JPH03206396A - Pump - Google Patents
PumpInfo
- Publication number
- JPH03206396A JPH03206396A JP1341991A JP34199189A JPH03206396A JP H03206396 A JPH03206396 A JP H03206396A JP 1341991 A JP1341991 A JP 1341991A JP 34199189 A JP34199189 A JP 34199189A JP H03206396 A JPH03206396 A JP H03206396A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- mirror
- impeller
- particles
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 230000003746 surface roughness Effects 0.000 claims abstract description 7
- 239000012530 fluid Substances 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 14
- 239000007788 liquid Substances 0.000 abstract description 12
- 239000010419 fine particle Substances 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 27
- 239000012498 ultrapure water Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 239000006061 abrasive grain Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101150000971 SUS3 gene Proteins 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Details Of Reciprocating Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野コ 本発明はポンプに係る。[Detailed description of the invention] [Industrial application fields] The present invention relates to a pump.
[従来技術]
近年の半導体工業のめざましい発展につれて、パーティ
クル等の不純物の含有量が少ない高純度水か大量に使わ
れるようになっている。[Prior Art] With the remarkable development of the semiconductor industry in recent years, large amounts of high-purity water containing little impurities such as particles are being used.
さらに、LSIの高集積化、高性能化が進み、最小パタ
ーン寸法がサブミクロンオーダーの超LSIが製造され
る今日では、わずかな不純物の存在でもLSIのパター
ン欠陥の原因となるため、理論純水(比抵抗18.25
MΩ・cmat25℃)に近いレベルの高純度水が必要
とされるにいたっている。Furthermore, as LSIs become more highly integrated and performant, and ultra-LSIs with minimum pattern dimensions on the order of submicrons are being manufactured, even the presence of even the slightest impurity can cause pattern defects in LSIs. (Resistivity 18.25
High purity water with a level close to MΩ・cmat (25° C.) has come to be required.
かかる理論純水に近いレベルの高純度水を達成するため
には、パーティクルについては、少なくとも、粒径0.
2μm以上のパーティクルは10個/ m A以下、粒
径0.1 〜0.2μmのパーティクルは100個/m
互、粒径0.1μm以下のパーティクルは100個/
m II.以下としなければならない。In order to achieve high purity water at a level close to theoretically pure water, the particle size must be at least 0.
Particles of 2 μm or more are 10 pieces/m A or less, particles with a particle size of 0.1 to 0.2 μm are 100 pieces/m
100 particles with a particle size of 0.1 μm or less
m II. Must be as follows.
しかるに、水供給系へ供給される前の源水に高純度水を
用いたとしても、水供給系、例えば、ポンプ、配管及び
その部材等から微細な粒子パーティクルが混入したり、
これらの内表面から溶出する金属等が混入するため、純
度の大幅な低下を招いてしまう。However, even if high-purity water is used as the source water before being supplied to the water supply system, fine particles may get mixed in from the water supply system, such as pumps, piping, and their components.
Metals etc. eluted from these inner surfaces are mixed in, resulting in a significant decrease in purity.
パイプ、各種パイプ類、レギュレーター等の配管及びそ
の部材については、それらの接液面を平滑化し、また、
構造上もメインラインから配管系の水滞留部を一掃する
などの工夫が施され、上記問題の解決の方向に進んでい
る。For pipes, various types of pipes, regulators, and other piping and their components, smooth the surfaces in contact with liquid, and
Structural improvements have also been made, such as cleaning out water accumulation in the piping system from the main line, and progress is being made in the direction of solving the above problems.
しかし、コンタミネーションが最も起り易く高純度水の
供給の可否を決定するのに最も大きな影響のあるポンプ
については適切なクリーン化技術は末だ開発されておら
ず、従来より使用されているポンプを何の工夫もなく、
半導体高純度水用として使用しているのが現状である。However, appropriate cleaning technology has not yet been developed for pumps, which are most susceptible to contamination and have the greatest impact on determining whether or not to supply high-purity water. Without any effort,
Currently, it is used for semiconductor high-purity water.
すなわち、従来のポンプでは材料として一般にSCS
1 3が使用されており、また、ポンプの製造は次のよ
うな工程により行われている。In other words, conventional pumps generally use SCS as the material.
