JPS62287041A - Production of high-alloy steel sintered material - Google Patents

Production of high-alloy steel sintered material

Info

Publication number
JPS62287041A
JPS62287041A JP61129228A JP12922886A JPS62287041A JP S62287041 A JPS62287041 A JP S62287041A JP 61129228 A JP61129228 A JP 61129228A JP 12922886 A JP12922886 A JP 12922886A JP S62287041 A JPS62287041 A JP S62287041A
Authority
JP
Japan
Prior art keywords
weight
alloy steel
sintering
molding
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61129228A
Other languages
Japanese (ja)
Inventor
Masaki Kono
正樹 河野
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61129228A priority Critical patent/JPS62287041A/en
Publication of JPS62287041A publication Critical patent/JPS62287041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a material which has excellent hardness and toughness, has fine structure and permits near net shaping by cold molding alloy steel powder contg. C, Cr, W, V, Mo, and Co at specified ratios or powder mixture composed of the alloy steel compound to said compsn. and sintering the molding, then subjecting the molding to a hot hydrostatic molding treatment. CONSTITUTION:The alloy steel powder contg., by weight, 0.5-4% C, 3-6% Cr, 6-50% W, and 0.5-20% V, and contg. >=1 kinds of 2-22% Mo and 4-20% Co or the powder mixture composed of the alloy steel compound to said alloy steel compsn. is prepd. After such powder is cold-molded, the molding is sintered and is subjected to the hot hydrostatic molding treatment in the same furnace immediately without being subjected to cooling down to the temp. near a room temp. The high-hardness alloy material which has no coarse-grained carbides, has fine structure, i.e., the excellent hardness and toughness and permits near net shaping is produced by such stage.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は高合金鋼焼結材料の製造方法に関し、さらに詳
しくは、微細組織を持ち、ニアネットシエイブ(Nea
r Net 5hape) (7)”f能な方法で低コ
ストに高合金の高硬度焼結材料を製造する方法を提供す
るものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a high-alloy steel sintered material, and more specifically, the present invention relates to a method for producing a high-alloy steel sintered material having a microstructure and a near net
r Net 5 hape) (7) "Providing a method for producing a high-alloy, high-hardness sintered material at a low cost and in an efficient manner.

〔従来の技術〕[Conventional technology]

高硬度材料の代表的なものに超硬合金があるが、これは
硬さは大Sい(HRCが74以1−)反面、靭性が小(
シャルピー衝撃値が0.5 k g f・m/cm′程
度)であるという欠点を持ち、その上コスト高の材料で
ある。
A typical example of high-hardness materials is cemented carbide, which has high hardness (HRC of 74 to 1-) but low toughness (
It has the drawback of having a Charpy impact value of about 0.5 kg f·m/cm'), and is also a high-cost material.

一方、靭性の高い高硬度材料としては高速度鋼が知られ
ている。この高速度鋼の硬さを大きくするためには、合
金成分の増量が考えられるが、溶製法では、炭化物の偏
析が避けられないため困難である。これに対し、急冷凝
固により合金jllを過飽和に固溶させた銅粉を焼結き
せる粉末冶金法は、溶製法に比べて、炭化物の偏析の少
ない組織が得られる。
On the other hand, high-speed steel is known as a high-hardness material with high toughness. In order to increase the hardness of this high-speed steel, it is possible to increase the amount of alloying components, but this is difficult in the melting method because segregation of carbides is unavoidable. On the other hand, the powder metallurgy method of sintering copper powder in which alloy jll is supersaturated as a solid solution by rapid solidification provides a structure with less segregation of carbides than the melting method.

従来の粉末冶金による高速度鋼の製造は、1′、にガス
アトマイズ粉末をカプセル充填した後、熱間静水圧成形
(HIP)L、鋼塊を製造して、加下成形する方法によ
ってル翫た。これはA、KasakらノPowder−
metallurgy 、tool 5teels (
PowderMetallurgy、 1978. v
o121.114)に示されるように、特性は良いが、
ニアネットシェイブが難しい方法である。
The production of high-speed steel using conventional powder metallurgy involves 1' encapsulating gas atomized powder, followed by hot isostatic pressing (HIP) to produce a steel ingot, and then subjecting it to compression forming. . This is A, Kasak et al.'s Powder-
metalurgy, tool 5teels (
PowderMetalurgy, 1978. v
o121.114), the characteristics are good, but
Near net shave is the difficult method.

