JP2018082147A - METHOD FOR MANUFACTURING R-Fe-B BASED SINTERED MAGNET - Google Patents

METHOD FOR MANUFACTURING R-Fe-B BASED SINTERED MAGNET Download PDF

Info

Publication number
JP2018082147A
JP2018082147A JP2017163157A JP2017163157A JP2018082147A JP 2018082147 A JP2018082147 A JP 2018082147A JP 2017163157 A JP2017163157 A JP 2017163157A JP 2017163157 A JP2017163157 A JP 2017163157A JP 2018082147 A JP2018082147 A JP 2018082147A
Authority
JP
Japan
Prior art keywords
magnet
layer
sintered magnet
rare earth
rhx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017163157A
Other languages
Japanese (ja)
Other versions
JP6506361B2 (en
Inventor
ジーチアン リー
Zhiqiang Li
ジーチアン リー
コンヤオ マオ
Congyao Mao
コンヤオ マオ
メイチュー シャオ
Meizhu Shao
メイチュー シャオ
ホンシャン ニー
Hongxiang Ni
ホンシャン ニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Zhenghai Magnetic Material Co Ltd
Original Assignee
Yantai Zhenghai Magnetic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Zhenghai Magnetic Material Co Ltd filed Critical Yantai Zhenghai Magnetic Material Co Ltd
Publication of JP2018082147A publication Critical patent/JP2018082147A/en
Application granted granted Critical
Publication of JP6506361B2 publication Critical patent/JP6506361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-Fe-B based sintered magnet having good production efficiency and being capable of suppressing a decrease in residual magnetism.SOLUTION: A method for manufacturing an R-Fe-B based sintered magnet includes the steps of: preparing the R-Fe-B based sintered magnet as a matrix; arranging a heavy rare earth RHX containing at least one of metal dysprosium, hydrogenation dysprosium, terbium, and hydrogenation terbium on a surface of the matrix and arranging an RLF layer containing at least one of praseodymium fluoride, neodymium fluoride, praseodymium oxide, and neodymium oxide on an RHX layer; and diffusing heavy rare earth RXE into an inside of the magnet via the surface of the matrix by performing heat treatment in a diffusion furnace.SELECTED DRAWING: None

Description

本発明は、R‐Fe‐B系焼結磁石の製造方法に関し、希土類永久磁石材料の分野に属するものである。   The present invention relates to a method for producing an R—Fe—B sintered magnet and belongs to the field of rare earth permanent magnet materials.

新エネルギー自動車の急速な発展に伴って、新エネルギー自動車分野での永久磁石モーターに対する需要は益々大きくなっており、また、新エネルギー自動車におけるモーターの動作温度もより高くなっているので、より高い保磁力の磁石が必要とされているようになっているが、保磁力を高めるには重希土類元素の大量な使用が必要となるので、磁石のコストが急激に高騰してしまい、また、溶解中に重希土類を直接大量に添加しても磁石の磁気エネルギー積が低下してしまうことになる。新エネルギー自動車には高い保磁力が求められるとともに、高い磁気エネルギー積も求められるので、どのようにして重希土類元素の使用量を低減して保磁力が高く磁気エネルギー積の高い磁石を生産するかが、ネオジム・鉄・ホウ素永久磁石材料についての研究の焦点となっていた。近年、ネオジム・鉄・ホウ素永久磁石を生産する国内外の一部の大手企業は、主に2通りの方法によって重希土類の使用量を低減させながら保磁力が高く磁気エネルギー積の高い磁石を生産している。1つは、結晶粒微細化技術で、もう1つは、重希土類を粒界拡散する方法である。しかしながら、重希土類の使用量を低減して磁石の保磁力を高めるという効果において、結晶粒微細化技術の効果は限られているが、重希土類元素を粒界拡散する方法では、磁石の残留磁気がほぼ低下しないか又は低下が少ないという前提で、保磁力を大幅に高めることができるので、重希土類を粒界拡散するような方法を用いると、極少量の重希土類元素を使用しながら、保磁力が高く磁気エネルギー積の高いネオジム・鉄・ホウ素永久磁石を生産することができ、粒界拡散技術によって超高性能の磁石を生産することができる。   With the rapid development of new energy vehicles, the demand for permanent magnet motors in the field of new energy vehicles is increasing, and the operating temperature of motors in new energy vehicles is also getting higher, so higher maintenance is required. Magnetic magnets are required, but increasing the coercive force requires the use of a large amount of heavy rare earth elements, which greatly increases the cost of the magnet, and during melting Even if a large amount of heavy rare earth is directly added to the magnet, the magnetic energy product of the magnet is lowered. New energy vehicles are required to have high coercivity and high magnetic energy products, so how to reduce the amount of heavy rare earth elements used to produce magnets with high coercivity and high magnetic energy products However, it was the focus of research on neodymium / iron / boron permanent magnet materials. In recent years, some major companies in Japan and overseas that produce neodymium, iron and boron permanent magnets produce magnets with high coercive force and high magnetic energy product while reducing the amount of heavy rare earths used mainly by two methods. doing. One is a crystal grain refinement technique, and the other is a method of diffusing heavy rare earths at grain boundaries. However, in terms of reducing the amount of heavy rare earth used and increasing the coercive force of the magnet, the effect of crystal grain refinement technology is limited. Since the coercive force can be greatly increased on the assumption that there is almost no decrease or little decrease, using a method in which heavy rare earths are grain boundary diffused, while using a very small amount of heavy rare earth elements, Neodymium, iron and boron permanent magnets with high magnetic force and high magnetic energy product can be produced, and ultra-high performance magnets can be produced by grain boundary diffusion technology.