13 are used, and the pump is manufactured by the following process.
(所定形状への鋳造)=(熱処理)=(酸洗)=(切削
)=(カエリ取り)=(アルコール洗浄)一(洗浄)=
(組立)=(性能テスト)しかし、このような工程によ
り製造されたポンプにおいては、その内表面は鋳物肌を
しており、表面の凹凸がひどい。また、鋳物肌を切削加
工により取り去っても割れ目、細孔、ひだ、ブローホー
ルなどが存在している。しかも、熱処理によりポーラス
な表面となっており、また、酸洗により結晶粒界には腐
食が進行している。(Casting into a specified shape) = (Heat treatment) = (Pickling) = (Cutting) = (Burr removal) = (Alcohol cleaning) - (Cleaning) =
(Assembly) = (Performance test) However, the inner surface of a pump manufactured by such a process has a cast metal surface, and the surface is extremely uneven. Furthermore, even if the casting surface is removed by cutting, cracks, pores, folds, blowholes, etc. still exist. Furthermore, the surface has become porous due to heat treatment, and corrosion has progressed at grain boundaries due to pickling.
従って、パーティクルや、非金属介在物を包蔵し、ケミ
カルコンタミネーションも生じやすい表面となっており
、高純度水の品質低下の原因となる。Therefore, the surface contains particles and non-metallic inclusions, and is prone to chemical contamination, which causes deterioration in the quality of high-purity water.
しかも構造の面においても、高純度水に対する考慮に欠
けた複雑な形状になっており、接液面積も多く、デッド
スペースも多い。Moreover, in terms of structure, it has a complicated shape that lacks consideration for high-purity water, has a large surface area in contact with liquid, and has many dead spaces.
また、ポンプのパーティクルは、ポンプ軸封部の摩擦、
振動などでも発生し、ポンプ内に金属粉末等が混入し、
パーティクル発生の原因になるなど構造上も問題がある
。In addition, pump particles are caused by friction on the pump shaft seal,
It also occurs due to vibrations, etc., and metal powder etc. get mixed into the pump.
There are also structural problems such as the generation of particles.
なお、パーティクルを除去するためにフィルタを設ける
ことも考えられる。しかし、0.1μm以上のパーティ
クルの場合にはポンプ下流にフィルタを設置しておけば
かかる粒子の除去はある程度は可能であるが、0.1μ
m以下の微粒子の場合にはフィルタでの除去は困難であ
る。Note that it is also conceivable to provide a filter to remove particles. However, in the case of particles larger than 0.1 μm, it is possible to remove such particles to some extent by installing a filter downstream of the pump, but
It is difficult to remove fine particles with a filter of less than m.
これらの問題を解決するために、ポンプ内面処理として
、機械研磨(パフ研磨)などが試みられているが表面に
研磨剤や、光沢剤が混入し、TOC (全有機炭素)量
が増加し、これらがむしろ水の品質を低下させることと
なったり、また、その他にも幾多の欠点をもたらしてし
まう。従って、これらの技術は、完成された技術とはい
いがたい。In order to solve these problems, mechanical polishing (puff polishing) has been attempted as a treatment for the inside of the pump, but abrasives and brighteners are mixed into the surface, increasing the amount of TOC (total organic carbon). These may actually deteriorate the quality of the water, and may also cause a number of other disadvantages. Therefore, these technologies cannot be called complete technologies.
また、これら以外に一般浸漬電解研磨法もあるが、表面
粗さ等は改善されず、高純度水用のポンプに使用できる
技術とはいえない。In addition to these methods, there is also a general immersion electrolytic polishing method, but it does not improve surface roughness, etc., and cannot be said to be a technology that can be used for pumps for high-purity water.
[発明が解快しようとする諜題コ
本発明は、パーティクルの発生を抑え、高い比抵抗値が
維持された理論純度に近い高純度液を移送することが可
能な高純度液供給用ポンプを提供することを目的とする
。[The problem to be solved by the invention] The present invention provides a pump for supplying high-purity liquid that is capable of suppressing the generation of particles and transporting high-purity liquid close to theoretical purity while maintaining a high specific resistance value. The purpose is to provide.
