磁束密度が
向上した高い紋大エネルギー積を有する樹脂磁石用磁石
粉末を得るべく、鋭意研死した。
From the above-mentioned point of view, the inventors of the present invention have worked hard to obtain magnet powder for resin magnets that has an improved residual magnetic flux density and a high energy product.

〔問題点を解決するための手段〕[Means for solving problems]

その結果、溶解鋳造してサマリクムープラセオジムーコ
バルト合金鋳塊を得、該合金鋳塊に600〜900℃で
30分〜5F¥f間加熱して急冷する熱処理を施した後
、粉砕して、その組成がSm 1.Pr、Co、 (但
し、0.05≦X≦0.4 、4.7≦z≦5.3)で
表わされる磁石粉末を得るようにすることによりて、前
記目的が達成され得ることを見出したものである。
As a result, a samarikmu praseodymium-cobalt alloy ingot was obtained by melting and casting, and the alloy ingot was heat-treated at 600-900°C for 30 minutes to 5F¥f and then rapidly cooled, and then crushed. , whose composition is Sm 1. We have found that the above object can be achieved by obtaining magnetic powder represented by Pr, Co, (0.05≦X≦0.4, 4.7≦z≦5.3) It is something that

〔作 用〕[For production]

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明において、溶解鋳造で得られたサマリウム−グラ
セオジム−コバルト合金鋳塊は、600〜900℃で3
0分〜5時間加熱して急冷する熱処理をして粉砕する必
要がある。こうすることKよって、熱処理することなく
粉砕するよりも優れた磁気的特性を有する磁石粉末を得
ることができる。
In the present invention, the samarium-graseodymium-cobalt alloy ingot obtained by melting and casting is heated at 600 to 900°C.
It is necessary to perform heat treatment by heating for 0 minutes to 5 hours and then rapidly cooling the powder. By doing so, it is possible to obtain a magnet powder having better magnetic properties than that obtained by pulverizing without heat treatment.

上記熱処理のうち、加熱が600℃未満、30分未満で
は、生成してい友異相を1−5系の単相にし、かつ熱歪
を取って安定な保磁力を得せしめるという熱処理の効果
が十分得られず、一方900℃を超え、5時間を超える
と、得られる磁石粉末の組成が前記の限定範囲から外れ
易く、1−5系以外の異相が生成し易くなるため、加熱
条件を600〜900℃で30分〜5時間とした。
Among the above heat treatments, heating at less than 600°C for less than 30 minutes has sufficient effect of converting the formed heterogeneous phase into a single 1-5 phase and removing thermal strain to obtain a stable coercive force. On the other hand, if the temperature exceeds 900°C for more than 5 hours, the composition of the obtained magnet powder tends to deviate from the above-mentioned limited range, and different phases other than the 1-5 system tend to be generated. The temperature was 900°C for 30 minutes to 5 hours.

粉砕して得られた樹脂磁石用磁石粉末の組al:sm1
.。
Set of magnet powder for resin magnets obtained by pulverization al: sm1
.. .

Pr、Co、  (但し、0.05≦X≦0.4.47
≦z≦5.3)としたのは、Xが0.05未満ではプラ
セオジムの添加による残留磁束密度の向上が十分でなく
、一方Xが0.4を超えると保磁力が急激に低下するか
らで、また、2が47未満では製造された磁石粉末中に
1−3系や2−7系の異相が生成して残留磁束密度が低
下し易く、一方2が5.3を超えると2−17系の異相
が生成して保磁力が低下し易いからである。
Pr, Co, (however, 0.05≦X≦0.4.47
≦z≦5.3) because if X is less than 0.05, the improvement in residual magnetic flux density due to the addition of praseodymium will not be sufficient, whereas if X exceeds 0.4, the coercive force will decrease rapidly. Also, if 2 is less than 47, 1-3 and 2-7 different phases are likely to be generated in the produced magnet powder, resulting in a decrease in residual magnetic flux density, while if 2 is more than 5.3, 2- This is because the coercive force tends to decrease due to the formation of a 17-based different phase.

