JPH0426523B2 - - Google Patents

Info

Publication number
JPH0426523B2
JPH0426523B2 JP60037703A JP3770385A JPH0426523B2 JP H0426523 B2 JPH0426523 B2 JP H0426523B2 JP 60037703 A JP60037703 A JP 60037703A JP 3770385 A JP3770385 A JP 3770385A JP H0426523 B2 JPH0426523 B2 JP H0426523B2
Authority
JP
Japan
Prior art keywords
powder
slurry
water
samarium
praseodymium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60037703A
Other languages
Japanese (ja)
Other versions
JPS61198704A (en
Inventor
Tatsuo Nate
Koichi Oka
Takehiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60037703A priority Critical patent/JPS61198704A/en
Priority to US06/834,420 priority patent/US4689073A/en
Publication of JPS61198704A publication Critical patent/JPS61198704A/en
Priority to US07/219,856 priority patent/US4865660A/en
Publication of JPH0426523B2 publication Critical patent/JPH0426523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、優れた磁気的特性を有し、樹脂磁石
用に好適の1−5系希土類元素−コバルト磁石粉
末を還元拡散法によつて製造する方法に関する。 〔従来の技術〕 樹脂磁石用の1−5系希土類元素−コバルト磁
石粉末は、2−17系のものに比較して、高い磁気
的特性を得るに最適な粉末の粒径がより小さく、
従つて樹脂とのなじみや混練成形時の流動性、均
一性などにおいて有利なことから好んで用いられ
ている。このような1−5系磁石粉末を製造する
方法として、希土類元素の酸化物、金属カルシウ
ムのような還元剤およびコバルト粉を混合し、該
混合物を充填して常圧の不活性ガス雰囲気下、
900〜1100℃で加熱した後、得られた反応生成物
を水中に投入してスラリー状にし、該スラリーを
水および酸水溶液で処理する、いわゆる還元拡散
法等が採用されている。 しかしながら、この方法は還元拡散による反応
生成物として1−5系の平均組成になるような磁
石粉末を製造するものに止まるものである。従つ
て、この方法によつて得られた磁石粉末を、微粉
砕しプレス成形した後、熱処理することにより磁
気的特性を向上させ、焼結磁石用として使用する
場合には、他の公知の電解法や溶解法によつて得
られた磁石粉末を使用するのと比較して、磁気的
特性やコストの面で有用な方法であるが、該磁石
粉末を樹脂磁石用としてそのまま使用すると、熱
処理によつて磁気的特性を向上させていない上
に、樹脂と混練した後にはこの熱処理工程を採用
することができないために、その磁気的特性は、
特に残留磁束密度が熱処理を施した磁石粉末から
の樹脂磁石のそれと比較して大幅に劣るという欠
点があつた。 〔発明が解決しようとする問題点〕 本発明者等は、上記のような事情に鑑み、残留
磁束密度が向上した高い最大エネルギー積を有す
る樹脂磁石用磁石粉末を得るべく、鋭意研究し
た。 〔問題点を解決するための手段〕 その結果、サマリウム酸化物、プラセオジム酸
化物およびコバルト粉末を配合した混合物を加熱
還元し生成したサマリウムとプラセオジムを該コ
バルト粉末中に拡散させ、その反応生成物に600
〜900℃で30分〜5時間保持後その温度から10
℃/分以上で急冷する熱処理を施し、得られた熱
処理物を水中に投入してスラリー状にし、該スラ
リーを水および酸水溶液で処理した後、平均粒径
が3〜10μmとなるように粉砕して、その組成が
Sm1-xPrxCoz(但し、0.05≦x≦0.4、4.7≦x≦
5.3)で表わされる磁石粉末を得るようにするこ
とによつて前記目的が達成され得ることを見出し
たものである。 〔作用〕 以下、本発明を更に詳細に説明する。 本発明において、まず、サマリウム酸化物、プ
ラセオジム酸化物、カルシウムのような還元剤お
よびコバルト粉を混合し、該混合物を容器に充填
して常圧のアルゴンのような不活性ガス雰囲気下
950〜1200℃で30分〜4時間加熱する。こうする
ことによつて、サマリウム酸化物とプラセオジム
酸化物を還元し生成したサマリウムとプラセオジ
ムをコバルト粉末中に拡散させる。この反応によ
つて生成した反応生成物は、600〜900℃に降温さ
せてその温度で30分〜5時間保持後、その温度か
ら10℃/分以上で急冷する熱処理を施す。この熱
処理において加熱が600℃未満、30分未満では、
生成していた異相を1−5系の単相にし、かつ熱
歪を取つて安定な保磁力を得せしめるという熱処
理の効果が十分得られず、一方900℃を越え、5
時間を越えると、得られる磁石粉末の組成が後記
の限定範囲から外れ安く、1−5系以外の異相が
生成し易くなるため、加熱条件を600〜900℃で30
分〜5時間とした。また、加熱後の冷却は、10
℃/分以上の冷却速度で行なう必要がある。これ
は、10℃/分未満では、1−5系以外の異相が生
成し易いからである。 得られた熱処理物を水中に投入しスラリー状に
し、該スラリーを水および酸水溶液例えば希酢酸
で処理する。この操作は通常採用されている方法
によればよい。得られた粉末は、更に平均粒径が
3〜10μmとなるように粉砕する。平均粒径が3μ
m未満では残留磁束密度が低下し、一方10μmを
超えると保磁力が低下するため、平均粒径が3〜
10μmとなるようにした。 このようにして得られた磁石粉末は、その組成
がSm1-xPrxCoz(但し、0.05≦x≦0.4、4.7≦x≦
5.3)となつていることが必要である。xが0.05
未満ではプラセオジムの添加による残留磁束密度
の向上が十分でなく、一方xが0.4を超えると保
磁力が急激に低下するからで、また、zが4.7未
満では製造された磁石粉末に1−3系や2−7系
の異相が生成して残留磁束密度が低下し易く、一
方zが5.3を超えると2−17系の異相が生成して
保磁力が低下し易いからである。 〔実施例〕 以下、本発明を実施例について説明する。 実施例 1 Sm2O3粉、Pr6O11粉、Co粉およびCa粒を所定
の組成になるように配合して(全量120〜130g)
混合し、1100℃に保持された電気炉中、Ar雰囲
気下で3時間保持した後、放冷し、900℃より水
冷した。得られた反応組成物を水およびPH約2.5
の希酢酸で処理して、該反応生成物中のCaO、未
反応Caを分離除去した。得られた粉末は、付着