現在量産に応用されている粒界拡散技術は、概ね次の2通りの方法にまとめられる。一つは、接触法で、まず、気相成長、電気メッキ、コーティングなどの方法によって磁石の表面に重希土類元素の層を設けた後、長時間拡散処理することで重希土類元素を粒界に沿って磁石の内部に浸入させることによって粒界の拡散という目的を実現することを特徴とする(例えば、特許公開番号CN1898757及びCN101158024)。もう一つは、非接触法で、現在最も常用されているのは真空蒸発法であるが、高真空状態下で加熱することで重希土類元素に蒸気を形成させた後、重希土類元素の蒸気を磁石の表面に堆積させて磁石の内部に拡散することを特徴とする(例えば、特許公開番号CN101651038B及びCN101375352A)。これら2通りの方法は、現在の生産において最もよく見られる2通りの方法であり、大量生産が可能で、いずれも好ましい粒界拡散の効果を達成することができる。   The grain boundary diffusion techniques currently applied to mass production can be summarized in the following two methods. One is a contact method. First, a layer of heavy rare earth element is provided on the surface of the magnet by vapor deposition, electroplating, coating, etc., and then the heavy rare earth element is made into a grain boundary by diffusion treatment for a long time. It is characterized in that the purpose of diffusion of grain boundaries is realized by intruding along the inside of the magnet (for example, Patent Publication Nos. CN1898757 and CN101158024). The other is the non-contact method, and the most commonly used method is the vacuum evaporation method. However, after the vapor is formed in the heavy rare earth element by heating in a high vacuum state, the vapor of the heavy rare earth element is formed. Is deposited on the surface of the magnet and diffuses inside the magnet (for example, Patent Publication Nos. CN101651038B and CN10137352A). These two methods are the two most commonly used methods in the current production, can be mass-produced, and both can achieve a favorable grain boundary diffusion effect.

しかしながら、2通りの方法には、生産過程でいずれもいくらかの欠点がある。接触法は、実際の生産過程において最も簡単かつ最もよくある方法で、その利点は、取扱可能性が高く、設備と作業服についての要求がいずれも低く、量産化の実現をしやすいことである。同様にその欠点も明らかで、主なものとして、実際の生産中に磁石の表面の状態が損なわれやすく、拡散中、重希土類元素と直接接触する部分に大きな濃度差が形成されて、重希土類元素が主相に入ることで磁石の残留磁気を低下させてしまう上、実際の生産中に磁石の表面の重希土類層が酸化による脱落を生じて、磁石の中に完全には拡散されきれなくなり、重希土類を浪費してしまうことになる。また、熱処理中に磁石と磁石の間が直接接触できなくなるので、接触によって凝着の問題が生じる場合、磁石間に仕切りを増やすことが必要となって、大きなスペースを占めることになり、装荷量が大幅に低下してしまう。一方、真空蒸発法は、支持台等の部材で磁石と重希土類元素を隔離して、加熱することで重希土類元素に蒸気を形成させ、蒸気を磁石の周囲に拡散して磁石の内部までゆっくりと拡散するというものであるが、かかる方法を用いれば、炉体内で、高温で蒸発しにくい材料を用いて支持台を形成して磁石と重希土類元素が直接接触しないようにする必要があり、配置の際の困難さを大きく高めるとともに、ラックが大きなスペースを占めるようになって装荷量が大幅に低下してしまう。また、一般的に支持台はコストの高い材料で作られるので、処理設備のコストが大幅に増大することになる。また、蒸発法を用いたときの蒸気の濃度は制御が困難であるので、プロセスのモニタリングと設備についての要求がいずれも高くなるとともに、拡散後の磁石の一致性が接触法と比較してやや劣ることになる。従って、これら2通りの方法では、大量生産の過程でいずれも明らかに不十分な点があるので、本特許は、全く新しい接触法による粒界拡散技術を提示するものであるが、本特許方法を使用する利点は、従来の接触法を使用するのに比べて、本特許方法を使用して磁石を処理すると、効率も高く、磁石の表面の重希土類が酸化しないようにでき、磁石の表面の状態が損なわれないように保護して、磁石の残留磁気の大幅な低下を防止することができる点にある。非接触法を使用するのに比べて、この方法はより安定的で、設備についての要求もより低くなっている。また、この方法を使用すると、磁石を直接接触させて拡散処理することで凝着の問題を生じないようにして、チャージ量と拡散効率を極めて大きく高めることができるとともに、作業服のコストも極めて大きく低減することができる。   However, the two methods both have some drawbacks during the production process. The contact method is the simplest and most common method in the actual production process, and its advantages are that it is easy to handle, has low requirements for equipment and work clothes, and is easy to achieve mass production. . Similarly, the drawbacks are obvious, and the main thing is that the surface condition of the magnet is easily damaged during actual production, and during diffusion, a large concentration difference is formed in the portion in direct contact with the heavy rare earth element. The entry of the element into the main phase lowers the magnet's remanence, and the heavy rare earth layer on the surface of the magnet falls off due to oxidation during actual production, preventing it from being completely diffused into the magnet. , Heavy rare earths will be wasted. Also, since direct contact between the magnets becomes impossible during heat treatment, if adhesion problems occur due to contact, it will be necessary to increase the partition between the magnets, occupying a large space, and the loading amount Will drop significantly. On the other hand, in the vacuum evaporation method, the magnet and heavy rare earth element are isolated by a member such as a support base and heated to form vapor in the heavy rare earth element, and the vapor diffuses around the magnet and slowly reaches the inside of the magnet. However, if such a method is used, it is necessary to form a support base using a material that does not easily evaporate at a high temperature so that the magnet and the heavy rare earth element are not in direct contact with each other. In addition to greatly increasing the difficulty of placement, the rack occupies a large space and the load is greatly reduced. Further, since the support base is generally made of a high-cost material, the cost of the processing equipment is greatly increased. Also, the vapor concentration when using the evaporation method is difficult to control, so both process monitoring and equipment requirements are high, and the consistency of the magnet after diffusion is slightly inferior compared to the contact method. It will be. Therefore, since these two methods are obviously insufficient in the process of mass production, this patent presents a grain boundary diffusion technique based on a completely new contact method. The advantage of using this method is that when using this patented method to treat the magnet compared to using the conventional contact method, the efficiency is high and the heavy rare earth on the surface of the magnet is not oxidized. It is in the point that it can protect so that the state of this may not be damaged, and can prevent the fall of the residual magnetism of a magnet. Compared to using a non-contact method, this method is more stable and requires less equipment. In addition, when this method is used, the amount of charge and diffusion efficiency can be greatly increased by causing diffusion treatment by direct contact of the magnets, and the cost of work clothes is also extremely high. It can be greatly reduced.