〔実施例〕〔Example〕

以下、本発明を実施例について説明する。 Hereinafter, the present invention will be described with reference to examples.

実施例1 金属5FFI、金属Pr及び金3iCo を所定の組成
になるように配合して(全量的1. OOOg)高周波
溶解炉で溶解鋳造した。鋳造は同じ鋳型を2個用意して
ほぼ同大の鋳塊を2本作成した。これらの鋳塊のつち、
1本は一35メックユが全量になるまで粗粉砕した後、
エチルアルコールを充満した回転ボールミルで5時間微
粉外したが、他の1本はAr 中620℃で2時間保持
して急冷する熱処理を施した後、上記粗粉砕及び微粉砕
を行なった。
Example 1 Metal 5FFI, metal Pr, and gold 3iCo were blended to a predetermined composition (total amount 1.00g) and melted and cast in a high frequency melting furnace. For casting, two identical molds were prepared and two ingots of approximately the same size were created. These ingots,
After coarsely crushing one bottle until the total amount is 135 mekuyu,
The powder was removed using a rotary ball mill filled with ethyl alcohol for 5 hours, but the other one was heat-treated by being held at 620° C. for 2 hours in Ar and rapidly cooled, and then subjected to the above-mentioned coarse and fine pulverization.

微粉砕して得られた試料の組成は、熱処理を施さないも
のと施したものとで全数同様でありた。分析の結果、得
られた組成を第1表に示す。また、微粉末試料の平均粒
反は全数3〜10μmの範囲8簿ありた。
The compositions of the samples obtained by pulverization were the same for both samples that were not subjected to heat treatment and those that were subjected to heat treatment. The composition obtained as a result of the analysis is shown in Table 1. Further, the average grain size of the fine powder samples was 8 in total, ranging from 3 to 10 μm.

第1表 以上のようにして用意した磁石粉末に対して、at脂と
してエポキシ樹脂を外側で5. O重量%添加混合し、
13 KOeの磁場中4ton/fflの圧力で圧縮成
形した後、成形体を120℃のオーブン中で2時間保持
してエポキシ樹脂を硬化させた。得られた樹脂磁石の磁
気的特性を測定した結果を第2表に示す。
For the magnet powder prepared as shown in Table 1 above, 5. Add and mix O weight %,
After compression molding in a magnetic field of 13 KOe at a pressure of 4 ton/ffl, the molded body was held in an oven at 120° C. for 2 hours to harden the epoxy resin. Table 2 shows the results of measuring the magnetic properties of the obtained resin magnet.

実施例2 実施例1の試験随1および2の配合で高周波溶解炉で溶
解し、鋳造して舟之鋳塊のうち、1者は実施例1で熱処
理しない方の操作と同様に微粉砕までしく試験醜9)、
後者は所定のAr中加熱後急冷する熱処理を施し友後、
実施例1と同様に粗粉砕、微粉砕した(試験Nll0〜
19)。
Example 2 The compositions of Tests 1 and 2 of Example 1 were melted in a high-frequency melting furnace, cast, and one of the ingots was pulverized in the same manner as in Example 1 without heat treatment. Shikaku Exam Ugly 9),
The latter is heated in a predetermined argon atmosphere and then rapidly cooled.
Coarse pulverization and fine pulverization were carried out in the same manner as in Example 1 (Test Nll0~
19).

