JPS5819405A - Manufacture of mn-al-c magnet - Google Patents

Manufacture of mn-al-c magnet

Info

Publication number
JPS5819405A
JPS5819405A JP11681081A JP11681081A JPS5819405A JP S5819405 A JPS5819405 A JP S5819405A JP 11681081 A JP11681081 A JP 11681081A JP 11681081 A JP11681081 A JP 11681081A JP S5819405 A JPS5819405 A JP S5819405A
Authority
JP
Japan
Prior art keywords
magnet
sintering
sintered
partial pressure
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11681081A
Other languages
Japanese (ja)
Inventor
Yoshinobu Takeda
義信 武田
Atsushi Kuroishi
黒石 農士
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11681081A priority Critical patent/JPS5819405A/en
Publication of JPS5819405A publication Critical patent/JPS5819405A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To inexpensively obtain an Mn-Al-C magnet of high performance in a high yield by cold molding powder of an Mn-Al-C material having a prescribed composition, sintering the molded body in an evacuated atmosphere under a specified partial pressure of gaseous CO, and subjecting the sintered body to solubilizing heat treatment. CONSTITUTION:A magnet material consisting of 70wt% Mn, 29.5wt% Al and 0.5wt% c is cast, pulverized, and cold molded into a prescribed shape. The molded body is sintered at a prescribed temp. in an evacuated atmosphere under 1-100 Torr partial pressure of gaseous CO. The sintered body is subjected to solubilizing heat treatment in a cooling stage. By this method a lightweight powerful sintered Mn-Al-C magnet having maximum energy product about 2 times that of isotropic ferrite can be manufactured easily.

Description

【発明の詳細な説明】 Mn−Al−C系磁石は希少資源であるCOを全く使用
しない材料であるため経済性に優れ、かつ軽量であり重
量あたりの磁気エネルギーが大きく、磁石応用機器の高
性能化、軽量化の薄型化等に好適であり積極的に実用化
開発が行われて来た。
[Detailed Description of the Invention] Mn-Al-C magnets are materials that do not use CO, which is a rare resource, and are therefore highly economical. They are also lightweight and have large magnetic energy per weight, making them ideal for high-performance magnet-applied equipment. It is suitable for improving performance, reducing weight and thickness, and has been actively developed for practical use.

本材料は他の磁石材料であるアルニコ合金等と比較すれ
ば被削加工性は優れているが、硬度がHRc 50〜5
5と高いためやはり難削材であり、旋削加工や穴あけ加
工の効率が著しく劣っており実用上の障害となる問題が
あった。
This material has excellent machinability when compared to other magnet materials such as alnico alloys, but its hardness is HRc 50 to 5.
5, it is still a difficult material to cut, and the efficiency of turning and drilling is extremely poor, which poses a problem in practical use.

このような難削材である磁石部品を製造する方法の一つ
として粉末冶金法の利用が考えられる。
Powder metallurgy may be used as one of the methods for manufacturing magnetic components that are difficult to cut.

しかし乍ら、従来の粉末冶金法でMn−A/−C系材料
を製造するのは極めて困難なことであった。何故ならM
n−Al!−C系材料は前述の通り硬くて脆いため型押
成型が難しく、また酸素との結合力の極めて高いMnや
AI!を主成分としているため加熱中に容易に酸化する
ため焼結が殆んど進まないからである。このため例えば
焼結雰囲気を高純度の水素にする方法が提案されたが顕
著な効果はなく充分な密度を有する焼結体が得られない
ため磁石としての使用に耐えなかった。又、低融点元素
を添加して焼結する方法(特開c855−100944
号)が提案されているが磁気特性が充分でなかった。
However, it has been extremely difficult to produce Mn-A/-C based materials using conventional powder metallurgy methods. Because M
n-Al! -C-based materials are hard and brittle as mentioned above, making them difficult to mold, and Mn and AI have extremely high bonding strength with oxygen! This is because the main component is easily oxidized during heating, so sintering hardly progresses. For this reason, for example, a method was proposed in which the sintering atmosphere was made of high-purity hydrogen, but this method had no significant effect and could not be used as a magnet because a sintered body with sufficient density could not be obtained. In addition, a method of adding a low melting point element and sintering (Japanese Patent Application Laid-open No. C855-100944
No.) has been proposed, but its magnetic properties were not sufficient.

このように従来の粉末冶金法では高性能焼結胤−Aj7
−C系磁石の製造は困難であった。
In this way, conventional powder metallurgy methods can produce high-performance sintered seeds -Aj7
-C magnets were difficult to manufacture.