水分をエチルアルコールで置換した後、乾燥し
た。 更に、これらの粉末を、回転ボールミルで微粉
砕した。こうして得られた微粉末試料の組成およ
び平均粒径を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing 1-5 rare earth element-cobalt magnet powder having excellent magnetic properties and suitable for use in resin magnets by a reduction diffusion method. [Prior art] 1-5 series rare earth element-cobalt magnet powder for resin magnets has a smaller particle size, which is optimal for obtaining high magnetic properties, compared to 2-17 series magnet powder.
Therefore, it is preferably used because it is advantageous in terms of compatibility with resins, fluidity and uniformity during kneading and molding. As a method for manufacturing such 1-5 series magnet powder, rare earth element oxides, reducing agents such as metallic calcium, and cobalt powder are mixed, the mixture is filled, and the mixture is filled with the mixture and then heated under an inert gas atmosphere at normal pressure.
After heating at 900 to 1100° C., the resulting reaction product is poured into water to form a slurry, and the slurry is treated with water and an acid aqueous solution, a so-called reduction diffusion method. However, this method only produces magnet powder having an average composition of 1-5 as a reaction product by reduction and diffusion. Therefore, the magnet powder obtained by this method is finely pulverized, press-formed, and then heat-treated to improve its magnetic properties, and when used for sintered magnets, other known electrolytic This method is more effective in terms of magnetic properties and cost than using magnet powder obtained by the method or melting method. Therefore, the magnetic properties have not been improved, and since this heat treatment process cannot be applied after kneading with the resin, the magnetic properties are
In particular, the residual magnetic flux density was significantly inferior to that of resin magnets made from heat-treated magnet powder. [Problems to be Solved by the Invention] In view of the above circumstances, the present inventors conducted extensive research in order to obtain magnet powder for resin magnets that has an improved residual magnetic flux density and a high maximum energy product. [Means for solving the problem] As a result, samarium and praseodymium produced by heating and reducing a mixture of samarium oxide, praseodymium oxide and cobalt powder are diffused into the cobalt powder, and the reaction product is 600
After holding at ~900℃ for 30 minutes to 5 hours, from that temperature 10
Heat treatment is performed by rapidly cooling at a rate of ℃/min or higher, the resulting heat-treated product is poured into water to form a slurry, the slurry is treated with water and an acid aqueous solution, and then pulverized to an average particle size of 3 to 10 μm. Then, its composition is
Sm 1-x Pr x Co z (However, 0.05≦x≦0.4, 4.7≦x≦
It has been discovered that the above object can be achieved by obtaining magnetic powder represented by 5.3). [Function] The present invention will be explained in more detail below. In the present invention, first, samarium oxide, praseodymium oxide, a reducing agent such as calcium, and cobalt powder are mixed, and the mixture is filled into a container under an inert gas atmosphere such as argon at normal pressure.