先行技術に存在する欠点を解消するため、本発明では、R‐Fe‐B系焼結磁石の製造方法を提供する。その技術方針は、磁石の重希土類RHX層の外にフッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類のRLF層をしつらえ、重希土類RHXをジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムの少なくとも1種類とすることで、一方では、RLF層によって磁石が熱処理中に互いに凝着を生じないようにして、磁石を接触して配置することのできるようにして、当て板を排棄して配置の困難さを低減してチャージ量を増加させているとともに、表面の重希土類RHX層が酸化されないようにすることができ、他方では、磁石の表面のプラセオジムネオジム元素が大量に揮発することで重希土類元素の層を形成することによって磁石の残留磁気が低下してしまうことをRLF層によって防止するというものである。   In order to eliminate the drawbacks existing in the prior art, the present invention provides a method for producing an R—Fe—B based sintered magnet. The technical policy is to prepare at least one RLF layer of praseodymium fluoride, neodymium fluoride, praseodymium oxide, and neodymium oxide in addition to the heavy rare earth RHX layer of the magnet. By using at least one terbium oxide, on the one hand, the RLF layer prevents the magnets from sticking to each other during the heat treatment so that the magnets can be placed in contact with each other and the caul plate is removed. This reduces the difficulty of placement and increases the amount of charge, and prevents the surface heavy rare earth RHX layer from being oxidized. On the other hand, a large amount of praseodymium neodymium element on the surface of the magnet is volatilized. RLF layer that the residual magnetism of the magnet is reduced by forming the layer of heavy rare earth element Therefore, is that to prevent.

本発明の目的を実現するため、本発明では、次の事項を含むR‐Fe‐B系焼結磁石の製造方法を提供する。   In order to achieve the object of the present invention, the present invention provides a method for producing an R—Fe—B based sintered magnet including the following matters.

1)R1‐Fe‐B‐M焼結磁石を製造する。ただし、R1は、希土類元素Nd、Pr、Tb、Dy、Gd、La、Hoのうちいずれか1種類又は数種類から選ばれ、R1の含有量は26wt%〜33wt%である。Bの含有量は0.8wt%〜1.2wt%である。Mは、Ti、V、Cr、Co、Ga、Cu、Mn、Si、Al、Zr、W、Moのうちいずれか1種類又は数種類から選ばれて含有量は0〜4wt%である。残りの量は、Feである。   1) Manufacture R1-Fe-BM sintered magnet. However, R1 is selected from any one or several kinds of rare earth elements Nd, Pr, Tb, Dy, Gd, La, and Ho, and the content of R1 is 26 wt% to 33 wt%. The content of B is 0.8 wt% to 1.2 wt%. M is selected from any one or several of Ti, V, Cr, Co, Ga, Cu, Mn, Si, Al, Zr, W, and Mo, and the content is 0 to 4 wt%. The remaining amount is Fe.

2)前記焼結磁石を順に脱イオン水、酸溶液を用いて洗浄して、乾燥処理をし、処理された磁石を得る。   2) The sintered magnets are sequentially washed with deionized water and an acid solution and dried to obtain a treated magnet.

3)処理された磁石の表面に重希土類RHX層をしつらえ、重希土類RHX層の外にRLF層をしつらえ、処理されたユニットを形成する。ただし、前記RHXは、ジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムのいずれか1種類又は数種類の混合物である。前記RLFは、フッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類である。   3) Prepare the heavy rare earth RHX layer on the surface of the treated magnet and the RLF layer outside the heavy rare earth RHX layer to form the treated unit. However, the RHX is one kind or a mixture of several kinds of dysprosium, dysprosium hydride, terbium and terbium hydride. The RLF is at least one of praseodymium fluoride, neodymium fluoride, praseodymium oxide, and neodymium oxide.

4)3)における前記処理されたユニットを焼結炉内に置いて真空又は不活性ガス保護の条件下で拡散処理し、拡散温度を800℃〜1000℃、拡散時間を2〜50時間とする。拡散終了後に、磁石に時効処理を行い、時効温度を450〜580℃の範囲、時効時間を4〜6時間とする。   4) The treated unit in 3) is placed in a sintering furnace and subjected to diffusion treatment under vacuum or inert gas protection conditions, with a diffusion temperature of 800 ° C. to 1000 ° C. and a diffusion time of 2 to 50 hours. . After completion of the diffusion, the magnet is subjected to an aging treatment so that the aging temperature is in the range of 450 to 580 ° C. and the aging time is 4 to 6 hours.