以上のようKして用意した磁石粉末に対して、樹脂とし
てポリアミド樹脂(ナイa:y6 )を処罰で9.0重
量%添加混緯し、ベレット化した後、10KOeの磁場
中で射出成形した。得られた樹脂磁石の磁気的#f性を
測定した結果を第3表に示す。
To the magnet powder prepared by K as described above, 9.0% by weight of polyamide resin (Nia: Y6) was added as a resin, and after forming into pellets, injection molding was carried out in a magnetic field of 10 KOe. . Table 3 shows the results of measuring the magnetic #f properties of the obtained resin magnets.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように1本発明は、溶解法によりて、
残留磁束密夏が向上した高い最大エネルギー積を有する
樹脂磁石用に好適の1−5系希土類元素−コバルト磁石
粉末を熱処理を行なうことによって製造することができ
るものである。また、サマリウムを一部置換す゛るプラ
七オジムはサマリウムより豊富で安価であり、従って、
樹脂磁石用に好適の1−5系希土類元素−コバルト磁石
粉末を安価に製造することのできる本発明の工業的意義
は非富に大である。
As is clear from the above, one aspect of the present invention is to use a dissolution method to
A 1-5 rare earth element-cobalt magnet powder suitable for resin magnets having an improved residual magnetic flux density and a high maximum energy product can be produced by heat treatment. In addition, pranaozym, which partially replaces samarium, is more abundant and cheaper than samarium, and therefore,
The industrial significance of the present invention, which allows the production of 1-5 rare earth element-cobalt magnet powder suitable for resin magnets at low cost, is enormous.

Claims (1)

【特許請求の範囲】[Claims] (1)溶解鋳造してサマリウム−グラセオジム−コバル
ト合金鋳塊を得、該合金鋳塊に600〜900℃で30
分〜5時間加熱して急冷する熱処理を施した後、粉砕し
て、その組成がSm_1_xPr_xCo_z(但し、
0.05≦x≦0.4、4.7≦z≦5.3)で表わさ
れる磁石粉末を得ることを特徴とする樹脂磁石用希土類
元素−コバルト系磁石粉末の製造方法。
(1) Obtain a samarium-graseodymium-cobalt alloy ingot by melting and casting.
After a heat treatment of heating for 5 hours to 5 hours and quenching, it is pulverized and the composition is Sm_1_xPr_xCo_z (however,
0.05≦x≦0.4, 4.7≦z≦5.3.
JP60037702A 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet Pending JPS61198703A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60037702A JPS61198703A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet
US07/219,856 US4865660A (en) 1985-02-28 1988-07-13 Rare-earth element/cobalt type magnet powder for resin magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037702A JPS61198703A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Publications (1)

Publication Number Publication Date
JPS61198703A true JPS61198703A (en) 1986-09-03

Family

ID=12504857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037702A Pending JPS61198703A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Country Status (1)

Country Link
JP (1) JPS61198703A (en)

Similar Documents

Publication Publication Date Title
US4131495A (en) Permanent-magnet alloy
US4192696A (en) Permanent-magnet alloy
JPS61198703A (en) Manufacture of rare earth element-cobalt group magnet powder for resin magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
US4865660A (en) Rare-earth element/cobalt type magnet powder for resin magnets
JPS6320411A (en) Production of material for permanent magnet
JPS61203602A (en) Preparation of rare-earth element-cobalt magnet powder for resin magnet
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS6373502A (en) Manufacture of rare earth magnet
JPS62229804A (en) Manufacture of nd-fe-b alloy power for plastic magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
KR0128137B1 (en) Producing method of al-ni-co complex magnetic powder
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH04240703A (en) Manufacture of permanent magnet
JPS61198704A (en) Manufacture of rare earth element-cobalt group magnet powder for resin magnet
KR0128136B1 (en) Prodocing method of al-ni-co magnetic powder
JPS6389608A (en) Production of rare earth magnet alloy powder
JPH04176805A (en) Production of rare earth element-cobalt bonded magnet powder
JPH0513208A (en) Manufacture of rare-earth bonded magnet
JPS61199607A (en) Rare earth element/cobalt magnet powder for resinous magnet
JPS63262804A (en) Manufacture of rare earth permanent magnet
JPS5946081B2 (en) Permanent magnet manufacturing method
JPH01181502A (en) Manufacture of rare earth permanent magnet
JPS61203603A (en) Preparation of rare-earth element-cobalt magnet powder for resin magnet
JPS58108709A (en) Manufacture of rare earth permanent magnet