Heat at 950-1200℃ for 30 minutes to 4 hours. By doing so, samarium and praseodymium produced by reducing samarium oxide and praseodymium oxide are diffused into the cobalt powder. The reaction product produced by this reaction is heated to 600 to 900°C, maintained at that temperature for 30 minutes to 5 hours, and then subjected to heat treatment in which it is rapidly cooled from that temperature at a rate of 10°C/min or more. In this heat treatment, if the heating is less than 600℃ and less than 30 minutes,
The effect of heat treatment, which was to turn the generated heterogeneous phase into a 1-5 single phase and remove thermal strain to obtain a stable coercive force, could not be obtained sufficiently.
If the time is exceeded, the composition of the obtained magnet powder will deviate from the limited range described below, and different phases other than the 1-5 system will be likely to be generated.
The duration ranged from minutes to 5 hours. Also, cooling after heating is 10
It is necessary to perform the cooling at a cooling rate of ℃/min or higher. This is because if the temperature is less than 10° C./min, different phases other than the 1-5 system are likely to be generated. The obtained heat-treated product is poured into water to form a slurry, and the slurry is treated with water and an aqueous acid solution such as dilute acetic acid. This operation may be performed by a commonly used method. The obtained powder is further ground to an average particle size of 3 to 10 μm. Average particle size is 3μ
If the average particle size is less than 3 m, the residual magnetic flux density will decrease, while if it exceeds 10 μm, the coercive force will decrease.
The thickness was set to 10 μm. The magnet powder thus obtained has a composition of Sm 1-x Pr x Co z (0.05≦x≦0.4, 4.7≦x≦
5.3). x is 0.05
If x is less than 4.7, the residual magnetic flux density will not be improved sufficiently by the addition of praseodymium, while if x exceeds 0.4, the coercive force will decrease rapidly. This is because a 2-7 type different phase is likely to be generated and the residual magnetic flux density is likely to decrease, while if z exceeds 5.3, a 2-17 type different phase is likely to be generated and the coercive force is likely to be lowered. [Examples] The present invention will be described below with reference to Examples. Example 1 Sm 2 O 3 powder, Pr 6 O 11 powder, Co powder and Ca grains were blended to a predetermined composition (total amount 120 to 130 g).
The mixture was mixed and kept in an electric furnace kept at 1100°C under an Ar atmosphere for 3 hours, then allowed to cool, and then water-cooled from 900°C. The resulting reaction composition is mixed with water and has a pH of approximately 2.5.
of dilute acetic acid to separate and remove CaO and unreacted Ca in the reaction product. The obtained powder was dried after replacing the adhering moisture with ethyl alcohol. Furthermore, these powders were pulverized using a rotating ball mill. Table 1 shows the composition and average particle size of the fine powder sample thus obtained.