好ましくは、前記RHX層の厚さを5〜200μm、前記RLF層の厚さを1〜20μmとする。RLFの形態は粉末で、粉末粒子の粒径は0.2μm〜3.5μmとする。RLFについては、RHX層の外に厚さが1〜20μmのRLFコーティング層を形成する必要があるので、RLFの粉末の粒径を0.2μm〜3.5μmの間に制御しなければならない。   Preferably, the thickness of the RHX layer is 5 to 200 μm, and the thickness of the RLF layer is 1 to 20 μm. The form of RLF is powder, and the particle size of the powder particles is 0.2 μm to 3.5 μm. For RLF, since it is necessary to form an RLF coating layer having a thickness of 1 to 20 μm outside the RHX layer, the particle size of the RLF powder must be controlled between 0.2 μm and 3.5 μm.

さらに好ましくは、粉末粒子の粒径を0.5μm〜2.5μm、RHX層の厚さを10〜100μm、RLF層の厚さを3〜15μmとする。RHX層が厚すぎると、拡散後に磁石の残留磁気の低下が大きくなり、RHX層が薄すぎると、磁石の保磁力の増加が少なくなって、見込まれる効果が達せられなくなる。また、RLF層が薄すぎるときは、RHX層を効果的に保護できなくなって、凝着を防止するという目的も果たせなくなり、磁石の保磁力の増加量も減少してしまう。   More preferably, the particle size of the powder particles is 0.5 μm to 2.5 μm, the thickness of the RHX layer is 10 to 100 μm, and the thickness of the RLF layer is 3 to 15 μm. If the RHX layer is too thick, the residual magnetism is greatly reduced after diffusion. If the RHX layer is too thin, the increase in the coercive force of the magnet is reduced and the expected effect cannot be achieved. Further, when the RLF layer is too thin, the RHX layer cannot be effectively protected, the purpose of preventing adhesion cannot be achieved, and the amount of increase in the coercive force of the magnet is also reduced.

好ましくは、前記ステップ3)において、前記処理された磁石の厚さを1〜12mmとする。熱処理中に重希土類RHXは、液相となった粒界によって磁石に拡散されるので、拡散過程では主に濃度差が駆動力となるが、粒界上で重希土類元素の主相との濃度差が大きすぎると、同じように主相に浸入して磁石の残留磁気を著しく低下させてしまい、処理中に温度、磁石の表層のRLFコーティング層の厚さを調節することなどによって磁石の表層の重希土類の濃度をできる限り制御しても、濃度差が低いと駆動力が小さくなってしまうので、拡散の過程もゆっくりしたものになる。磁石の厚さが12mm超だと、完全な拡散の実現が難しくなって、磁石の不可逆性、直角度などの磁気性能が劣化してしまう。   Preferably, in the step 3), the processed magnet has a thickness of 1 to 12 mm. During the heat treatment, the heavy rare earth RHX is diffused into the magnet by the grain boundary that has become a liquid phase, so the concentration difference is mainly the driving force in the diffusion process, but the concentration of the heavy rare earth element on the grain boundary with the main phase. If the difference is too large, it will penetrate into the main phase in the same way, and the residual magnetism of the magnet will be significantly reduced, and the surface layer of the magnet will be adjusted by adjusting the temperature and the thickness of the RLF coating layer on the surface of the magnet during processing. Even if the concentration of heavy rare earth is controlled as much as possible, if the concentration difference is low, the driving force becomes small, so that the diffusion process becomes slow. When the thickness of the magnet exceeds 12 mm, it is difficult to realize complete diffusion, and magnetic performance such as irreversibility and perpendicularity of the magnet is deteriorated.

好ましくは、前記ステップ4)において、前記拡散温度を850〜980℃、拡散時間を5〜30hとする。温度が850℃より低いと、拡散の駆動力が低下して、RHX中の重希土類元素が磁石の表面から、溶解される粒界相によって磁石の内部に到達することが困難となるので、磁石の表層と中心の磁気性能も不均一になってしまう。温度が980℃より高いと、磁石の表面とRHXの接触する箇所が溶解状態で合金を形成しやすくなって、マトリックスを侵食することになる上、RHX中の重希土類元素が同時に結晶内に入るので、磁石の磁気性能も低下することになる。   Preferably, in step 4), the diffusion temperature is set to 850 to 980 ° C. and the diffusion time is set to 5 to 30 hours. If the temperature is lower than 850 ° C., the driving force for diffusion decreases, and it becomes difficult for the heavy rare earth elements in RHX to reach the inside of the magnet from the surface of the magnet due to the dissolved grain boundary phase. Also, the magnetic performance of the surface layer and the center becomes uneven. When the temperature is higher than 980 ° C., the portion where the surface of the magnet and the RHX are in contact with each other is easy to form an alloy in a molten state, and the matrix is eroded, and the heavy rare earth element in the RHX enters the crystal at the same time. As a result, the magnetic performance of the magnet also decreases.

好ましくは、前記ステップ4)において、真空処理を選んで用いる場合、真空度を5×10−1〜1×10−5Paとし、不活性ガス保護の条件を選んで用いる場合、不活性ガスをアルゴンガスとして、圧力を500〜12KPaとする。 Preferably, in step 4), when vacuum treatment is selected and used, the degree of vacuum is 5 × 10 −1 to 1 × 10 −5 Pa, and when inert gas protection conditions are selected and used, an inert gas is used. The pressure is 500 to 12 KPa as argon gas.