これに対し、通常の焼結による製造が考えられており、
特公昭58−47444号公報によると、水アトマイズ
粉末を仕上還元した後、液相焼結することにより製造可
能であることが示されている。しかしこの方法は焼結の
みで緻密化を行うため、空孔が充分除去できず、さらに
靭性の低下をもたらす。
On the other hand, manufacturing by normal sintering is considered,
According to Japanese Patent Publication No. 58-47444, it is shown that it can be manufactured by carrying out liquid phase sintering after finishing reduction of water atomized powder. However, since this method performs densification only by sintering, pores cannot be sufficiently removed, further resulting in a decrease in toughness.

また焼結により閉気孔となりHIPがかけられるように
焼結炉で焼結し、冷却後取り出して後HIP炉でHIP
処理を行い空孔を除去し靭性の向上を図る方法が超硬合
金(WC−Co)の製造に利用されているが、この方法
では、生産性が低くコスト高になるという問題がある。
In addition, sintering is performed in a sintering furnace so that the pores become closed due to sintering, and HIP is applied. After cooling, it is taken out and then HIPed in a HIP furnace.
A method of processing to remove pores and improve toughness is used in the production of cemented carbide (WC-Co), but this method has the problem of low productivity and high cost.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明は、硬さと靭性の両特性が優れた微細組織
を持ち、ニアネットシェイプが可能で、しかも低コスト
で高合金の高硬度焼結材料を製造する方法を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a high-alloy, high-hardness sintered material that has a microstructure with excellent properties of both hardness and toughness, is capable of near-net shaping, and is low-cost. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、高合金材料について検討の結果、次の工
程によれば、ニアネットシエイプで、さらに硬さと靭性
の両特性が優れた微細組織を有し、高合金組成を持った
高硬度焼結材料を得られることを見出した。
As a result of studies on high-alloy materials, the present inventors found that, according to the following process, a high-hardness material with a near-net shape, a microstructure with excellent properties of both hardness and toughness, and a high alloy composition. It has been found that a sintered material can be obtained.

すなわち、最終的な組成が C:0.5〜4重量% Cr:3〜6重量% W :6〜50重量% V:0.5〜20重量% を含み、かつ Mo:2〜22重量% Co24〜20重量% のうち少なくとも一種を含み、残部が実質的にFe組成
からなる合金鋼粉末、または上記組成に配合した合金鋼
の混合粉末を冷間成形した後焼結し、室温近くまでの冷
却を経ないで、直ちに同一炉内で熱間静水圧(HIP)
処理を行う。これにより、従来のHIP法では困難なニ
アネットシェイプを低コストで容易に実現することがで
き、しかも高合金組成のため硬さが高く、靭性にも優れ
た微細組織を持つ高硬度材料が得られる。
That is, the final composition contains C: 0.5 to 4% by weight, Cr: 3 to 6% by weight, W: 6 to 50% by weight, V: 0.5 to 20% by weight, and Mo: 2 to 22% by weight. Alloy steel powder containing at least one type of Co24 to 20% by weight and the remainder substantially consisting of Fe, or a mixed powder of alloy steel blended with the above composition, is cold-formed and then sintered, and then heated to near room temperature. Hot isostatic pressure (HIP) immediately in the same furnace without cooling
Perform processing. This makes it possible to easily achieve a near-net shape at low cost, which is difficult to achieve with the conventional HIP method.Moreover, a high-hardness material with a microstructure with high hardness and excellent toughness due to its high alloy composition can be obtained. It will be done.

〔作用〕[Effect]

以下、本発明法の構成を作用と共に詳細に説明する。 Hereinafter, the structure of the method of the present invention will be explained in detail along with its operation.

まず、基本成分範囲の限定理由について説明する。First, the reason for limiting the basic component range will be explained.

C:0.5〜4重量% CはFe基地中に固溶し、基地の硬さを高め、さらに合
金成分と炭化物を形成して硬さ向上に寄与する。その効
果を得るためには少なくとも0.5重量%以上のC量が
必要であり、また4重量%を超えると脆くなり靭性な劣
化させるので、0.5〜4重量%と定める。
C: 0.5 to 4% by weight C is dissolved in the Fe base, increases the hardness of the base, and further forms carbides with alloy components to contribute to improving the hardness. In order to obtain this effect, an amount of C of at least 0.5% by weight is required, and if it exceeds 4% by weight, it becomes brittle and the toughness deteriorates, so it is set at 0.5 to 4% by weight.

Cr : 3.0〜6.0重量% CrはFe基地中に固溶して強度と焼入性を向上させる
一方、複合炭化物を形成して硬度を高め、耐摩耗性を向
上させる。その効果を得るには少なくとも3.0重量%
が必要であり、また6、0重量%を超えると靭性を劣化
させるので、3.0〜6.0重量%と定める。
Cr: 3.0 to 6.0% by weight Cr forms a solid solution in the Fe base to improve strength and hardenability, and forms composite carbides to increase hardness and improve wear resistance. At least 3.0% by weight to achieve the effect
is required, and if it exceeds 6.0% by weight, the toughness deteriorates, so it is set at 3.0 to 6.0% by weight.

W :6〜50重量% Wは特に微細な複合炭化物を形成して硬度を高め、耐摩
耗性を向上させる重要元素である。その効果は、6重量
%以上の含有によって顕著になり、硬さは上昇するが、
50重量%を超えると、炭化物が急激に成長し易くなり
、その結果靭性が劣化するので、6〜50重量%とした
W: 6 to 50% by weight W is an important element that forms particularly fine composite carbides to increase hardness and improve wear resistance. The effect becomes remarkable when the content is 6% by weight or more, and the hardness increases, but
If it exceeds 50% by weight, carbides tend to grow rapidly and as a result, toughness deteriorates, so the content was set at 6 to 50% by weight.

V:0.5〜20重量% ■は硬質炭化物を形成して硬度を高め、耐摩耗性と切削
性能を向上させるため、0.5重量%以」−が必要であ
る。しかし、20重量%を超えると靭性を劣化させるの
で、0.5〜20重量%を定める。
V: 0.5 to 20% by weight ① is required to be 0.5% by weight or more in order to form hard carbides, increase hardness, and improve wear resistance and cutting performance. However, if it exceeds 20% by weight, the toughness deteriorates, so the range is determined to be 0.5 to 20% by weight.

Co : 4.0〜20.0重量% COは特に高温硬さを向上させるために有効な元素であ
り、ざらにCO添加によってMOを省略することも可能
である。その効果は4.0重量%以」−の含有で顕著と
なるが、20.0重量%を越えて含有させると靭性を劣
化させてしまうので、4.0〜20.0重量%とすべき
である。
Co: 4.0 to 20.0% by weight CO is an element particularly effective for improving high-temperature hardness, and it is also possible to omit MO by adding CO. The effect becomes noticeable when the content is 4.0% by weight or more, but since the content exceeds 20.0% by weight, the toughness deteriorates, so the content should be 4.0 to 20.0% by weight. It is.

M o : 2〜22重量% MoはWと同様の効果を持ち、その添加によって、一層
耐摩耗性を向」ニさせるとともに、Wの一部を置きかえ
るためにも使用される。Wが6重量%以」−含有されて
いる場合にMOの追加添加の効果が現れる最小MO量は
2重量%である。一方、通常用いられるW当ill、す
なわちW + 2 M o量が50重量%を超えるとW
の場合と同様炭化物が粗大化して靭性を劣化させるから
、M o fiとして22重量%が」−眼となる。
Mo: 2 to 22% by weight Mo has the same effect as W, and its addition further improves the wear resistance, and is also used to partially replace W. When W is contained at 6% by weight or more, the minimum amount of MO at which the effect of additional addition of MO appears is 2% by weight. On the other hand, when the amount of W + 2 Mo that is commonly used exceeds 50% by weight, W
As in the case of , the carbide becomes coarse and deteriorates the toughness, so 22% by weight is the M o fi.

I−記に示した限定成分と残部Feからなる合金鋼粉ま
たはその組成に配合した混合粉末でもって高合金組成化
が可能で、硬さの優れた焼結体が製造できる。
A high alloy composition can be obtained by using an alloy steel powder consisting of the limiting components shown in I- and the balance being Fe, or a mixed powder blended with that composition, and a sintered body with excellent hardness can be produced.

本発明方法は、」−記組成粉末な冷間で成形する。通常
の粉末冶金のように金型を用いて成形する場合は、潤滑
剤を添加するのが普通である。金型成形のほかに冷間静
水圧成形や射出成形でも成形可使である。
In the method of the present invention, a powder having the following composition is cold-molded. When molding is performed using a mold as in ordinary powder metallurgy, a lubricant is usually added. In addition to molding, it can also be molded by cold isostatic pressing and injection molding.

次の工程は焼結ならびに熱間静水圧成形(HIP)であ
る。焼結とHIP処理は同一炉内で行なう。この方法に
より、焼結炉とHIF炉を別々に運転しなくて済み、従
来のHIP処理を行う場合と比べて、低コスト化が可能
となる。
The next steps are sintering and hot isostatic pressing (HIP). Sintering and HIP processing are performed in the same furnace. This method eliminates the need to operate the sintering furnace and the HIF furnace separately, making it possible to reduce costs compared to conventional HIP processing.

焼結は、真空中またはH2中で行う。加圧状態での焼結
も可能である。焼結温度を調整して、炭化物の微細な組
織を持つ緻密体を液相焼結によって得る。はぼ緻密化し
た後、直ちに、焼結体に直接HIP処理を行う。焼結お
よびHIPは1000℃〜1300℃、0.5 h r
−7h r(1)範囲で行われる。HIP処理の温度は
液相焼結での炭化物の成長を防ぐために焼結時よりも少
し低目に選ぶことも可能である。HIP処理の圧力は、
焼結体に僅かでも液相が存在すると、通常のHIP圧力
よりも低圧化が可能である。
Sintering is performed in vacuum or in H2. Sintering under pressure is also possible. A dense body with a fine carbide structure is obtained by liquid phase sintering by adjusting the sintering temperature. Immediately after densification, the sintered body is directly subjected to HIP treatment. Sintering and HIP at 1000°C to 1300°C, 0.5 hr
Performed in the -7hr r(1) range. The temperature of the HIP process can be selected to be slightly lower than that during sintering in order to prevent the growth of carbides during liquid phase sintering. The pressure of HIP treatment is
If even a small amount of liquid phase exists in the sintered body, the pressure can be lowered than the normal HIP pressure.

従来の焼結炉で焼結後一旦冷却後取出し、ざらにHIF
炉で処理する場合、HIPの温度上昇時に炭化物の成長
が生じるため、靭性が著しく劣化する。靭性な著しく劣
化させないためには炭化物粒径5Ji、m以下が望まし
い。この問題は焼結とHIFを同一炉内で行うことによ
り、解決されることが解った。
After sintering in a conventional sintering furnace, it is cooled and then taken out and processed into a rough HIF.
When processing in a furnace, carbide growth occurs when the HIP temperature increases, resulting in a significant deterioration of toughness. In order to avoid significant deterioration of toughness, it is desirable that the carbide particle size be 5 Ji, m or less. It has been found that this problem can be solved by performing sintering and HIF in the same furnace.

以上に述べた工程により炭化物の粗大化の無い、緻細な
組織をもつ、すなわち硬さと靭性に優れ、ニアネットシ
エイブが可能な高硬度合金材料の製造が可能となる。
The process described above makes it possible to produce a high-hardness alloy material that has a fine structure without coarsening of carbides, that is, has excellent hardness and toughness, and is capable of near net shaving.

〔実施例〕〔Example〕

以下に本発明の実施例について述べる。 Examples of the present invention will be described below.

第1表に示す成分組成からなる予合金(プレアロイ)粉
あるいは混合粉を、平均粒径11〜13Bmに粉砕して
焼鈍した後、ステアリン酸亜鉛を1重量%混合し、成形
圧力6t/crn’でφ11.3mmXlommの試験
片に成形した。これを脱ろう処理して、真空中(10−
10Torr)で1時間焼結させ、同一炉内で直ちにA
rガス中、100気圧で2時間HIP処理(焼結−HI
P法)を行った。その詩の焼結およびHIP処理の条件
と、特性値を第1表に示す。
Pre-alloyed powder or mixed powder having the composition shown in Table 1 is pulverized to an average particle size of 11 to 13 Bm and annealed, then mixed with 1% by weight of zinc stearate, and the molding pressure is 6t/crn'. It was molded into a test piece with a diameter of 11.3 mm and a diameter of 11.3 mm. This was dewaxed and in vacuum (10-
10 Torr) for 1 hour, and immediately sintered in the same furnace.
HIP treatment (sintering-HI) in r gas at 100 atm for 2 hours
P method) was performed. Table 1 shows the sintering and HIP treatment conditions and characteristic values of the poem.

比較例のうち、No、1.3,5,7,9゜11.13
,15,17,19.21は別個に焼結炉とHIP装置
を用いて処理したもの(焼結−HIP分離法)で、No
、2.22は焼結−HIP法で処理を行った。HIP処
理温度は第1表の通りで行い空孔率は全て0.1%以下
であった。
Among the comparative examples, No. 1.3, 5, 7, 9°11.13
, 15, 17, 19.21 were processed separately using a sintering furnace and HIP device (sintering-HIP separation method), and No.
, 2.22 was processed by the sintering-HIP method. The HIP treatment temperature was as shown in Table 1, and the porosity was all 0.1% or less.

第1図に炭化物平均粒径とW量の関係を焼結−HIP法
と焼結−HIP分離法に分けて示す。焼結−HIP法は
W量の増加による炭化物成長が緩やかで、焼結−HIP
分離法は炭化物成長が著しい。W量が6重量%以下では
、これらの差は見られないが、6重量%以」二では明ら
かである。W量が50重量%を超えると、焼結−HIP
法でも炭化物が成長(5gm以」二)シ過ぎる。このた
め靭性が劣化する。
FIG. 1 shows the relationship between the average grain size of carbides and the amount of W for the sintering-HIP method and the sintering-HIP separation method. In the sintering-HIP method, carbide growth is gradual due to the increase in W content, and the sintering-HIP method
The separation method causes significant carbide growth. These differences are not observed when the amount of W is 6% by weight or less, but are obvious when the amount of W is 6% by weight or more. When the amount of W exceeds 50% by weight, sintering-HIP
Even with the method, the carbide grows too much (more than 5 gm). As a result, toughness deteriorates.

〔発明の効果〕〔Effect of the invention〕

以]−示したように、本発明によれば微細な炭化物組織
を持つ高合金の高硬度合金材料をニアネットシエイプの
可能な方法で、低コストで製造することができる。
As described above, according to the present invention, a high-alloy, high-hardness alloy material having a fine carbide structure can be manufactured at low cost by a method that allows near net shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はW量と炭化物平均粒径との関係を焼結−HIP
分離法と焼結−HIP法に分けて示すグラフである。
Figure 1 shows the relationship between the amount of W and the average grain size of carbides during sintering-HIP.
It is a graph showing the separation method and the sintering-HIP method separately.

Claims (1)

【特許請求の範囲】 1 C:0.5〜4重量% Cr:3〜6重量% W:6〜50重量% V:0.5〜20重量% を含み、かつ Mo:2〜22重量% Co:4〜20重量% のうち少なくとも一種を含む合金鋼粉末または上記合金
鋼組成に配合した合金鋼の混合粉末を冷間成形し、該成
形体を焼結した後直ちに熱間静水圧成形(HIP)処理
を行うことを特徴とする高合金鋼焼結材料の製造方法。
[Claims] 1 Contains C: 0.5-4% by weight, Cr: 3-6% by weight, W: 6-50% by weight, V: 0.5-20% by weight, and Mo: 2-22% by weight. An alloy steel powder containing at least one type of Co: 4 to 20% by weight or a mixed powder of an alloy steel blended with the above alloy steel composition is cold-formed, and immediately after sintering the compact, hot isostatic pressing ( 1. A method for producing a high-alloy steel sintered material, the method comprising performing HIP) treatment.
JP61129228A 1986-06-05 1986-06-05 Production of high-alloy steel sintered material Pending JPS62287041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61129228A JPS62287041A (en) 1986-06-05 1986-06-05 Production of high-alloy steel sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129228A JPS62287041A (en) 1986-06-05 1986-06-05 Production of high-alloy steel sintered material

Publications (1)

Publication Number Publication Date
JPS62287041A true JPS62287041A (en) 1987-12-12

Family

ID=15004326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129228A Pending JPS62287041A (en) 1986-06-05 1986-06-05 Production of high-alloy steel sintered material

Country Status (1)

Country Link
JP (1) JPS62287041A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811410A (en) * 1989-09-21 1998-09-22 Hyal Pharmaceutical Corporation Method of administering of a hyaluronic acid and an NSAID to decrease side effects of the NSAID
US5817644A (en) * 1991-07-03 1998-10-06 Hyal Pharmaceutical Corporation Targeting of dosages of medicine and therapeutic agents
US5990095A (en) * 1991-07-03 1999-11-23 Hyal Pharmaceutical Corporation Use of hyaluronic acid and forms to prevent arterial restenosis
US6147059A (en) * 1992-02-20 2000-11-14 Hyal Pharmaceutical Corporation Formulations containing hyaluronic acid
US8758819B2 (en) 2006-09-13 2014-06-24 Enhance Skin Products, Inc. Cosmetic compositions for the treatment of skin and methods thereof
CN111378897A (en) * 2020-04-20 2020-07-07 燕山大学 Roll surface repairing material of wrapper roll and laser cladding remanufacturing method of wrapper roll

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811410A (en) * 1989-09-21 1998-09-22 Hyal Pharmaceutical Corporation Method of administering of a hyaluronic acid and an NSAID to decrease side effects of the NSAID
US5827834A (en) * 1989-09-21 1998-10-27 Hyal Pharmaceutical Corporation Method of using hyaluronic acid or its pharmaceutically acceptable salts for the treatment of disease
US5830882A (en) * 1989-09-21 1998-11-03 Hyal Pharmaceutical Corporation Compositions containing a form of hyaluronic acid and a medicinal agent for treating acne in mammals and methods for administration of such composition
US5852002A (en) * 1989-09-21 1998-12-22 Hyal Pharmaceutical Corporation Treatment of conditions and disease
US6194392B1 (en) 1989-09-21 2001-02-27 Hyal Pharmaceutical Corporation Treatment of conditions and disease
US5817644A (en) * 1991-07-03 1998-10-06 Hyal Pharmaceutical Corporation Targeting of dosages of medicine and therapeutic agents
US5990095A (en) * 1991-07-03 1999-11-23 Hyal Pharmaceutical Corporation Use of hyaluronic acid and forms to prevent arterial restenosis
US6147059A (en) * 1992-02-20 2000-11-14 Hyal Pharmaceutical Corporation Formulations containing hyaluronic acid
US8758819B2 (en) 2006-09-13 2014-06-24 Enhance Skin Products, Inc. Cosmetic compositions for the treatment of skin and methods thereof
CN111378897A (en) * 2020-04-20 2020-07-07 燕山大学 Roll surface repairing material of wrapper roll and laser cladding remanufacturing method of wrapper roll

Similar Documents

Publication Publication Date Title
JP2741199B2 (en) High density sintered iron alloy
US6117204A (en) Sintered titanium alloy material and process for producing the same
CN110358960B (en) Preparation method of high-strength and high-toughness Ti (C, N) -based metal ceramic
CN117987682A (en) Preparation method of Ti (C, N) -based metal ceramic material with submicron core ring structure
JPS62287041A (en) Production of high-alloy steel sintered material
JPH02197535A (en) Manufacture of intermetallic compound
JPH076011B2 (en) Method for producing high hardness and high toughness cemented carbide with excellent thermal conductivity
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH03285040A (en) Manufacture of powder high speed steel
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
KR950007174B1 (en) Hard alloy process of watch case
JP2502322B2 (en) High toughness cermet
GB2065710A (en) Production of high density sintered bodies
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH0118137B2 (en)
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
KR102077522B1 (en) Composition for alloy powder and manufacturing method for sintered body using the same
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP2797048B2 (en) Melt erosion resistant material
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP2018076582A (en) Powder high speed tool steel having fine carbide particle and manufacturing method therefor
JPS6311645A (en) Nitrogenous sintered hard alloy and its production
JPH03277735A (en) Manufacture of cermet
KR820001538B1 (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JPS63262402A (en) Production of alloy powder and sintered alloy having wear resistance using same