【表】【table】

【表】 また、前記操作で1100℃で3時間加熱した後、
反応生成物はそのままにして1時間を要して電気
炉中の温度を800℃に降温させその温度で2時間
保持し、更にArガスを送風することにより急冷
し、得られた熱処理物を水および酸水溶液の処理
に供した以外は、前記操作と同様にして、微粉末
試料を作成した。これらの粉末の組成および平均
粒径を第2表に示す。
[Table] Also, after heating at 1100℃ for 3 hours in the above operation,
The reaction product was left as it was, and the temperature in the electric furnace was lowered to 800℃ over 1 hour, maintained at that temperature for 2 hours, and then rapidly cooled by blowing Ar gas. A fine powder sample was prepared in the same manner as described above, except that it was subjected to treatment with an acid aqueous solution. The composition and average particle size of these powders are shown in Table 2.

【表】 以上のようにして用意した磁石粉末に対して、
樹脂としてエポキシ樹脂を外割で5.0重量%添加
混合し、13KOeの磁場中4ton/cm2の圧力で圧縮
成形した後、成形体120℃のオーブン中で2時間
保持してエポキシ樹脂を硬化させた。得られた樹
脂磁石の磁気的特性を測定した結果を第3表に示
す。
[Table] For the magnetic powder prepared as above,
As a resin, 5.0% by weight of epoxy resin was added and mixed, compression molded at a pressure of 4 ton/cm 2 in a magnetic field of 13 KOe, and the molded product was kept in an oven at 120°C for 2 hours to harden the epoxy resin. . Table 3 shows the results of measuring the magnetic properties of the obtained resin magnet.

【表】 実施例 2 実施例1の試験No.1および2の配合で混合し
(但し、全量120〜260g)、1100℃に保持された電
気炉中、Ar雰囲気下で2時間保持した後、試験
No.1の方は実施例1で熱処理しない方の操作と同
様に微粉砕まで行ない(試験No.17)、試験No.2の
方は、所定のAr中加熱後Arガスを送風する急冷
を行なう熱処理を施し、更に実施例1で熱処理し
た方の操作と同様に微粉砕まで行なつた(試験No.
18〜27)。 以上のようにして用意した磁石粉末に対して、
樹脂としてポリアミド樹脂(ナイロン6)を外割
で9.0重量%添加混練し、ペレツト化した後、
10KOeの磁場中で射出成形した。得られた樹脂
磁石の電気的特性を測定した結果を第4表に示
す。
[Table] Example 2 The formulations of Test Nos. 1 and 2 of Example 1 were mixed (however, the total amount was 120 to 260 g), and after being held in an electric furnace maintained at 1100°C for 2 hours under an Ar atmosphere, test
For No. 1, the process was carried out until fine pulverization was performed in the same way as in Example 1 without heat treatment (Test No. 17), and for Test No. 2, after heating in the prescribed Ar, quenching was performed by blowing Ar gas. The heat treatment was performed as described above, and further pulverization was performed in the same manner as in the heat treatment in Example 1 (Test No.
18-27). For the magnetic powder prepared as above,
After adding and kneading 9.0% by weight of polyamide resin (nylon 6) as a resin and pelletizing,
Injection molding was carried out in a magnetic field of 10KOe. Table 4 shows the results of measuring the electrical characteristics of the obtained resin magnet.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明は、還元拡散
法によつて、残留磁束密度が向上した最大エネル
ギー積を有する樹脂磁石用に好適の1−5系希土
類元素−コバルト磁石粉末を熱処理を行なうこと
によつて製造することができるものである。ま
た、サマリウムを一部置換するプラセオジムはサ
マリウムより豊富で安価であり、従つて、樹脂磁
石用に好適の1−5系希土類元素−コバルト磁石
粉末を安価に製造することのできる本発明の工業
的意義は非常に大である。
As is clear from the above, the present invention heat-treats 1-5 series rare earth element-cobalt magnet powder, which is suitable for resin magnets and has a maximum energy product with improved residual magnetic flux density, by a reduction diffusion method. It can be manufactured by In addition, praseodymium, which partially replaces samarium, is more abundant and cheaper than samarium, and therefore, the present invention provides an industrial advantage for producing 1-5 series rare earth element-cobalt magnet powder suitable for resin magnets at low cost. The significance is very great.