本発明の創作点は、軽希土類元素のフッ化物コーティング層RLFを保護層として用い、軽希土類元素のフッ化物コーティング層RLFを重希土類の層の元素と反応させないことで、重希土類の層の元素が酸化されないようにしているとともに、磁石の表面のRHX層が直接接触して凝着を生じないようにすることもでき、また、重希土類元素を磁石の内部まで拡散させる過程で磁石の表層の重希土類元素が高すぎるために、重希土類元素が主相に入って主相中の軽希土類元素に置換されてしまって軽希土類元素が大量に揮発することで磁石の残留磁気が大幅に低下してしまうことのないようにすることができる点である。また、RLFの粉末は、安全で信頼でき、安定性に優れ、価格も低く、生産・貯蔵・使用の過程でいずれも便利で、実際の生産過程では、コーティング、シルクスクリーンプリント、ディッピングなどの方法で、表面にRHX層が配置された磁石の表面にしつらえればよいので、かかる方法によって、配置の際の困難さが大きく低下するだけでなく、仕切りが排棄されて大きなスペースが解放されて、拡散炉の有効処理量が極めて大きく増大され、生産コストが低減する。   The creation point of the present invention is that the light rare earth element fluoride coating layer RLF is used as a protective layer, and the light rare earth element fluoride coating layer RLF is not reacted with the elements of the heavy rare earth layer, thereby making the elements of the heavy rare earth layer In addition, the RHX layer on the surface of the magnet can be prevented from directly adhering to the magnet surface, and the adhesion of the RHX layer to the inside of the magnet can be prevented in the process of diffusing heavy rare earth elements to the inside of the magnet. Because the heavy rare earth element is too high, the heavy rare earth element enters the main phase and is replaced by the light rare earth element in the main phase, and the light rare earth element volatilizes in large quantities, greatly reducing the magnet's residual magnetism. It is a point that can be prevented. In addition, RLF powder is safe, reliable, excellent in stability, low in price, convenient in production, storage and use. In the actual production process, coating, silkscreen printing, dipping, etc. Therefore, it is only necessary to prepare for the surface of the magnet on which the RHX layer is arranged, so that this method not only greatly reduces the difficulty in arrangement, but also eliminates the partition and frees up a large space. The effective throughput of the diffusion furnace is greatly increased and the production cost is reduced.

以下、本発明の原理及び特徴について説明するが、挙げられた実例は、本発明を解釈するためのものにすぎず、本発明の範囲を限定するためのものではない。   The principles and features of the present invention will be described below, but the examples given are only for the purpose of interpreting the present invention and are not intended to limit the scope of the present invention.

実施例1
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 1
The raw material placed under the protection of inert gas using a vacuum melting furnace is melted to form a scale having a thickness of 0.1 to 0.5 mm, and the gold phase grain boundary of the scale of the R-Fe-B alloy is formed. Make it clear. The scale of the alloy is crushed by a machine and hydrogen crushed, and then the SMD is crushed to 3.4 μm by a jet mill. Oriented using a 15 KOe magnetic field and compression molded to compact, compact density to 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace, and first sintered at 1080 ° C. for 330 minutes. Thereafter, an aging treatment is performed, and aging is performed at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into a final product size magnet with a multi-wire, and the magnet size is 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表2を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを50μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層を配置して、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを7μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を5×10−2Pa〜7.8×10−3とする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M2を得られる。 When the surface of the magnet is washed with an acid solution or deionized water and then dried, a treated magnet M1 is obtained. See Table 2 for components of M1. First, a terbium coating layer is arranged on the surface of the magnet. In this experiment, brush coating is adopted, the thickness of the terbium coating layer is 50 μm, and the outer surface of the terbium coating layer is a mixed coating composed of praseodymium fluoride and neodymium fluoride. The layers are arranged so that the mass ratio of praseodymium fluoride and neodymium fluoride is 1: 5, and the thickness of the coating layer is 7 μm. Place the coated magnet in the container. Place the container in a heat treatment apparatus, set the diffusion temperature to 930 ° C., set the diffusion time to 18 h, and adopt a vacuum treatment at a heat retention stage of 930 ° C. to set the pressure to 5 × 10 −2 Pa to 7.8 × 10 − 3 . After the rapid cooling is completed, the temperature is raised to 520 ° C., an aging treatment is performed for 4 hours, and then the magnet M2 is obtained by rapid cooling to room temperature.

表1と表2には、かかる方法を用いたM2をM1と比較したところ、残留磁気Brが約80Gs低下して、Hcjが9.28KOe増加しており、成分測定をしたところ、M2がM1よりTbが約0.41wt%増加していることが示されている。   Tables 1 and 2 show that when M2 using such a method is compared with M1, the residual magnetic Br decreases by about 80 Gs, Hcj increases by 9.28 KOe, and the component measurement shows that M2 is M1. It is shown that Tb is increased by about 0.41 wt%.

実施例2
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 2
The raw material placed under the protection of inert gas using a vacuum melting furnace is melted to form a scale having a thickness of 0.1 to 0.5 mm, and the gold phase grain boundary of the scale of the R-Fe-B alloy is formed. Make it clear. The scale of the alloy is crushed by a machine and hydrogen crushed, and then the SMD is crushed to 3.4 μm by a jet mill. Oriented using a 15 KOe magnetic field and compression molded to compact, compact density to 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace, and first sintered at 1080 ° C. for 330 minutes. Thereafter, an aging treatment is performed, and aging is performed at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into a final product size magnet with a multi-wire, and the magnet size is 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表3を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを70μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層をコーティングして、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを7μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を7.8×10−3〜5×10−2Paとする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M3を得られる。   When the surface of the magnet is washed with an acid solution or deionized water and then dried, a treated magnet M1 is obtained. See Table 3 for components of M1. First, a terbium coating layer is arranged on the surface of the magnet. In this experiment, brush coating is adopted, the thickness of the terbium coating layer is set to 70 μm, and a mixed coating composed of praseodymium fluoride and neodymium fluoride is formed on the outer surface of the terbium coating layer. The layer is coated so that the mass ratio of praseodymium fluoride and neodymium fluoride is 1: 5 and the thickness of the coating layer is 7 μm. Place the coated magnet in the container. Place the container in the heat treatment apparatus, set the diffusion temperature to 930 ° C, set the diffusion time to 18h, and adopt the vacuum treatment at the heat retention stage of 930 ° C, the pressure is 7.8 x 10-3 to 5 x 10-2 Pa And After the rapid cooling is completed, the temperature is raised to 520 ° C., an aging treatment is performed for 4 hours, and then the magnet M3 is obtained by rapid cooling to room temperature.

表3と表4には、かかる方法を用いたM3をM1と比較したところ、残留磁気Brが約190Gs低下して、Hcjが9.92KOe増加しており、成分測定をしたところ、M3がM1よりTbが約0.49wt%増加していることが示されている。M3をM2と比較すると、残留磁気Brが110Gs低下して、保磁力Hcjが0.64KOe増加して、Tbの含有量が0.08%増加していることから、RHX層を加厚したとき、保磁力の増加も大きくなって残留磁気の低下も大きくなるためRHX層の厚さを厳格に制御する必要のあることが示されている。   Tables 3 and 4 show that when M3 using such a method is compared with M1, the residual magnetic Br is reduced by about 190 Gs and Hcj is increased by 9.92 KOe. It is shown that Tb is increased by about 0.49 wt%. When M3 is compared with M2, the residual magnetic Br decreases by 110 Gs, the coercive force Hcj increases by 0.64 KOe, and the Tb content increases by 0.08%. Therefore, when the RHX layer is thickened It has been shown that it is necessary to strictly control the thickness of the RHX layer because the coercive force increases and the residual magnetism decreases.

実施例3
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 3
The raw material placed under the protection of inert gas using a vacuum melting furnace is melted to form a scale having a thickness of 0.1 to 0.5 mm, and the gold phase grain boundary of the scale of the R-Fe-B alloy is formed. Make it clear. The scale of the alloy is crushed by a machine and hydrogen crushed, and then the SMD is crushed to 3.4 μm by a jet mill. Oriented using a 15 KOe magnetic field and compression molded to compact, compact density to 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace, and first sintered at 1080 ° C. for 330 minutes. Thereafter, an aging treatment is performed, and aging is performed at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into a final product size magnet with a multi-wire, and the magnet size is 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表2を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを50μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層をコーティングして、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを3μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を7.8×10−3〜5×10−2Paとする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M4を得られる。   When the surface of the magnet is washed with an acid solution or deionized water and then dried, a treated magnet M1 is obtained. See Table 2 for components of M1. First, a terbium coating layer is arranged on the surface of the magnet. In this experiment, brush coating is adopted, the thickness of the terbium coating layer is 50 μm, and the outer surface of the terbium coating layer is a mixed coating composed of praseodymium fluoride and neodymium fluoride. The layer is coated so that the mass ratio of praseodymium fluoride and neodymium fluoride is 1: 5 and the thickness of the coating layer is 3 μm. Place the coated magnet in the container. Place the container in the heat treatment apparatus, set the diffusion temperature to 930 ° C, set the diffusion time to 18h, and adopt the vacuum treatment at the heat retention stage of 930 ° C, the pressure is 7.8 x 10-3 to 5 x 10-2 Pa And After the rapid cooling is finished, the temperature is raised to 520 ° C., the aging treatment is performed for 4 hours, and then the magnet M4 is obtained by rapid cooling to room temperature.

表5と表6には、かかる方法を用いたM4をM1と比較したところ、残留磁気Brが約50Gs低下して、Hcjが8.25KOe増加しており、成分測定をしたところ、M4がM1よりTbが約0.37wt%増加していることが示されている。M4をM2と比較すると、残留磁気Brが30Gs増加して、保磁力が1.05KOe低下して、Tbの含有量が0.05%減少していることから、RLF層の厚さを増やしたとき、残留磁気の低下量が減るとともに保磁力の向上量も明らかに減ることが、主にRLF層が薄すぎて、RLF層が酸化され揮発されやすくなって、拡散されて磁石に入る重希土類含有量が減少することによって引き起こされるので、RHXコーティング層の厚さが厳格に要求されなければならないことが示されている。

Tables 5 and 6 show that when M4 using this method is compared with M1, the residual magnetic Br is reduced by about 50 Gs and Hcj is increased by 8.25 KOe. It is shown that Tb is increased by about 0.37 wt%. When M4 is compared with M2, the residual magnetic Br increases by 30 Gs, the coercive force decreases by 1.05 KOe, and the Tb content decreases by 0.05%. Therefore, the thickness of the RLF layer is increased. When the residual magnetism decreases, the coercive force improvement decreases obviously. Mainly, the RLF layer is too thin, the RLF layer is easily oxidized and volatilized, and diffused into the magnet. It has been shown that the thickness of the RHX coating layer must be strictly required because it is caused by a decrease in content.

Claims (6)

R‐Fe‐B系焼結磁石の製造方法であって、
1)R1‐Fe‐B‐M焼結磁石を製造し、ただし、R1が、希土類元素Nd、Pr、Tb、Dy、Gd、La、Hoのうちいずれか1種類又は数種類から選ばれ、R1の含有量が26wt%〜33wt%であり、Bの含有量が0.8wt%〜1.2wt%であり、Mが、Ti、V、Cr、Co、Ga、Cu、Mn、Si、Al、Zr、W、Moのうちいずれか1種類又は数種類から選ばれて含有量が0〜4wt%であり、残りの量が、Feであることと、
2)前記焼結磁石を順に脱イオン水洗浄、酸溶液を用いて処理して、乾燥処理をし、処理された磁石を得ることと、
3)処理された磁石の表面に重希土類RHX層をしつらえ、重希土類RHX層の外にRLF層をしつらえ、処理されたユニットを形成し、ただし、前記RHXが、ジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムのいずれか1種類又は数種類の混合物であり、前記RLFが、フッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類であることと、
4)3)における前記処理されたユニットを焼結炉内に置いて真空又は不活性ガス保護の条件下で拡散処理して、拡散温度を800℃〜1000℃、拡散時間を2〜50時間とし、拡散終了後に、磁石に時効処理を行い、時効温度を450〜580℃の範囲、時効時間を4〜6時間とすることと、
を含むR‐Fe‐B系焼結磁石の製造方法。
A method for producing an R-Fe-B sintered magnet,
1) A R1-Fe-BM sintered magnet is manufactured, where R1 is selected from any one or several of the rare earth elements Nd, Pr, Tb, Dy, Gd, La, and Ho. The content is 26 wt% to 33 wt%, the B content is 0.8 wt% to 1.2 wt%, and M is Ti, V, Cr, Co, Ga, Cu, Mn, Si, Al, Zr. , W, Mo selected from any one or several types, the content is 0 to 4 wt%, the remaining amount is Fe,
2) The sintered magnets are sequentially washed with deionized water, treated with an acid solution, dried, and a treated magnet is obtained;
3) Prepare a heavy rare earth RHX layer on the surface of the treated magnet and an RLF layer outside the heavy rare earth RHX layer to form a treated unit, wherein the RRH is dysprosium, dysprosium hydride, terbium, Any one or a mixture of terbium hydrides, and the RLF is at least one of praseodymium fluoride, neodymium fluoride, praseodymium oxide, neodymium oxide,
4) Place the treated unit in 3) in a sintering furnace and perform diffusion treatment under vacuum or inert gas protection conditions, so that the diffusion temperature is 800 ° C to 1000 ° C and the diffusion time is 2 to 50 hours. , After diffusing, the magnet is subjected to an aging treatment, the aging temperature is in the range of 450 to 580 ° C., and the aging time is 4 to 6 hours,
For producing an R—Fe—B based sintered magnet comprising
前記ステップ3)において、前記RLFの形態が粉末で、粉末粒子の粒径が0.2μm〜3.5μmで、前記RLF層の厚さが1〜20μm、RHX層の厚さが5〜200μmであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   In step 3), the RLF form is powder, the particle size of the powder particles is 0.2 μm to 3.5 μm, the thickness of the RLF layer is 1 to 20 μm, and the thickness of the RHX layer is 5 to 200 μm. The method for producing an R—Fe—B based sintered magnet according to claim 1, wherein: 前記ステップ3)において、前記処理された磁石の厚さが1〜12mmであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   2. The method of manufacturing an R—Fe—B based sintered magnet according to claim 1, wherein in the step 3), the thickness of the processed magnet is 1 to 12 mm. 前記拡散温度が850〜980℃、拡散時間が5〜30hであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   2. The method for producing an R—Fe—B based sintered magnet according to claim 1, wherein the diffusion temperature is 850 to 980 ° C. and the diffusion time is 5 to 30 h. 前記ステップ4)において、真空処理を選んで用いる場合、真空度が5×10−1〜1×10−5Paで、不活性ガス保護の条件を選んで用いる場合、不活性ガスがアルゴンガスで、圧力が500〜12KPaであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。 In step 4), when vacuum treatment is selected and used, the degree of vacuum is 5 × 10 −1 to 1 × 10 −5 Pa, and when inert gas protection conditions are selected and used, the inert gas is argon gas. The method for producing an R—Fe—B based sintered magnet according to claim 1, wherein the pressure is 500 to 12 KPa. 粉末粒子の粒径が0.5μm〜2.5μm、前記RLF層の厚さが3〜15μm、RHX層の厚さが10〜100μmであることを特徴とする、請求項2に記載のR‐Fe‐B系焼結磁石の製造方法。

The R- according to claim 2, wherein the powder particles have a particle size of 0.5 to 2.5 µm, the RLF layer has a thickness of 3 to 15 µm, and the RHX layer has a thickness of 10 to 100 µm. Manufacturing method of Fe-B system sintered magnet.

JP2017163157A 2016-08-31 2017-08-28 Method of manufacturing R-Fe-B sintered magnet Active JP6506361B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610781417.5 2016-08-31
CN201610781417.5A CN106298135B (en) 2016-08-31 2016-08-31 A kind of manufacturing method of R-Fe-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2018082147A true JP2018082147A (en) 2018-05-24
JP6506361B2 JP6506361B2 (en) 2019-04-24

Family

ID=57672644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163157A Active JP6506361B2 (en) 2016-08-31 2017-08-28 Method of manufacturing R-Fe-B sintered magnet

Country Status (3)

Country Link
JP (1) JP6506361B2 (en)
KR (1) KR101906067B1 (en)
CN (1) CN106298135B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092121A (en) * 2018-12-03 2020-06-11 Tdk株式会社 Manufacturing method of r-t-b based permanent magnet
CN111902898A (en) * 2018-10-22 2020-11-06 株式会社Lg化学 Method for producing sintered magnet and sintered magnet
EP4358103A4 (en) * 2021-07-20 2024-10-16 Yantai Zhenghai Magnetic Mat Co Ltd High-performance sintered neodymium-iron-boron magnet and preparation method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464684B (en) * 2017-08-30 2020-04-21 包头天和磁材科技股份有限公司 Method for treating sintered magnet
CN109390145A (en) * 2018-10-24 2019-02-26 江西金力永磁科技股份有限公司 A kind of R-Fe-B sintered magnet and preparation method thereof
KR102561239B1 (en) * 2018-11-27 2023-07-31 엘지이노텍 주식회사 Manufacturing method of rare earth magnet
CN110172599A (en) * 2019-05-16 2019-08-27 中国计量大学 Heavy rare earth compound diffusion is for high saturation and magnetic intensity manganese bismuth melt spun alloy method
CN110415960B (en) * 2019-07-19 2021-06-18 浙江东阳东磁稀土有限公司 Method for improving magnetic property of sintered neodymium-iron-boron magnet
CN112086256B (en) * 2020-09-30 2021-08-10 福建省长汀金龙稀土有限公司 R-Fe-B rare earth sintered magnet and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223007A (en) * 2006-01-31 2011-11-04 Hitachi Metals Ltd R-Fe-B-BASED RARE-EARTH SINTERED MAGNET AND METHOD FOR PRODUCING THE SAME
WO2013061836A1 (en) * 2011-10-27 2013-05-02 インターメタリックス株式会社 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
JP2014130888A (en) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R-t-b-based sintered magnet and method for producing the same
JP2014236221A (en) * 2013-05-30 2014-12-15 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing rare earth-iron-boron based sintered magnet
WO2016039352A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
WO2016093174A1 (en) * 2014-12-12 2016-06-16 日立金属株式会社 Production method for r-t-b-based sintered magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262406A (en) * 1986-05-09 1987-11-14 Hitachi Metals Ltd Manufacture of powder for permanent magnet alloy
WO2014148356A1 (en) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
CN103646773B (en) * 2013-11-21 2016-11-09 烟台正海磁性材料股份有限公司 A kind of manufacture method of R-Fe-B sintered magnet
CN103646772B (en) * 2013-11-21 2017-01-04 烟台正海磁性材料股份有限公司 A kind of preparation method of R-Fe-B based sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223007A (en) * 2006-01-31 2011-11-04 Hitachi Metals Ltd R-Fe-B-BASED RARE-EARTH SINTERED MAGNET AND METHOD FOR PRODUCING THE SAME
WO2013061836A1 (en) * 2011-10-27 2013-05-02 インターメタリックス株式会社 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
JP2014130888A (en) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R-t-b-based sintered magnet and method for producing the same
JP2014236221A (en) * 2013-05-30 2014-12-15 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing rare earth-iron-boron based sintered magnet
WO2016039352A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
WO2016093174A1 (en) * 2014-12-12 2016-06-16 日立金属株式会社 Production method for r-t-b-based sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902898A (en) * 2018-10-22 2020-11-06 株式会社Lg化学 Method for producing sintered magnet and sintered magnet
CN111902898B (en) * 2018-10-22 2022-09-16 株式会社Lg化学 Method for producing sintered magnet and sintered magnet
JP2020092121A (en) * 2018-12-03 2020-06-11 Tdk株式会社 Manufacturing method of r-t-b based permanent magnet
JP7167673B2 (en) 2018-12-03 2022-11-09 Tdk株式会社 Manufacturing method of RTB system permanent magnet
EP4358103A4 (en) * 2021-07-20 2024-10-16 Yantai Zhenghai Magnetic Mat Co Ltd High-performance sintered neodymium-iron-boron magnet and preparation method therefor

Also Published As

Publication number Publication date
CN106298135B (en) 2018-05-18
CN106298135A (en) 2017-01-04
KR20180025193A (en) 2018-03-08
KR101906067B1 (en) 2018-11-30
JP6506361B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6595542B2 (en) Method for producing R-Fe-B sintered magnet
JP2018082147A (en) METHOD FOR MANUFACTURING R-Fe-B BASED SINTERED MAGNET
JP6281986B2 (en) Method for producing rare earth permanent magnet material
EP3043364B1 (en) Preparation of permanent magnet material
JP6107547B2 (en) Rare earth permanent magnet manufacturing method
KR102219024B1 (en) Preparation of rare earth permanent magnet
JP6457598B2 (en) Manufacturing method of R-Fe-B sintered magnet
JP6107546B2 (en) Rare earth permanent magnet manufacturing method
KR102373412B1 (en) Method for preparing rare-earth permanent magnet
JP6107545B2 (en) Rare earth permanent magnet manufacturing method
CN104051101A (en) Rare-earth permanent magnet and preparation method thereof
CN107275029A (en) A kind of high-performance Ne-Fe-B permanent magnet produced with neodymium iron boron waste material and manufacture method
KR101866023B1 (en) Fabrication method of rare earth permanent magnet with excellent magnetic property
KR20190061244A (en) Method for preparing rare-earth permanent magnet
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JP2018029160A (en) METHOD FOR MANUFACTURING RFeB BASED MAGNET
CN115512920A (en) Alloy powder, preparation method thereof and application of alloy powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250