本発明はCOガス分圧が1−100 Torrの減圧雰
囲気中で焼結することによって従来の水素やアンモニア
分解ガス(AXガス)或いは真空雰囲気による焼結より
も高性能な磁石の焼結ができることを見出したものであ
る。
The present invention is capable of sintering magnets with higher performance than conventional sintering using hydrogen, ammonia decomposition gas (AX gas), or vacuum atmosphere by sintering in a reduced pressure atmosphere with a CO gas partial pressure of 1-100 Torr. This is what we discovered.

Mn−A/−C系合金は地やAI!の酸化物が粉末表面
に形成されるために従来の雰囲気では焼結中にこれらの
酸化物を還元除去することができず、残留した酸化物が
磁気特性を損うことが避けられなかった。Mn の酸化
物は主としてMnOであり、この酸化物の解離圧は、 MnO8Mn +−〇x の式において△G0= 91950−17.4T テJ
り ルコトカら最高加熱温度1jlO’Cのときには、
10−″19以上□。
Mn-A/-C alloys are ground and AI! oxides formed on the powder surface, these oxides could not be reduced and removed during sintering in the conventional atmosphere, and it was inevitable that the remaining oxides would impair the magnetic properties. The oxide of Mn is mainly MnO, and the dissociation pressure of this oxide is expressed as △G0=91950-17.4T in the formula MnO8Mn+-〇x
When the maximum heating temperature is 1jlO'C,
10-″19 or more □.

にもなり、通常の真空によっては分解が不可能であった
It became impossible to decompose using normal vacuum.

一方、炭素によってMnOを還元する方法は、MnO−
1−C:  Mn 十C0 ΔG0= 65250−88J5T であることから加熱温度が1428℃以上でなければM
nOを還元することが出来ず、この温度では胤−Al−
C合金は融液となってしまい焼結することが不可能であ
った。しかし本発明の方法においては、上記反応のCO
ガスを例えばl −40Torr  にすることによっ
て、即ちPC8= 0.0018〜0.05とすること
により自由エネルギー変化ΔG1 △G = 65250−88.85T + RT/nP
c。
On the other hand, the method of reducing MnO with carbon is MnO-
1-C: Mn 10C0 ΔG0 = 65250-88J5T Therefore, unless the heating temperature is 1428℃ or higher, M
It is not possible to reduce nO, and at this temperature -Al-
The C alloy turned into a melt and could not be sintered. However, in the method of the present invention, the CO of the above reaction
By setting the gas to, for example, l -40 Torr, that is, by setting PC8 = 0.0018 to 0.05, the free energy change ΔG1 ΔG = 65250-88.85T + RT/nP
c.

を0とする温度が993〜1200 ’Cに低下させる
ことが出来る。一方、COガス分圧を著しく低下させる
ことがこの熱力学的計算では更に還元反応を生じ易くす
るかの如く思われるが、実際にはMn −A/−C中の
Cが消費され、最適組成範囲からずれる等好ましくない
。又、00分圧(Pco )が理論分圧よ怜高くても焼
結が良好に進行する場合があるのは、雰囲気ガス中の酸
素分圧が低(Mn−Aj−C合金の酸化が抑制される為
であると思われる。
The temperature can be lowered to 993-1200'C. On the other hand, in this thermodynamic calculation, it seems that significantly lowering the CO gas partial pressure makes the reduction reaction more likely to occur, but in reality, C in Mn -A/-C is consumed, and the optimal composition It is undesirable that it deviates from the range. Furthermore, even if the 00 partial pressure (Pco) is higher than the theoretical partial pressure, sintering may proceed well because the oxygen partial pressure in the atmospheric gas is low (oxidation of the Mn-Aj-C alloy is suppressed). It seems that it is for the purpose of being treated.

実験の結果PCOが1〜100Torr の場合が良好
な焼結が可能であった。
As a result of experiments, good sintering was possible when the PCO was 1 to 100 Torr.

焼結温度が包晶温度以上であれば、液相を伴った急速な
焼結が可能であり、残留空孔の少い焼結体が得られる。
When the sintering temperature is equal to or higher than the peritectic temperature, rapid sintering with a liquid phase is possible, and a sintered body with few residual pores can be obtained.

しかし包晶温度と溶融温度との差が小さい為、温度精度
の良い焼結炉を使用する必要がある。
However, since the difference between the peritectic temperature and the melting temperature is small, it is necessary to use a sintering furnace with good temperature accuracy.

一方、包晶温度以下の同相焼結を行う場合には焼結時間
が長い欠点があるが、焼結温度の多少のバラツキに対し
ても安定した焼結挙動を示すため温度精度の劣った焼結
炉を用いても形崩れや溶融などのない焼結体が得られる
特徴がある。
On the other hand, when performing in-phase sintering below the peritectic temperature, there is a drawback that the sintering time is long; It has the characteristic that even when using a sintering furnace, a sintered body that does not lose its shape or melt can be obtained.

更に、焼結後冷却時に同じ炉内で連続的にε相領域で溶
体化熱処理を行うことも本発明の特徴であり、これによ
って従来の鋳造方法等の製法の場合に必要だった長時間
の溶体化熱処理時間と手間を不要とすることが出来る。
Furthermore, another feature of the present invention is that solution heat treatment is continuously performed in the ε phase region in the same furnace during cooling after sintering, which eliminates the long time required in conventional manufacturing methods such as casting. Solution heat treatment time and effort can be eliminated.

焼結温度をε相領域で行うために均一溶体化が殆んど同
時に進行し、焼結後の冷却速度を制御することによって
溶体化処理を容易に行うことができる。
Since the sintering temperature is set in the ε phase region, homogeneous solution treatment proceeds almost simultaneously, and the solution treatment can be easily performed by controlling the cooling rate after sintering.

本発明はMn−Aj’−C系磁石の粉末冶金法による新
しい製造方法を提供するものであり、この方法はMn7
0重量%、AI!29.5  重量%、C005重量%
の合金に適用して有効であるが、その組成比は通常の製
法で変化し得る範囲で変動しても有効である。
The present invention provides a new method for manufacturing Mn-Aj'-C magnets by powder metallurgy, and this method is applicable to Mn7
0% by weight, AI! 29.5% by weight, C005% by weight
It is effective when applied to alloys of 1 to 3, but it is also effective even if the composition ratio is varied within the range that can be changed by normal manufacturing methods.

又、本合金系には更に磁気的性質や加工性を改善するた
めにNi、Tt sB或いはGe  等を添加すること
も行われるが、これらのいずれの合金系に対しても本発
明による製造法は有用であった。
Furthermore, Ni, Tt sB, Ge, etc. may be added to this alloy system in order to further improve magnetic properties and workability, but the manufacturing method according to the present invention can be applied to any of these alloy systems. was useful.

次に実施例によって説明する。Next, an example will be explained.

実施例1゜ 70wt、% Mn−29,5wt、96A/−0,5
wt、% C組成の合金を鋳造した後、粉砕によって一
100メツシュの粉末を得々〇この粉末を冷間静水圧成
型機を用いて1.fl t/arl  の圧力で80H
Jtx100の円柱に成型した。この成型体をCOガス
分圧8 ()−Torrの減圧雰囲気中で、1210℃
、15分間焼結後、いったん1050℃で80分保持し
た後、10℃/分以上の強制冷却を行った。あと550
℃で焼戻して得られた焼結体の比重は464J’/cc
であり、最大エネルギー積(BH) max、  は2
.I MG ・Oeであった。
Example 1゜70wt, % Mn-29.5wt, 96A/-0.5
After casting an alloy with a composition of wt, % C, a powder of 1,100 mesh was obtained by crushing. This powder was pulverized using a cold isostatic press machine. 80H at a pressure of fl t/arl
It was molded into a cylinder of Jtx100. This molded body was heated at 1210°C in a reduced pressure atmosphere with a CO gas partial pressure of 8 ()-Torr.
After sintering for 15 minutes, the temperature was once held at 1050°C for 80 minutes, and then forced cooling was performed at a rate of 10°C/min or more. 550 left
The specific gravity of the sintered body obtained by tempering at ℃ is 464 J'/cc
and the maximum energy product (BH) max, is 2
.. It was IMG・Oe.

実施例2゜ 実施例1と同様にして得られた成型体をCOガス分圧1
0Torrの減圧雰囲気中で1160℃、4時間で焼結
後制御冷却を行った。得られた焼結体は比重451J’
/ccで最大エネルギー積(BH) max。
Example 2゜A molded body obtained in the same manner as in Example 1 was heated to a CO gas partial pressure of 1
Controlled cooling was performed after sintering at 1160° C. for 4 hours in a reduced pressure atmosphere of 0 Torr. The obtained sintered body has a specific gravity of 451 J'
Maximum energy product (BH) max at /cc.

は1.7MG・Oeであった。was 1.7MG・Oe.

実施例8゜ 実施例1と同一組成の合金を鋳造後、液体窒素で冷却し
ながら非酸化雰囲気中で粉砕粉末化した低酸素粉末を用
い、実施例1と同様に成型体とし、これをCOガス分圧
10 Torrの減圧雰囲気中で1210℃、15分間
焼結した。冷却過程の1050℃で30分保持し、均一
化を施したのち15℃/分の制御冷却により実質的に溶
体化処理を行った。
Example 8 After casting an alloy with the same composition as in Example 1, the low-oxygen powder was pulverized in a non-oxidizing atmosphere while being cooled with liquid nitrogen to form a molded body in the same manner as in Example 1. Sintering was performed at 1210° C. for 15 minutes in a reduced pressure atmosphere with a gas partial pressure of 10 Torr. During the cooling process, the temperature was held at 1050° C. for 30 minutes to homogenize it, and then controlled cooling at a rate of 15° C./min was carried out to substantially perform solution treatment.

得られた焼結体は比重4687’/cc、最大エネルギ
ー積(BH) max、  は2.5 MG ・Oeで
あった。
The obtained sintered body had a specific gravity of 4687'/cc and a maximum energy product (BH) max of 2.5 MG·Oe.

以上の結果から明らかな如く、本発明の方法によって、
等方性フェライトの2倍近い最大エネルギー積を有する
強力な磁石が粉末冶金法によって得られたものであり、
これにより、凹凸のある円柱や中空パイプ等の複雑形状
の磁石部品を高い材料歩留りで安価に製造することが出
来て工業的価値が高いものである。
As is clear from the above results, by the method of the present invention,
A powerful magnet with a maximum energy product nearly twice that of isotropic ferrite was obtained by powder metallurgy.
This makes it possible to manufacture complex-shaped magnetic parts such as uneven cylinders and hollow pipes at low cost with a high material yield, which has high industrial value.

Claims (1)

【特許請求の範囲】 (1) Mn 70重量%、AI!29.5  重量%
、C005重量%からなる磁石材料を溶解鋳造後粉砕し
て粉末化し、所定の形状に冷間成型し、これをCOガス
分圧1 = 100 Torr の減圧雰囲気中で焼結
し、引き続き冷却時に溶体化熱処理を行うことを特徴と
するMn−A/−C系磁石の製造法。 (2、特許請求の範囲第(1)項において、焼結温度が
包晶反応温度以上であることを特徴とするMn −Aj
’−C系磁石の製造法。 (3)特許請求の範囲第(1)項において、焼結温度が
包晶反応温度以下であることを特徴とするMn−A/−
C系磁石の製造法。
[Claims] (1) Mn 70% by weight, AI! 29.5% by weight
, C005% by weight is melted and cast, pulverized into powder, cold-formed into a predetermined shape, sintered in a reduced pressure atmosphere with a CO gas partial pressure of 1 = 100 Torr, and then melted into a solution during cooling. A method for manufacturing a Mn-A/-C magnet, which comprises performing chemical heat treatment. (2. In claim (1), Mn-Aj is characterized in that the sintering temperature is equal to or higher than the peritectic reaction temperature.
'-C-based magnet manufacturing method. (3) In claim (1), Mn-A/- is characterized in that the sintering temperature is below the peritectic reaction temperature.
Manufacturing method of C-based magnet.
JP11681081A 1981-07-25 1981-07-25 Manufacture of mn-al-c magnet Pending JPS5819405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11681081A JPS5819405A (en) 1981-07-25 1981-07-25 Manufacture of mn-al-c magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11681081A JPS5819405A (en) 1981-07-25 1981-07-25 Manufacture of mn-al-c magnet

Publications (1)

Publication Number Publication Date
JPS5819405A true JPS5819405A (en) 1983-02-04

Family

ID=14696208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11681081A Pending JPS5819405A (en) 1981-07-25 1981-07-25 Manufacture of mn-al-c magnet

Country Status (1)

Country Link
JP (1) JPS5819405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064131A (en) * 2006-09-04 2008-03-21 Daiwa Kasei Ind Co Ltd Component coupling structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064131A (en) * 2006-09-04 2008-03-21 Daiwa Kasei Ind Co Ltd Component coupling structure

Similar Documents

Publication Publication Date Title
JP4840606B2 (en) Rare earth permanent magnet manufacturing method
JP5999106B2 (en) Method for producing RTB-based sintered magnet
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
WO2010113465A1 (en) Alloy for sintered r-t-b-m magnet and method for producing same
JP2018018911A (en) Method for manufacturing r-t-b based sintered magnet
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPS5819405A (en) Manufacture of mn-al-c magnet
JPH05271852A (en) Production of rare earth magnet alloy
JPH0475304B2 (en)
JP2001524604A (en) Manufacturing method of magnetic alloy powder
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2021052052A (en) Method for manufacturing sintered compact for rare earth magnet
JPS5858706A (en) Manufacture of mn-al-c family permanent magnet
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JPH1012473A (en) Manufacture of rare-earth permanent magnet
JPS6230846A (en) Production of permanent magnet material
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS62254408A (en) Manufacture of sintered rare earth magnet
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JPH02138706A (en) Anisotropic permanent magnet
JP4076017B2 (en) Method for producing rare earth magnet powder with excellent magnetic anisotropy
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JP2000045025A (en) Production of rolled silicon steel