Claims (1)

【特許請求の範囲】[Claims] 1 サマリウム酸化物、プラセオジム酸化物およ
びコバルト粉末を配合した混合物を加熱還元し生
成したサマリウムとプラセオジムを該コバルト粉
末中に拡散させ、その反応生成物に600〜900℃で
30分〜5時間保持後その温度から10℃/分以上で
急冷する熱処理を施し、得られた熱処理物を水中
に投入してスラリー状にし、該スラリーを水およ
び酸水溶液で処理した後、平均粒径が3〜10μm
となるように粉砕して、その組成がSm1-xPrxCoz
(但し、0.05≦x≦0.4、4.7≦z≦5.3)で表わさ
れる磁石粉末を得ることを特徴とする樹脂磁石用
希土類元素−コバルト系磁石粉末の製造方法。
1. A mixture of samarium oxide, praseodymium oxide and cobalt powder is heated and reduced, and the produced samarium and praseodymium are diffused into the cobalt powder, and the reaction product is heated at 600 to 900°C.
After holding for 30 minutes to 5 hours, heat treatment is performed to rapidly cool the temperature at 10°C/min or more, and the resulting heat-treated product is poured into water to form a slurry. After the slurry is treated with water and an acid aqueous solution, the average Particle size is 3-10μm
The composition is Sm 1-x Pr x Co z
(However, 0.05≦x≦0.4, 4.7≦z≦5.3.
JP60037703A 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet Granted JPS61198704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60037703A JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet
US06/834,420 US4689073A (en) 1985-02-28 1986-02-28 Method for production of rare-earth element/cobalt type magnetic powder for resin magnet
US07/219,856 US4865660A (en) 1985-02-28 1988-07-13 Rare-earth element/cobalt type magnet powder for resin magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037703A JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61040847A Division JPS61199607A (en) 1986-02-26 1986-02-26 Rare earth element/cobalt magnet powder for resinous magnet

Publications (2)

Publication Number Publication Date
JPS61198704A JPS61198704A (en) 1986-09-03
JPH0426523B2 true JPH0426523B2 (en) 1992-05-07

Family

ID=12504886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037703A Granted JPS61198704A (en) 1985-02-28 1985-02-28 Manufacture of rare earth element-cobalt group magnet powder for resin magnet

Country Status (1)

Country Link
JP (1) JPS61198704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489503A (en) * 1987-09-30 1989-04-04 Omron Tateisi Electronics Co Permanent magnet material

Also Published As

Publication number Publication date
JPS61198704A (en) 1986-09-03

Similar Documents

Publication Publication Date Title
US11721460B2 (en) Method for preparing metal powder, and metal powder
US5562782A (en) Method for producing magnetically anisotropic permanent magnet
JP2018082147A (en) METHOD FOR MANUFACTURING R-Fe-B BASED SINTERED MAGNET
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS63255902A (en) R-b-fe sintered magnet and manufacture thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0426523B2 (en)
US4689073A (en) Method for production of rare-earth element/cobalt type magnetic powder for resin magnet
CA1036842A (en) Copper-hardened permanent-magnet alloy
CN114223044B (en) Method for producing sintered magnet
JPH0372124B2 (en)
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
US4865660A (en) Rare-earth element/cobalt type magnet powder for resin magnets
JP3053187B2 (en) Manufacturing method of permanent magnet
JPS61203603A (en) Preparation of rare-earth element-cobalt magnet powder for resin magnet
JPH06188110A (en) Nitride for refemen permanent magnet, refeme alloy to be used in the nitride, and permanent magnet using the nitride
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JPH07240307A (en) Nitrogen-bearing rare-earth permanent magnet and its manufacture
JPS63249305A (en) R-b-fe system sintered magnet and manufacture thereof
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS61199607A (en) Rare earth element/cobalt magnet powder for resinous magnet
JPS62141705A (en) R-b-fe system sintered magnet and manufacture thereof
JPS60246603A (en) Manufacture of rare earth-cobalt magnet powder for resin magnet
JPH04116102A (en) Magnetic powder for anisotropic bond magnet and its production
JP3931458B2 (en) Method for producing Sm-Fe-N alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees