JP6506361B2 - Method of manufacturing R-Fe-B sintered magnet - Google Patents

Method of manufacturing R-Fe-B sintered magnet Download PDF

Info

Publication number
JP6506361B2
JP6506361B2 JP2017163157A JP2017163157A JP6506361B2 JP 6506361 B2 JP6506361 B2 JP 6506361B2 JP 2017163157 A JP2017163157 A JP 2017163157A JP 2017163157 A JP2017163157 A JP 2017163157A JP 6506361 B2 JP6506361 B2 JP 6506361B2
Authority
JP
Japan
Prior art keywords
magnet
layer
sintered magnet
diffusion
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017163157A
Other languages
Japanese (ja)
Other versions
JP2018082147A (en
Inventor
ジーチアン リー
ジーチアン リー
コンヤオ マオ
コンヤオ マオ
メイチュー シャオ
メイチュー シャオ
ホンシャン ニー
ホンシャン ニー
Original Assignee
▲煙▼台正海磁性材料股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲煙▼台正海磁性材料股▲ふん▼有限公司 filed Critical ▲煙▼台正海磁性材料股▲ふん▼有限公司
Publication of JP2018082147A publication Critical patent/JP2018082147A/en
Application granted granted Critical
Publication of JP6506361B2 publication Critical patent/JP6506361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、R‐Fe‐B系焼結磁石の製造方法に関し、希土類永久磁石材料の分野に属するものである。   The present invention relates to a method of manufacturing an R-Fe-B based sintered magnet and belongs to the field of rare earth permanent magnet materials.

新エネルギー自動車の急速な発展に伴って、新エネルギー自動車分野での永久磁石モーターに対する需要は益々大きくなっており、また、新エネルギー自動車におけるモーターの動作温度もより高くなっているので、より高い保磁力の磁石が必要とされているようになっているが、保磁力を高めるには重希土類元素の大量な使用が必要となるので、磁石のコストが急激に高騰してしまい、また、溶解中に重希土類を直接大量に添加しても磁石の磁気エネルギー積が低下してしまうことになる。新エネルギー自動車には高い保磁力が求められるとともに、高い磁気エネルギー積も求められるので、どのようにして重希土類元素の使用量を低減して保磁力が高く磁気エネルギー積の高い磁石を生産するかが、ネオジム・鉄・ホウ素永久磁石材料についての研究の焦点となっていた。近年、ネオジム・鉄・ホウ素永久磁石を生産する国内外の一部の大手企業は、主に2通りの方法によって重希土類の使用量を低減させながら保磁力が高く磁気エネルギー積の高い磁石を生産している。1つは、結晶粒微細化技術で、もう1つは、重希土類を粒界拡散する方法である。しかしながら、重希土類の使用量を低減して磁石の保磁力を高めるという効果において、結晶粒微細化技術の効果は限られているが、重希土類元素を粒界拡散する方法では、磁石の残留磁気がほぼ低下しないか又は低下が少ないという前提で、保磁力を大幅に高めることができるので、重希土類を粒界拡散するような方法を用いると、極少量の重希土類元素を使用しながら、保磁力が高く磁気エネルギー積の高いネオジム・鉄・ホウ素永久磁石を生産することができ、粒界拡散技術によって超高性能の磁石を生産することができる。   With the rapid development of new energy vehicles, the demand for permanent magnet motors in the new energy vehicle field is increasing, and the operating temperature of motors in new energy vehicles is also higher, so higher maintenance Although a magnet of magnetic force is required, a large amount of heavy rare earth elements is required to increase the coercivity, so the cost of the magnet will rise sharply, and during melting Even if a large amount of heavy rare earth is directly added to the magnet, the magnetic energy product of the magnet will be reduced. As new energy vehicles are required to have high coercivity and high magnetic energy products, how to reduce the amount of heavy rare earth elements used to produce magnets with high coercivity and high magnetic energy products Was the focus of research on neodymium-iron-boron permanent magnet materials. In recent years, some major domestic and foreign companies that produce neodymium, iron and boron permanent magnets produce magnets with high coercivity and high magnetic energy product while reducing the amount of heavy rare earth used mainly by two methods. doing. One is a grain refining technique, and the other is a method of grain boundary diffusion of heavy rare earth. However, although the effect of grain refining techniques is limited in the effect of reducing the amount of heavy rare earth used to increase the coercive force of the magnet, the method of diffusing heavy rare earth elements at grain boundaries diffuses the residual magnetism of the magnet. Since the coercivity can be greatly enhanced on the premise that the decrease hardly occurs or the decrease hardly occurs, the method of diffusing heavy rare earth at grain boundaries can be used while maintaining a very small amount of heavy rare earth element. Neodymium-iron-boron permanent magnets with high magnetic force and high magnetic energy product can be produced, and ultra-high performance magnets can be produced by grain boundary diffusion technology.

現在量産に応用されている粒界拡散技術は、概ね次の2通りの方法にまとめられる。一つは、接触法で、まず、気相成長、電気メッキ、コーティングなどの方法によって磁石の表面に重希土類元素の層を設けた後、長時間拡散処理することで重希土類元素を粒界に沿って磁石の内部に浸入させることによって粒界の拡散という目的を実現することを特徴とする(例えば、特許公開番号CN1898757及びCN101158024)。もう一つは、非接触法で、現在最も常用されているのは真空蒸発法であるが、高真空状態下で加熱することで重希土類元素に蒸気を形成させた後、重希土類元素の蒸気を磁石の表面に堆積させて磁石の内部に拡散することを特徴とする(例えば、特許公開番号CN101651038B及びCN101375352A)。これら2通りの方法は、現在の生産において最もよく見られる2通りの方法であり、大量生産が可能で、いずれも好ましい粒界拡散の効果を達成することができる。   The grain boundary diffusion technology currently applied to mass production can be roughly summarized into the following two methods. One is the contact method. First, a heavy rare earth element layer is formed on the surface of the magnet by vapor deposition, electroplating, coating, etc. It is characterized in that the purpose of the diffusion of grain boundaries is realized by infiltrating the inside of the magnet along (see, for example, Patent Publication Nos. CN 1898757 and CN 101158024). The other is non-contact method, and vacuum evaporation method is most commonly used at present, but after forming heavy rare earth element vapor by heating under high vacuum condition, vapor of heavy rare earth element Is deposited on the surface of the magnet and diffused inside the magnet (for example, Patent Publication Nos. CN101651038B and CN101375352A). These two methods are the two methods most commonly found in current production, and can be mass-produced, and both can achieve favorable grain boundary diffusion effects.

しかしながら、2通りの方法には、生産過程でいずれもいくらかの欠点がある。接触法は、実際の生産過程において最も簡単かつ最もよくある方法で、その利点は、取扱可能性が高く、設備と作業服についての要求がいずれも低く、量産化の実現をしやすいことである。同様にその欠点も明らかで、主なものとして、実際の生産中に磁石の表面の状態が損なわれやすく、拡散中、重希土類元素と直接接触する部分に大きな濃度差が形成されて、重希土類元素が主相に入ることで磁石の残留磁気を低下させてしまう上、実際の生産中に磁石の表面の重希土類層が酸化による脱落を生じて、磁石の中に完全には拡散されきれなくなり、重希土類を浪費してしまうことになる。また、熱処理中に磁石と磁石の間が直接接触できなくなるので、接触によって凝着の問題が生じる場合、磁石間に仕切りを増やすことが必要となって、大きなスペースを占めることになり、装荷量が大幅に低下してしまう。一方、真空蒸発法は、支持台等の部材で磁石と重希土類元素を隔離して、加熱することで重希土類元素に蒸気を形成させ、蒸気を磁石の周囲に拡散して磁石の内部までゆっくりと拡散するというものであるが、かかる方法を用いれば、炉体内で、高温で蒸発しにくい材料を用いて支持台を形成して磁石と重希土類元素が直接接触しないようにする必要があり、配置の際の困難さを大きく高めるとともに、ラックが大きなスペースを占めるようになって装荷量が大幅に低下してしまう。また、一般的に支持台はコストの高い材料で作られるので、処理設備のコストが大幅に増大することになる。また、蒸発法を用いたときの蒸気の濃度は制御が困難であるので、プロセスのモニタリングと設備についての要求がいずれも高くなるとともに、拡散後の磁石の一致性が接触法と比較してやや劣ることになる。従って、これら2通りの方法では、大量生産の過程でいずれも明らかに不十分な点があるので、本特許は、全く新しい接触法による粒界拡散技術を提示するものであるが、本特許方法を使用する利点は、従来の接触法を使用するのに比べて、本特許方法を使用して磁石を処理すると、効率も高く、磁石の表面の重希土類が酸化しないようにでき、磁石の表面の状態が損なわれないように保護して、磁石の残留磁気の大幅な低下を防止することができる点にある。非接触法を使用するのに比べて、この方法はより安定的で、設備についての要求もより低くなっている。また、この方法を使用すると、磁石を直接接触させて拡散処理することで凝着の問題を生じないようにして、チャージ量と拡散効率を極めて大きく高めることができるとともに、作業服のコストも極めて大きく低減することができる。   However, both methods have some drawbacks in the production process. The contact method is the simplest and most common method in the actual production process, and its advantage is that it is easy to handle, has low requirements for equipment and work clothes, and is easy to achieve mass production . Similarly, its disadvantages are also evident, mainly due to the fact that the state of the surface of the magnet is easily damaged during actual production, and a large concentration difference is formed in the part directly in contact with the heavy rare earth element during diffusion. Elements entering the main phase lower the remanence of the magnet and, during actual production, the heavy rare earth layer on the surface of the magnet is dropped off due to oxidation and can not be completely diffused in the magnet. , Will waste the heavy rare earth. In addition, since the magnet and the magnet can not be in direct contact with each other during the heat treatment, if the problem of adhesion is caused by the contact, it is necessary to increase the partition between the magnets, which occupies a large space, Will drop significantly. On the other hand, the vacuum evaporation method separates the magnet and the heavy rare earth element by a member such as a support and heats the heavy rare earth element to form a vapor, and the vapor is diffused around the magnet to slowly reach the inside of the magnet If the method is used, it is necessary to form a support base using a material that is difficult to evaporate at high temperature in the furnace body so that the magnet and the heavy rare earth element do not come in direct contact with each other. Along with greatly increasing the difficulty in the arrangement, the rack occupies a large space and the loading amount is greatly reduced. Also, since the support is generally made of expensive materials, the cost of the processing equipment will be significantly increased. In addition, since the concentration of steam when using the evaporation method is difficult to control, both the process monitoring and equipment requirements become high, and the consistency of the magnet after diffusion is slightly inferior to the contact method. It will be. Therefore, in these two methods, since there are clearly insufficient points in the mass production process, this patent presents a completely new contact boundary grain diffusion technique by contact method, but this patent method The advantage of using the present invention is that when processing the magnet using this patent method compared to using the conventional contact method, the efficiency is also higher and the heavy rare earth on the surface of the magnet can not be oxidized, the surface of the magnet In order to prevent the loss of the residual magnetism of the magnet, it is possible to prevent the state of Compared to using the non-contact method, this method is more stable and has lower equipment requirements. In addition, using this method, it is possible to extremely increase the charge amount and the diffusion efficiency without causing the problem of adhesion by direct contact of the magnet and diffusion processing, and the cost of the work clothes is also extremely high. It can be greatly reduced.

先行技術に存在する欠点を解消するため、本発明では、R‐Fe‐B系焼結磁石の製造方法を提供する。その技術方針は、磁石の重希土類RHX層の外にフッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類のRLF層をしつらえ、重希土類RHXをジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムの少なくとも1種類とすることで、一方では、RLF層によって磁石が熱処理中に互いに凝着を生じないようにして、磁石を接触して配置することのできるようにして、当て板を排棄して配置の困難さを低減してチャージ量を増加させているとともに、表面の重希土類RHX層が酸化されないようにすることができ、他方では、磁石の表面のプラセオジムネオジム元素が大量に揮発することで重希土類元素の層を形成することによって磁石の残留磁気が低下してしまうことをRLF層によって防止するというものである。   In order to solve the drawbacks existing in the prior art, the present invention provides a method of manufacturing an R-Fe-B based sintered magnet. Its technical policy is to provide at least one RLF layer of praseodymium fluoride, neodymium fluoride, praseodymium oxide, neodymium oxide in addition to heavy rare earth RHX layer of magnet, heavy rare earth RHX as dysprosium, dysprosium hydride, terbium, hydrogen By using at least one type of terbium fluoride, on the other hand, the RLF layer allows the magnets to be placed in contact so that the magnets do not adhere to one another during heat treatment, and the backing plate is discharged. While discarding, the difficulty of arrangement is reduced to increase the amount of charge, and the heavy rare earth RHX layer on the surface can be prevented from being oxidized, and on the other hand, a large amount of praseodymium neodymium element volatilizes on the surface of the magnet RLF layer reduces the residual magnetism of the magnet by forming a layer of heavy rare earth elements. Therefore, is that to prevent.

本発明の目的を実現するため、本発明では、次の事項を含むR‐Fe‐B系焼結磁石の製造方法を提供する。   In order to realize the object of the present invention, the present invention provides a method of manufacturing an R-Fe-B based sintered magnet including the following matters.

1)R1‐Fe‐B‐M焼結磁石を製造する。ただし、R1は、希土類元素Nd、Pr、Tb、Dy、Gd、La、Hoのうちいずれか1種類又は数種類から選ばれ、R1の含有量は26wt%〜33wt%である。Bの含有量は0.8wt%〜1.2wt%である。Mは、Ti、V、Cr、Co、Ga、Cu、Mn、Si、Al、Zr、W、Moのうちいずれか1種類又は数種類から選ばれて含有量は0〜4wt%である。残りの量は、Feである。   1) Manufacture R1-Fe-BM sintered magnet. However, R1 is selected from any one or several of rare earth elements Nd, Pr, Tb, Dy, Gd, La and Ho, and the content of R1 is 26 wt% to 33 wt%. The content of B is 0.8 wt% to 1.2 wt%. M is selected from one or more of Ti, V, Cr, Co, Ga, Cu, Mn, Si, Al, Zr, W, and Mo, and the content thereof is 0 to 4 wt%. The remaining amount is Fe.

2)前記焼結磁石を順に酸溶液を用いて洗浄して、脱イオン水で洗浄し、乾燥処理をし、処理された磁石を得る。 2) The sintered magnet is sequentially washed with an acid solution, washed with deionized water, and dried to obtain a treated magnet.

3)処理された磁石の表面に重希土類RHX層をしつらえ、重希土類RHX層の外にRLF層をしつらえ、処理されたユニットを形成する。ただし、前記RHXは、ジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムのいずれか1種類又は数種類の混合物である。前記RLFは、フッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類である。   3) Apply a heavy rare earth RHX layer to the surface of the treated magnet and a RLF layer outside the heavy rare earth RHX layer to form a treated unit. However, the RHX is one or a mixture of one or more of dysprosium, dysprosium hydride, terbium and terbium hydride. The RLF is at least one of praseodymium fluoride, neodymium fluoride, praseodymium oxide, and neodymium oxide.

4)3)における前記処理されたユニットを焼結炉内に置いて真空又は不活性ガス保護の条件下で拡散処理し、拡散温度を800℃〜1000℃、拡散時間を2〜50時間とする。拡散終了後に、磁石に時効処理を行い、時効温度を450〜580℃の範囲、時効時間を4〜6時間とする。   4) Place the treated unit in 3) in a sintering furnace and perform diffusion treatment under vacuum or inert gas protection conditions, and let the diffusion temperature be 800 ° C. to 1000 ° C., and the diffusion time be 2 to 50 hours . After the end of diffusion, the magnet is subjected to an aging treatment, and the aging temperature is in the range of 450 to 580 ° C., and the aging time is set to 4 to 6 hours.

好ましくは、前記RHX層の厚さを5〜200μm、前記RLF層の厚さを1〜20μmとする。RLFの形態は粉末で、粉末粒子の粒径は0.2μm〜3.5μmとする。RLFについては、RHX層の外に厚さが1〜20μmのRLFコーティング層を形成する必要があるので、RLFの粉末の粒径を0.2μm〜3.5μmの間に制御しなければならない。   Preferably, the thickness of the RHX layer is 5 to 200 μm, and the thickness of the RLF layer is 1 to 20 μm. The form of RLF is a powder, and the particle size of the powder particle is 0.2 μm to 3.5 μm. For RLF, the particle size of the RLF powder should be controlled between 0.2 μm and 3.5 μm, as it is necessary to form an RLF coating layer with a thickness of 1 to 20 μm outside the RHX layer.

さらに好ましくは、粉末粒子の粒径を0.5μm〜2.5μm、RHX層の厚さを10〜100μm、RLF層の厚さを3〜15μmとする。RHX層が厚すぎると、拡散後に磁石の残留磁気の低下が大きくなり、RHX層が薄すぎると、磁石の保磁力の増加が少なくなって、見込まれる効果が達せられなくなる。また、RLF層が薄すぎるときは、RHX層を効果的に保護できなくなって、凝着を防止するという目的も果たせなくなり、磁石の保磁力の増加量も減少してしまう。   More preferably, the particle diameter of the powder particles is 0.5 μm to 2.5 μm, the thickness of the RHX layer is 10 to 100 μm, and the thickness of the RLF layer is 3 to 15 μm. If the RHX layer is too thick, the reduction of the remanence of the magnet after diffusion will be large, and if the RHX layer is too thin, the increase of the coercivity of the magnet will be small and the expected effect can not be achieved. In addition, when the RLF layer is too thin, the RHX layer can not be effectively protected, and the purpose of preventing adhesion can not be achieved, and the amount of increase in the coercive force of the magnet also decreases.

好ましくは、前記ステップ3)において、前記処理された磁石の厚さを1〜12mmとする。熱処理中に重希土類RHXは、液相となった粒界によって磁石に拡散されるので、拡散過程では主に濃度差が駆動力となるが、粒界上で重希土類元素の主相との濃度差が大きすぎると、同じように主相に浸入して磁石の残留磁気を著しく低下させてしまい、処理中に温度、磁石の表層のRLFコーティング層の厚さを調節することなどによって磁石の表層の重希土類の濃度をできる限り制御しても、濃度差が低いと駆動力が小さくなってしまうので、拡散の過程もゆっくりしたものになる。磁石の厚さが12mm超だと、完全な拡散の実現が難しくなって、磁石の不可逆性、直角度などの磁気性能が劣化してしまう。   Preferably, in step 3), the thickness of the processed magnet is 1 to 12 mm. Since the heavy rare earth RHX is diffused to the magnet by the grain boundaries in the liquid phase during the heat treatment, the concentration difference mainly becomes the driving force in the diffusion process, but the concentration of the heavy rare earth element with the main phase on the grain boundaries If the difference is too large, it will intrude into the main phase in the same way and significantly reduce the remanence of the magnet, and by controlling the temperature, the thickness of the RLF coating layer on the surface of the magnet, etc. during processing, the surface layer of the magnet Even if the concentration of heavy rare earth is controlled as much as possible, if the difference in concentration is low, the driving force becomes small, so the diffusion process also becomes slow. If the thickness of the magnet is more than 12 mm, it is difficult to realize complete diffusion, and the magnet performance such as magnet irreversibility and squareness is degraded.

好ましくは、前記ステップ4)において、前記拡散温度を850〜980℃、拡散時間を5〜30hとする。温度が850℃より低いと、拡散の駆動力が低下して、RHX中の重希土類元素が磁石の表面から、溶解される粒界相によって磁石の内部に到達することが困難となるので、磁石の表層と中心の磁気性能も不均一になってしまう。温度が980℃より高いと、磁石の表面とRHXの接触する箇所が溶解状態で合金を形成しやすくなって、マトリックスを侵食することになる上、RHX中の重希土類元素が同時に結晶内に入るので、磁石の磁気性能も低下することになる。   Preferably, in the step 4), the diffusion temperature is 850 to 980 ° C., and the diffusion time is 5 to 30 hours. If the temperature is lower than 850 ° C., the driving force for diffusion is reduced, and it becomes difficult for the heavy rare earth elements in RHX to reach the inside of the magnet from the surface of the magnet by the grain boundary phase to be melted. The magnetic performance of the surface and center of the core will also be uneven. When the temperature is higher than 980 ° C., the surface of the magnet and the contact point of RHX easily form an alloy in a molten state, which causes the matrix to be eroded, and the heavy rare earth elements in RHX simultaneously enter the crystal. Therefore, the magnetic performance of the magnet will also be degraded.

好ましくは、前記ステップ4)において、真空処理を選んで用いる場合、真空度を5×10−1〜1×10−5Paとし、不活性ガス保護の条件を選んで用いる場合、不活性ガスをアルゴンガスとして、圧力を500〜12KPaとする。 Preferably, in the step 4), when vacuum processing is selected and used, the vacuum degree is 5 × 10 −1 to 1 × 10 −5 Pa, and when inert gas protection conditions are selected and used, an inert gas is used. The pressure is 500 to 12 KPa as argon gas.

本発明の創作点は、軽希土類元素のフッ化物コーティング層RLFを保護層として用い、軽希土類元素のフッ化物コーティング層RLFを重希土類の層の元素と反応させないことで、重希土類の層の元素が酸化されないようにしているとともに、磁石の表面のRHX層が直接接触して凝着を生じないようにすることもでき、また、重希土類元素を磁石の内部まで拡散させる過程で磁石の表層の重希土類元素が高すぎるために、重希土類元素が主相に入って主相中の軽希土類元素に置換されてしまって軽希土類元素が大量に揮発することで磁石の残留磁気が大幅に低下してしまうことのないようにすることができる点である。また、RLFの粉末は、安全で信頼でき、安定性に優れ、価格も低く、生産・貯蔵・使用の過程でいずれも便利で、実際の生産過程では、コーティング、シルクスクリーンプリント、ディッピングなどの方法で、表面にRHX層が配置された磁石の表面にしつらえればよいので、かかる方法によって、配置の際の困難さが大きく低下するだけでなく、仕切りが排棄されて大きなスペースが解放されて、拡散炉の有効処理量が極めて大きく増大され、生産コストが低減する。   The point of creation of the present invention is that the element of the heavy rare earth layer is made by using the light rare earth element fluoride coating layer RLF as a protective layer and not reacting the light rare earth element fluoride coating layer RLF with the elements of the heavy rare earth layer. In addition to preventing oxidation, it is possible for the RHX layer on the surface of the magnet not to be in direct contact to cause adhesion, and in the process of diffusing the heavy rare earth element to the inside of the magnet, Because heavy rare earth elements are too high, heavy rare earth elements enter the main phase and are replaced by light rare earth elements in the main phase, and the light rare earth elements volatilize in a large amount, which significantly reduces the remanence of the magnet. The point is that you can prevent it from In addition, RLF powder is safe, reliable, stable, low in price, convenient in production, storage, and use processes, and in the actual production process, methods such as coating, silk screen printing and dipping In such a method, not only the difficulty in the placement is greatly reduced, but also the partition is discarded and a large space is released because such a method is sufficient to be prepared on the surface of the magnet on which the RHX layer is placed. The effective throughput of the diffusion furnace is greatly increased, and the production cost is reduced.

以下、本発明の原理及び特徴について説明するが、挙げられた実例は、本発明を解釈するためのものにすぎず、本発明の範囲を限定するためのものではない。   The principles and features of the present invention will be described in the following, but the listed examples are only for interpreting the present invention, and not for limiting the scope of the present invention.

実施例1
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 1
The raw materials placed under inert gas protection are melted using a vacuum melting furnace to form flakes with a thickness of 0.1 to 0.5 mm, and the gold phase grain boundaries of flakes of R-Fe-B alloy Make it clear. The flakes of the alloy are machine-ground and hydrogen-ground, and then crushed by a jet mill to an SMD of 3.4 μm. It is oriented using a magnetic field of 15 KOe, compression molded and compacted to a compact density of 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace and sintered first at 1080 ° C. for 330 minutes. Thereafter, it is subjected to aging treatment, and aged at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into magnets of final product dimensions with a multi-wire, and the dimensions of the magnets are 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表2を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを50μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層を配置して、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを7μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を5×10−2Pa〜7.8×10−3とする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M2を得られる。 The magnet is washed with an acid solution, deionized water and dried to obtain a treated magnet M1. See Table 2 for the components of M1. First, a terbium coating layer is disposed on the surface of the magnet, and in this experiment, brush coating is employed, the thickness of the terbium coating layer is 50 μm, and the outer surface of the terbium coating layer is a mixed coating consisting of praseodymium fluoride The layers are arranged so that the mass ratio of praseodymium fluoride to neodymium fluoride is 1: 5 and the thickness of the coating layer is 7 μm. Place the coated magnet in a container. The vessel is placed in a heat treatment apparatus, the diffusion temperature set is 930 ° C., the diffusion time is 18 h, and vacuum treatment is employed in the heat retention step of 930 ° C. and the pressure is 5 × 10 −2 Pa to 7.8 × 10 − Set to 3 After quenching is completed, the temperature is raised to 520 ° C. and aging treatment is performed for 4 hours, and then quenching is performed to normal temperature to obtain magnet M2.

表1と表2には、かかる方法を用いたM2をM1と比較したところ、残留磁気Brが約80Gs低下して、Hcjが9.28KOe増加しており、成分測定をしたところ、M2がM1よりTbが約0.41wt%増加していることが示されている。   In Tables 1 and 2, when M2 using such a method is compared with M1, the residual magnetic Br decreases by about 80 Gs and Hcj increases by 9.28 KOe, and the component measurement shows that M2 is M1. It is further shown that Tb is increased by about 0.41 wt%.

実施例2
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 2
The raw materials placed under inert gas protection are melted using a vacuum melting furnace to form flakes with a thickness of 0.1 to 0.5 mm, and the gold phase grain boundaries of flakes of R-Fe-B alloy Make it clear. The flakes of the alloy are machine-ground and hydrogen-ground, and then crushed by a jet mill to an SMD of 3.4 μm. It is oriented using a magnetic field of 15 KOe, compression molded and compacted to a compact density of 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace and sintered first at 1080 ° C. for 330 minutes. Thereafter, it is subjected to aging treatment, and aged at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into magnets of final product dimensions with a multi-wire, and the dimensions of the magnets are 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表3を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを70μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層をコーティングして、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを7μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を7.8×10−3〜5×10−2Paとする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M3を得られる。   The magnet is washed with an acid solution, deionized water and dried to obtain a treated magnet M1. See Table 3 for the components of M1. First, a terbium coating layer was placed on the surface of the magnet, and in this experiment a brush coating was employed, the thickness of the terbium coating layer was 70 μm, and the outer surface of the terbium coating layer was a mixed coating consisting of praseodymium fluoride and neodymium fluoride. The layer is coated so that the mass ratio of praseodymium fluoride to neodymium fluoride is 1: 5, and the thickness of the coating layer is 7 μm. Place the coated magnet in a container. The container is placed in a heat treatment apparatus, the diffusion temperature set is 930 ° C., the diffusion time is 18 h, and vacuum treatment is adopted in the heat retention step of 930 ° C. and the pressure is 7.8 × 10 −3 to 5 × 10 −2 Pa I assume. After quenching is completed, the temperature is raised to 520 ° C. and aging treatment is performed for 4 hours, and then quenching is performed to normal temperature to obtain magnet M3.

表3と表4には、かかる方法を用いたM3をM1と比較したところ、残留磁気Brが約190Gs低下して、Hcjが9.92KOe増加しており、成分測定をしたところ、M3がM1よりTbが約0.49wt%増加していることが示されている。M3をM2と比較すると、残留磁気Brが110Gs低下して、保磁力Hcjが0.64KOe増加して、Tbの含有量が0.08%増加していることから、RHX層を加厚したとき、保磁力の増加も大きくなって残留磁気の低下も大きくなるためRHX層の厚さを厳格に制御する必要のあることが示されている。   In Tables 3 and 4, when M3 using such a method is compared with M1, the residual magnetic Br decreases by about 190 Gs and Hcj increases by 9.92 KOe, and the component measurement shows that M3 is M1. It is further shown that Tb is increased by about 0.49 wt%. When M3 is compared with M2, the residual magnetic Br decreases by 110 Gs, the coercive force Hcj increases by 0.64 KOe, and the content of Tb increases by 0.08%. It has been shown that the thickness of the RHX layer needs to be strictly controlled since the coercivity increases and the remanence decreases too.

実施例3
真空溶解炉を用いて不活性ガス保護下で配置した原材料を溶解し、厚さが0.1〜0.5mmの鱗片を形成して、R‐Fe‐B合金の鱗片の金相粒界を明瞭にする。合金の鱗片は、機械で粉砕して水素粉砕をしてから、ジェットミルでそのSMDが3.4μmまで破砕する。15KOeの磁場を用いて配向し、圧縮成形をして、コンパクトにして、コンパクト密度を3.95g/cmにする。コンパクトにしたものを焼結炉中で真空焼結して、まず、1080℃で330min焼結する。その後、時効処理をして、480℃で240min時効して圧粉体を得る。圧粉体をマルチワイヤーで最終製品寸法の磁石にカットして、磁石の寸法を27mm*15mm*5mm、公差を±0.05mmとする。
Example 3
The raw materials placed under inert gas protection are melted using a vacuum melting furnace to form flakes with a thickness of 0.1 to 0.5 mm and the gold phase boundaries of flakes of R-Fe-B alloy Make it clear. The flakes of the alloy are machine-ground and hydrogen-ground, and then crushed by a jet mill to an SMD of 3.4 μm. It is oriented using a magnetic field of 15 KOe, compression molded and compacted to a compact density of 3.95 g / cm 3 . The compacted product is vacuum sintered in a sintering furnace and sintered first at 1080 ° C. for 330 minutes. Thereafter, it is subjected to aging treatment, and aged at 480 ° C. for 240 minutes to obtain a green compact. The green compact is cut into magnets of final product dimensions with a multi-wire, and the dimensions of the magnets are 27 mm * 15 mm * 5 mm, and the tolerance is ± 0.05 mm.

磁石は、酸溶液、脱イオン水で表面を洗浄して乾燥処理をすると、処理された磁石M1を得られる。M1の成分については、表2を見られたい。まず、磁石の表面にテルビウムコーティング層を配置し、この実験ではハケ塗りを採用して、テルビウムコーティング層の厚さを50μmとし、テルビウムコーティング層の外面にフッ化プラセオジム、フッ化ネオジムでなる混合コーティング層をコーティングして、フッ化プラセオジムとフッ化ネオジムの質量比を1:5とし、コーティング層の厚さを3μmとする。コーティングが完了した磁石を容器に入れる。容器を熱処理装置中に置いて、設定する拡散温度を930℃、拡散時間を18hとし、930℃の保温段階で真空処理を採用して圧力を7.8×10−3〜5×10−2Paとする。急冷が終了してから520℃まで昇温して4時間時効処理をした後、常温まで急冷すると、磁石M4を得られる。   The magnet is washed with an acid solution, deionized water and dried to obtain a treated magnet M1. See Table 2 for the components of M1. First, a terbium coating layer is disposed on the surface of the magnet, and in this experiment a brush coating is employed, the thickness of the terbium coating layer is 50 μm, and the outer surface of the terbium coating layer is a mixed coating consisting of praseodymium fluoride and neodymium fluoride. The layer is coated so that the mass ratio of praseodymium fluoride to neodymium fluoride is 1: 5, and the thickness of the coating layer is 3 μm. Place the coated magnet in a container. The container is placed in a heat treatment apparatus, the diffusion temperature set is 930 ° C., the diffusion time is 18 h, and vacuum treatment is adopted in the heat retention step of 930 ° C. and the pressure is 7.8 × 10 −3 to 5 × 10 −2 Pa I assume. After quenching is completed, the temperature is raised to 520 ° C. and aging treatment is performed for 4 hours, and then quenching is performed to normal temperature to obtain magnet M4.

表5と表6には、かかる方法を用いたM4をM1と比較したところ、残留磁気Brが約50Gs低下して、Hcjが8.25KOe増加しており、成分測定をしたところ、M4がM1よりTbが約0.37wt%増加していることが示されている。M4をM2と比較すると、残留磁気Brが30Gs増加して、保磁力が1.05KOe低下して、Tbの含有量が0.05%減少していることから、RLF層の厚さを増やしたとき、残留磁気の低下量が減るとともに保磁力の向上量も明らかに減ることが、主にRLF層が薄すぎて、RLF層が酸化され揮発されやすくなって、拡散されて磁石に入る重希土類含有量が減少することによって引き起こされるので、RHXコーティング層の厚さが厳格に要求されなければならないことが示されている。

In Tables 5 and 6, when M4 using such a method is compared with M1, the residual magnetic Br decreases by about 50 Gs and Hcj increases by 8.25 KOe, and the component measurement shows that M4 is M1. It is shown that Tb is increased by about 0.37 wt%. When M4 is compared with M2, the remanence Br increases by 30 Gs, the coercivity decreases by 1.05 KOe, and the Tb content decreases by 0.05%, so the thickness of the RLF layer is increased. When the reduction in remanence decreases and the improvement in coercivity also decreases obviously, the RLF layer is mainly too thin, the RLF layer is easily oxidized and volatilized, and it is diffused and enters the magnet. It has been shown that the thickness of the RHX coating layer has to be strictly required, as it is caused by the content reduction.

Claims (6)

R‐Fe‐B系焼結磁石の製造方法であって、
1)R1‐Fe‐B‐M焼結磁石を製造し、ただし、R1が、希土類元素Nd、Pr、Tb、Dy、Gd、La、Hoのうちいずれか1種類又は数種類から選ばれ、R1の含有量が26wt%〜33wt%であり、Bの含有量が0.8wt%〜1.2wt%であり、Mが、Ti、V、Cr、Co、Ga、Cu、Mn、Si、Al、Zr、W、Moのうちいずれか1種類又は数種類から選ばれて含有量が0〜4wt%であり、残りの量が、Feであることと、
2)前記焼結磁石を順に酸溶液を用いて処理して、脱イオン水で洗浄し、乾燥処理をし、処理された磁石を得ることと、
3)処理された磁石の表面に重希土類RHX層をしつらえ、重希土類RHX層の外にRLF層をしつらえ、処理されたユニットを形成し、ただし、前記RHXが、ジスプロシウム、水素化ジスプロシウム、テルビウム、水素化テルビウムのいずれか1種類又は数種類の混合物であり、前記RLFが、フッ化プラセオジム、フッ化ネオジム、酸化プラセオジム、酸化ネオジムの少なくとも1種類であることと、
4)3)における前記処理されたユニットを焼結炉内に置いて真空又は不活性ガス保護の条件下で拡散処理して、拡散温度を800℃〜1000℃、拡散時間を2〜50時間とし、拡散終了後に、磁石に時効処理を行い、時効温度を450〜580℃の範囲、時効時間を4〜6時間とすることと、
を含むR‐Fe‐B系焼結磁石の製造方法。
A method of manufacturing an R-Fe-B sintered magnet, comprising:
1) R1-Fe-BM sintered magnet is manufactured, provided that R1 is selected from one or more of rare earth elements Nd, Pr, Tb, Dy, Gd, La and Ho, The content is 26 wt% to 33 wt%, the content of B is 0.8 wt% to 1.2 wt%, and M is Ti, V, Cr, Co, Ga, Cu, Mn, Si, Al, Zr And W and Mo, and the content thereof is 0 to 4 wt%, and the remaining amount is Fe,
2) treating the sintered magnet sequentially with an acid solution , washing with deionized water and drying treatment to obtain a treated magnet;
3) Prepare a heavy rare earth RHX layer on the surface of the treated magnet and a RLF layer outside the heavy rare earth RHX layer to form a treated unit, wherein said RHX is dysprosium, dysprosium hydride, terbium, And any one or a mixture of several types of terbium hydride, wherein the RLF is at least one of praseodymium fluoride, neodymium fluoride, praseodymium oxide, and neodymium oxide;
4) The treated unit in 3) is placed in a sintering furnace and diffusion treated under vacuum or inert gas protection conditions to a diffusion temperature of 800 ° C. to 1000 ° C. and a diffusion time of 2 to 50 hours. After the diffusion is complete, the magnet is subjected to aging treatment, the aging temperature is in the range of 450 to 580 ° C., and the aging time is 4 to 6 hours,
Method of producing an R-Fe-B based sintered magnet including
前記ステップ3)において、前記RLFの形態が粉末で、粉末粒子の粒径が0.2μm〜3.5μmで、前記RLF層の厚さが1〜20μm、RHX層の厚さが5〜200μmであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   In the step 3), the form of the RLF is powder, the particle size of the powder particles is 0.2 μm to 3.5 μm, the thickness of the RLF layer is 1 to 20 μm, and the thickness of the RHX layer is 5 to 200 μm The method for producing an R-Fe-B based sintered magnet according to claim 1, characterized in that 前記ステップ3)において、前記処理された磁石の厚さが1〜12mmであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   The method for manufacturing an R-Fe-B based sintered magnet according to claim 1, wherein the thickness of the treated magnet in step 3) is 1 to 12 mm. 前記拡散温度が850〜980℃、拡散時間が5〜30hであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。   The method for producing an R-Fe-B based sintered magnet according to claim 1, wherein the diffusion temperature is 850 to 980 ° C and the diffusion time is 5 to 30 hours. 前記ステップ4)において、真空処理を選んで用いる場合、真空度が5×10−1〜1×10−5Paで、不活性ガス保護の条件を選んで用いる場合、不活性ガスがアルゴンガスで、圧力が500〜12000Paであることを特徴とする、請求項1に記載のR‐Fe‐B系焼結磁石の製造方法。 In the step 4), when vacuum processing is selected and used, the degree of vacuum is 5 × 10 −1 to 1 × 10 −5 Pa, and when inert gas protection conditions are selected and used, the inert gas is argon gas, The method for producing an R-Fe-B based sintered magnet according to claim 1, wherein the pressure is 500 to 12 000 Pa. 粉末粒子の粒径が0.5μm〜2.5μm、前記RLF層の厚さが3〜15μm、RHX層の厚さが10〜100μmであることを特徴とする、請求項2に記載のR‐Fe‐B系焼結磁石の製造方法。

The R- as set forth in claim 2, wherein the particle size of the powder particle is 0.5 μm to 2.5 μm, the thickness of the RLF layer is 3 to 15 μm, and the thickness of the RHX layer is 10 to 100 μm. Method of manufacturing Fe-B based sintered magnet.

JP2017163157A 2016-08-31 2017-08-28 Method of manufacturing R-Fe-B sintered magnet Active JP6506361B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610781417.5 2016-08-31
CN201610781417.5A CN106298135B (en) 2016-08-31 2016-08-31 A kind of manufacturing method of R-Fe-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2018082147A JP2018082147A (en) 2018-05-24
JP6506361B2 true JP6506361B2 (en) 2019-04-24

Family

ID=57672644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163157A Active JP6506361B2 (en) 2016-08-31 2017-08-28 Method of manufacturing R-Fe-B sintered magnet

Country Status (3)

Country Link
JP (1) JP6506361B2 (en)
KR (1) KR101906067B1 (en)
CN (1) CN106298135B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464684B (en) * 2017-08-30 2020-04-21 包头天和磁材科技股份有限公司 Method for treating sintered magnet
KR102411584B1 (en) * 2018-10-22 2022-06-20 주식회사 엘지화학 Method for preparing sintered magnet and sintered magnet
CN109390145A (en) * 2018-10-24 2019-02-26 江西金力永磁科技股份有限公司 A kind of R-Fe-B sintered magnet and preparation method thereof
KR102561239B1 (en) * 2018-11-27 2023-07-31 엘지이노텍 주식회사 Manufacturing method of rare earth magnet
JP7167673B2 (en) * 2018-12-03 2022-11-09 Tdk株式会社 Manufacturing method of RTB system permanent magnet
CN110172599A (en) * 2019-05-16 2019-08-27 中国计量大学 Heavy rare earth compound diffusion is for high saturation and magnetic intensity manganese bismuth melt spun alloy method
CN110415960B (en) * 2019-07-19 2021-06-18 浙江东阳东磁稀土有限公司 Method for improving magnetic property of sintered neodymium-iron-boron magnet
CN112086256B (en) * 2020-09-30 2021-08-10 福建省长汀金龙稀土有限公司 R-Fe-B rare earth sintered magnet and preparation method thereof
CN113593800B (en) * 2021-07-20 2023-01-10 烟台正海磁性材料股份有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262406A (en) * 1986-05-09 1987-11-14 Hitachi Metals Ltd Manufacture of powder for permanent magnet alloy
CN103295713B (en) * 2006-01-31 2016-08-10 日立金属株式会社 R-Fe-B rare-earth sintered magnet
JP6100168B2 (en) * 2011-10-27 2017-03-22 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet
JP6221233B2 (en) * 2012-12-28 2017-11-01 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
WO2014148356A1 (en) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
CN103258633B (en) * 2013-05-30 2015-10-28 烟台正海磁性材料股份有限公司 A kind of preparation method of R-Fe-B based sintered magnet
CN103646773B (en) * 2013-11-21 2016-11-09 烟台正海磁性材料股份有限公司 A kind of manufacture method of R-Fe-B sintered magnet
CN103646772B (en) * 2013-11-21 2017-01-04 烟台正海磁性材料股份有限公司 A kind of preparation method of R-Fe-B based sintered magnet
JP6414597B2 (en) * 2014-09-11 2018-10-31 日立金属株式会社 Method for producing RTB-based sintered magnet
WO2016093174A1 (en) * 2014-12-12 2016-06-16 日立金属株式会社 Production method for r-t-b-based sintered magnet

Also Published As

Publication number Publication date
CN106298135B (en) 2018-05-18
CN106298135A (en) 2017-01-04
KR20180025193A (en) 2018-03-08
KR101906067B1 (en) 2018-11-30
JP2018082147A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6506361B2 (en) Method of manufacturing R-Fe-B sintered magnet
JP6595542B2 (en) Method for producing R-Fe-B sintered magnet
EP3043364B1 (en) Preparation of permanent magnet material
JP5837139B2 (en) Method for preparing R-Fe-B sintered magnet
JP6281986B2 (en) Method for producing rare earth permanent magnet material
JP6281987B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP6107547B2 (en) Rare earth permanent magnet manufacturing method
KR101373272B1 (en) Permanent magnet and method for producing permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method
JP6107546B2 (en) Rare earth permanent magnet manufacturing method
JP6457598B2 (en) Manufacturing method of R-Fe-B sintered magnet
JP6107545B2 (en) Rare earth permanent magnet manufacturing method
CN105185500A (en) Preparation method of permanent magnet material
CN106887321A (en) One kind improves the coercitive method of rare-earth magnet
KR102419578B1 (en) Method for preparing rare-earth permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250