[課題を解決するための手段]
本発明のポンプは、ポンプ内の接液部表面の少なくとも
主要表面が、電解複合研磨により表面を鏡面とした材料
により構威されていることを特徴とする。[Means for Solving the Problems] The pump of the present invention is characterized in that at least the main surface of the liquid-contacting part inside the pump is made of a material whose surface is mirror-finished by electrolytic composite polishing.
[作用]
本発明者らは、パーティクルの発生をおさえ、高い比抵
抗値が維持された水等の液を送り出すことが可能なポン
プを得るために鋭意工夫を重ねた結果、ポンプの接液部
表面に、圧延材または鍛造材を用い、かつ、電解複合研
磨法により鏡面仕上げすると目的を達成できることを知
見した。[Function] The inventors of the present invention have made extensive efforts to obtain a pump capable of suppressing the generation of particles and pumping out liquid such as water while maintaining a high specific resistance value. It has been found that the objective can be achieved by using rolled material or forged material for the surface and mirror-finishing it by electrolytic composite polishing.
本発明は、上記の知見に基づいてなされたものであり、
電解複合研磨法によって、ポンプ内表面に極めて平滑な
、かつ、細孔などのない面で、微細なパーティクルが発
生しにくく、しかも金属溶出量が少なく、理論純水に近
い高純度液の移送が可能なポンプを提供することができ
る。The present invention was made based on the above findings,
The electrolytic composite polishing method creates an extremely smooth inner surface of the pump with no pores, making it difficult for minute particles to be generated, and the amount of metal elution is small, making it possible to transfer high-purity liquid close to theoretically pure water. Possible pumps can be provided.
本発明では、高純度を維持するために、水との接触面(
接液内表面)の少なくとも主要面積を電解複合研磨する
ことにより、内表面を鏡面化し、パーティクルの発生を
著しく減少させ、かつ内表面に吸脱着されるケミカルコ
ンタミネーションな減し、比抵抗値の高度維持が図れる
。In the present invention, in order to maintain high purity, the contact surface with water (
By performing electrolytic composite polishing on at least the main area of the inner surface (inner surface in contact with liquid), the inner surface is mirror-finished, significantly reducing the generation of particles, reducing chemical contamination that is adsorbed and desorbed on the inner surface, and improving the specific resistance value. Altitude can be maintained.
[実施態様例コ 以下に本発明の実施態様例を説明する。[Implementation example code] Examples of embodiments of the present invention will be described below.
本発明の対象となるポンプは、一般的には超純水用ポン
プという名称で販売されているポンプであり、その形式
は特に限定されないが、例えば、渦流ポンプ(第1図(
a))、渦巻ポンプ(第2図(a))が好ましい。The pump to which the present invention is applied is a pump that is generally sold under the name of an ultrapure water pump, and its type is not particularly limited.
a)), a centrifugal pump (FIG. 2(a)) is preferred.
第1図(a)に示す渦流ポンプは代表的には次のような
構成を有している。すなわち、ディスク円盤)の周縁に
複数の羽根18が形成され(第1図(b)).回転軸1
6に一体的に取り付けられた羽根車12が、ケーシング
13内においてシール箱14を介して軸受17に支承さ
れており、ケーシング13と羽根車12とにより形成さ
れる空間が琉体通路20となっている。流体通路20は
流体人口19と連通せしめてある。かかる構造のポンプ
においては、回転軸16を駆動手段(図示せず)により
駆動して羽根車12を回転させると、羽根車12の羽根
18内の流体が遠心力により羽根18外周から流出する
とともに流体通路20から羽根18側部を通じて羽根1
8内に流入する流れが生じ、羽根車12の回転の遠心カ
によって流体はエネルギーを受け、流体通路2o内で速
度エネルギーと圧力エネルギーに変換され、このような
作用が羽根車12内で繰返されて流体の圧力が高められ
吐出口を通じて吐出される。この構造のポンプはデッド
スペースが少なく、また、擢動部が軸封部だけのためパ
ーティクルの発生が少ないポンプとして本発明において
好適である。The vortex pump shown in FIG. 1(a) typically has the following configuration. That is, a plurality of blades 18 are formed on the periphery of the disk (FIG. 1(b)). Rotating axis 1
An impeller 12 integrally attached to the casing 13 is supported by a bearing 17 via a seal box 14 within the casing 13, and the space formed by the casing 13 and the impeller 12 serves as a housing passage 20. ing. Fluid passage 20 is in communication with fluid volume 19. In a pump having such a structure, when the rotary shaft 16 is driven by a drive means (not shown) to rotate the impeller 12, the fluid within the blades 18 of the impeller 12 flows out from the outer periphery of the blades 18 due to centrifugal force. From the fluid passage 20 through the side of the blade 18 to the blade 1
A flow flows into the impeller 12, and the fluid receives energy due to the centrifugal force of the rotation of the impeller 12, which is converted into velocity energy and pressure energy within the fluid passage 2o, and this action is repeated within the impeller 12. The pressure of the fluid is increased and the fluid is discharged through the discharge port. A pump with this structure has less dead space, and since the only sliding part is the shaft seal, it is suitable for the present invention as a pump that generates fewer particles.
第2図(a)に示す渦巻ポンプは、ディスク(円盤)の
周縁から半径方向から少しずれた方向に延ひる複数の羽
根18が形成され(第2図(b)、やはり回転軸16に
一体的に取り付けられた羽根車12が、カバー11内に
おいてシール箱14を介して軸受17に支承されている
。羽根車12はケーシング13により覆われており、こ
のケーシング13の頭部には、流体人口19となる口を
開口せしめてある。かかる構造のポンプにおいても、回
転軸16を駆動手段(図示せず)により駆動して羽根車
12を回転させると、流体入口から流入した流体は、羽
根18によりエネルギーを受け、羽根車12の円周方向
吐出される。この構造のポンプもデッドスペースが少な
く、また、擢動部が少ないためパーティクルの発生が少
ないポンプとして好適である。The centrifugal pump shown in FIG. 2(a) has a plurality of vanes 18 extending from the periphery of a disk in a direction slightly deviated from the radial direction (FIG. 2(b)), which is also integral with the rotating shaft 16. An impeller 12 is mounted on a bearing 17 within the cover 11 via a seal box 14.The impeller 12 is covered with a casing 13, and the head of the casing 13 is The port 19 is opened.Also in a pump having such a structure, when the rotary shaft 16 is driven by a driving means (not shown) to rotate the impeller 12, the fluid flowing from the fluid inlet flows through the impeller 12. Energy is received by the impeller 18 and discharged in the circumferential direction of the impeller 12.The pump having this structure also has little dead space and has few sliding parts, so it is suitable as a pump that generates few particles.
なお、ポンプは、例えば、鋼、アルミニウム合金、チタ
ン合金等の材料により構成すればよく、金属製ポンプて
あればこれらに制限されるものではない。Note that the pump may be made of materials such as steel, aluminum alloy, titanium alloy, etc., and is not limited to these materials as long as it is a metal pump.
また、本発明では、塑性加工材を用いる。塑性加工材と
しては、例えば、圧延、鍛造、押出等の塑性加工により
得られる材料を用いればよい。塑性加工材以外の材料(
例えば鋳造材)を用いた場合には、後述する電解複合研
磨を行ってもパーティクルの発生を抑え得る表面を得る
ことはできない。Moreover, in the present invention, a plastically worked material is used. As the plastically processed material, for example, a material obtained by plastic processing such as rolling, forging, extrusion, etc. may be used. Materials other than plastically processed materials (
For example, if a cast material is used, a surface that can suppress the generation of particles cannot be obtained even if electrolytic composite polishing, which will be described later, is performed.
本発明のポンプは例えは次の工程により製造すれはよい
。The pump of the present invention may be manufactured, for example, by the following steps.
(所定形状への鍛造)=(熱処理)=(酸洗)一(形状
切削)=(カエリ取り)=(洗浄)=(電解複合研磨)
→(洗浄)=(組立)本発明では、鏡面とする表面の表
面粗度としては、0.1μmRa+ax以下が好ましい
。(Forging into specified shape) = (Heat treatment) = (Pickling) - (Shape cutting) = (Burr removal) = (Cleaning) = (Electrolytic composite polishing)
→ (Cleaning) = (Assembling) In the present invention, the surface roughness of the mirror surface is preferably 0.1 μm Ra+ax or less.
本発明で適用する電解複合研磨法とは、電解により陽極
性の被研磨金属を電解溶出させると共に、被研磨金属の
表面に生成された不働態化酸化皮膜を、研磨砥粒による
擦過作用で鏡面に加工する方法である。研磨砥粒に一定
以上の速度を与えて研磨面を擦過すると同時に、不働態
化型電解液を介して数A / c m 2以下の電解電
流速度で、溶出と酸化の陽極反応を研磨面に発生させる
方法である(特公昭57−4775.9号公報、特公昭
58−19409号公報)。The electrolytic composite polishing method applied in the present invention involves electrolytically eluting the anodic metal to be polished, and also polishing the passivated oxide film formed on the surface of the metal to a mirror-like finish by the abrasive action of abrasive grains. This is a method of processing. At the same time, an anodic reaction of elution and oxidation is applied to the polished surface through a passivated electrolyte at an electrolytic current rate of several A/cm2 or less, while applying a speed above a certain level to the polishing abrasive grains to scrape the polished surface. (Japanese Patent Publication No. 57-4775.9, Japanese Patent Publication No. 58-19409).
第3図に基づきさらに具体的に説明する。This will be explained in more detail based on FIG.
第3図は、この発明の鏡面加工法に使用される工具の一
例を示し、1は駆動軸に接続され駆動装置により回転さ
れる工具、2は、工具1の下部に形成された銅板からな
る円板状の陰極、3は陰極2の下面に十字状に形成され
た露出面、4は陰極2の中央に透設された電解液5の流
出口、6は陰極2の下面の露出面3及び流出口4を除い
て全面貼付された研磨砥粒、7は電気的に絶縁性をもつ
塗料などの薄膜であり、陰極2の周面および工具1の周
面から無益な漏れ電流の流出を防止し、電解Wi.5は
、工具1の駆動軸を介して、電解液供給装置から移送さ
れ、流出口4から露出面3と、被研磨金属(図示せず)
との間隙に供給され、工具の外へ放出される。そして工
具1の陰極2と被研磨金属に直流あるいはパルス性の電
圧の陰極側と陽極側がそれぞれ接続される。FIG. 3 shows an example of a tool used in the mirror finishing method of the present invention, in which 1 is a tool connected to a drive shaft and rotated by a drive device, and 2 is a copper plate formed at the bottom of tool 1. A disk-shaped cathode, 3 is an exposed surface formed in a cross shape on the lower surface of the cathode 2, 4 is an outlet for the electrolytic solution 5 provided through the center of the cathode 2, and 6 is an exposed surface 3 on the lower surface of the cathode 2 7 is a thin film of electrically insulating paint, etc., which prevents useless leakage current from flowing out from the circumferential surface of the cathode 2 and the circumferential surface of the tool 1. Prevention and electrolysis Wi. 5 is transferred from the electrolyte supply device via the drive shaft of the tool 1, and is transferred from the outlet 4 to the exposed surface 3 and the metal to be polished (not shown).
is supplied to the gap between the tool and the tool and is discharged outside the tool. Then, the cathode side and the anode side of a direct current or pulsed voltage are connected to the cathode 2 of the tool 1 and the metal to be polished, respectively.
そして、研磨加工に際し、工具1の陰極2と被研磨金属
間に前記のとおり電圧を印加するとともに、その間に電
解液5を供給し、陰極2を被研磨金属に押付けつつ回転
することにより、電解作用て被研磨金属の陽極溶解を行
い、かつ被研磨金属の表面の凹凸部に生成された不働態
化酸化皮膜のうち、その凸部を研磨砥粒6により、擦過
除去し被研磨金属の凸部を優先的選択的に電解溶出し鏡
面に仕上げる。During the polishing process, a voltage is applied between the cathode 2 of the tool 1 and the metal to be polished as described above, and an electrolytic solution 5 is supplied between them, and the cathode 2 is rotated while being pressed against the metal to be polished. The anodic melting of the metal to be polished is performed, and the convex portions of the passivated oxide film generated on the uneven portions of the surface of the metal to be polished are removed by abrasion using the abrasive grains 6. The parts are preferentially electrolytically eluted and finished to a mirror surface.
研磨する一例を述べると、#120〜#1 500のS
iC系砥粒で初期表面粗さが、20〜50μmRmax
のSUS3 1 6L内表面を擦過する場合、不働態化
型電解液に20%NaNO3水溶液を用いて電解電流密
度を0〜6A / c m ’の範囲で変えて研磨すれ
ば、粗さが0.1μmRtnax以下の表面粗度を有す
る内表面を得ることができる。To give an example of polishing, #120 to #1 500 S
Initial surface roughness with iC abrasive grains is 20-50μmRmax
When scratching the inner surface of SUS3 1 6L, if you use a 20% NaNO3 aqueous solution as the passivation type electrolyte and change the electrolytic current density in the range of 0 to 6 A/cm', the roughness can be reduced to 0. An inner surface with a surface roughness of 1 μm Rtnax or less can be obtained.
また、同様の方法でアルミニウム合金等も研磨すること
が出来る。Furthermore, aluminum alloys and the like can also be polished using the same method.
本発明に係るポンプは、半導体分野に限らず、バイオテ
クノロジー、医薬品、食品、化学工業等の分野において
も用いることができることはいうまでもない。It goes without saying that the pump according to the present invention can be used not only in the semiconductor field but also in fields such as biotechnology, pharmaceuticals, foods, and the chemical industry.
また、材料として、ステンレス、アルミニウム、チタン
等の耐食材料を用いれば、腐食性を有する7夜を、ケミ
カクコンタミネーションをも生ずることなく移送するこ
とが可能である。Further, if a corrosion-resistant material such as stainless steel, aluminum, or titanium is used as the material, it is possible to transfer corrosive materials without causing chemical contamination.
[実施例] 以下に本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.
(実施例1)
第1図(a)に示す渦流ポンプを例として実施例1を説
明する。(Example 1) Example 1 will be described using the vortex pump shown in FIG. 1(a) as an example.
木例では、カバー11、ケーシング13、羽根車12等
を、SUS3 1 6L材を所定形状に型鍛造し、鍛造
後、熱処理、スケール除去のための酸洗を順次行い、次
いで、孔開け加工と表面研削を行い、次に、電解複合研
磨を行った。複合電解研磨は、第3図に示した研磨装置
を用いて行った。In the wooden example, the cover 11, casing 13, impeller 12, etc. are die-forged from SUS3 1 6L material into a predetermined shape, and after forging, heat treatment and pickling to remove scale are sequentially performed, followed by drilling and drilling. Surface grinding was performed, and then electrolytic composite polishing was performed. The composite electrolytic polishing was performed using the polishing apparatus shown in FIG.
なお、第1図(a)において、Aで示した内表面を0
1μmRmax以下の表面粗度に鏡面仕上げした。In addition, in FIG. 1(a), the inner surface indicated by A is 0.
The surface was mirror-finished to a surface roughness of 1 μmRmax or less.
かかるポンプにつき第4図に示すシステムにより供給水
の品質の測定を行った。The quality of the water supplied to this pump was measured using the system shown in FIG.
測定7去の詳細を第4図にしたがって説明する。The details of measurement 7 will be explained with reference to FIG.
ポンプーイオン交換器−RO膜(逆浸透@)一熱交換器
−ヒーター冷却器を、ステンレスパイプを介して直列に
接続し、表1に示す高純度水(源水、0.07〜0.1
μmのパーティクル80個/ m It )を、クリー
ンルーム内において、ポンプ口から供給し、ポンプを稼
働し源水を移送した。なお、ステンレスパイプとしては
、電解研磨後不動態酸化膜を形威した内面を有するパイ
プを使用した。A pump, an ion exchanger, an RO membrane (reverse osmosis @), a heat exchanger, and a heater cooler were connected in series through stainless steel pipes, and the high purity water shown in Table 1 (source water, 0.07~0.0. 1
80 μm particles/m It ) were supplied from the pump port in the clean room, and the pump was operated to transfer source water. As the stainless steel pipe, a pipe having an inner surface with a passive oxide film formed after electrolytic polishing was used.
ポンプ出口のサンプリングロにおいて、サンプルを採取
し、サンプル中のパーティクルを測定した。A sample was taken at the sampling point at the pump outlet, and the particles in the sample were measured.
方、比較のために、超純水用にデッドスペースを極力少
なくした構造のキャンドポンプにつき同様の測定を行っ
たが、0.1μm以下のパーティクル、0.1μm以上
のパーティクルともに大量に発生した。On the other hand, for comparison, a similar measurement was carried out on a canned pump designed to minimize dead space for ultrapure water, but a large amount of both particles of 0.1 μm or less and particles of 0.1 μm or more were generated.
次に第4図に示した測定システムを用いて、比抵抗値の
立ち上げテストを実施した。立ち上げテストは、冷却器
出口における比抵抗値を経時的に測定し、その比抵抗値
が18.2MΩ.cmとなった時点を立ち上り開始時点
とした。測定結果を表2及び第5図に示す。表2及び第
5図に示すように、本実施例に係るポンプでは、立ち上
りが早く、30分後には18.2MΩの高い比抵抗値を
維持し、低下が認められなかった。Next, a specific resistance value start-up test was conducted using the measurement system shown in FIG. In the start-up test, the specific resistance value at the outlet of the cooler was measured over time, and the specific resistance value was 18.2MΩ. The point at which the temperature reached cm was defined as the point at which the rise started. The measurement results are shown in Table 2 and FIG. As shown in Table 2 and FIG. 5, the pump according to this example had a quick start-up, maintained a high specific resistance value of 18.2 MΩ after 30 minutes, and no decrease was observed.
それに対して比較例のキャンドポンプの場合は、18.
15MΩ・Cmを達成するためには6月を要した。On the other hand, in the case of the canned pump of the comparative example, 18.
It took six months to achieve 15MΩ・Cm.
上記、比抵抗値の測定は、比抵抗計を用いて行った。The above-mentioned measurement of the specific resistance value was performed using a specific resistance meter.
なお、サンプルにつき、TOC及び生菌を調査したとこ
ろ、TOCは50μg c / fl.以下、生菌は1
個/ 1 0 0 m ftであった。なお、生菌の測
定はメンブレン土音養7去によった。In addition, when the TOC and viable bacteria were investigated for the sample, the TOC was 50 μg c/fl. Below, live bacteria are 1
pieces/100 m ft. In addition, the measurement of viable bacteria was carried out using a membrane soil test.
(実施例2)
第2図(a)に示す渦巻ポンプについて実施例1と同様
の測定を行ったところ、パーティクルの発生抑制効果も
実施例1と同様の値が得られた。(Example 2) When the same measurements as in Example 1 were performed on the centrifugal pump shown in FIG. 2(a), the same values as in Example 1 were obtained for the particle generation suppressing effect.
また、立ち上げテストについても実施例1と同様の結果
か得られた。Also, the same results as in Example 1 were obtained in the start-up test.
[発明の効果]
本発明によれば、パーティクルの発生が極めて少なく、
純度を低下させることなく液の移送が可能となり、従っ
て、高純度水の移送も可能となる。[Effects of the Invention] According to the present invention, generation of particles is extremely small;
It is possible to transfer liquid without reducing purity, and therefore it is also possible to transfer high-purity water.
表1 パーティクル結果 (個/mIL) 表 2 比抵抗の結果Table 1 particle results (pcs/mIL) table 2 Resistivity results
第1図(a)は本発明の実施例1に係るポンプの断面図
であり、第1図(b)は該ポンプの羽根車の斜視図であ
る。第2図(a)は本発明の実施例2に係るポンプの断
面図であり、第2図(b)は該ポンプの羽根車の平面図
である。第3図は電解複合研磨に用いる装置の平面図及
び断面図である。第4図は供給水の品質を測定するため
のシステム配置図である。第5図は供給水の立ち上げ時
間を示すグラフてある。
(符号の説明)
1・・・駆動軸に接続され駆動装置により回転される工
具、2・・・工具Iの下部に形成された銅板からなる円
板状の陰極、3・・・陰極2の下面に十字状に形成され
た露出面、4・・・陰極2の中央に透設された電解掖の
流出口、5・・・電解液流出口、6・・・陰極2の下面
の露出面3及び流出口4を除いて全面貼付された研磨砥
粒、7・・・電気的に絶縁性をもつ塗料なとの薄膜、】
2・・・羽根車、13・・・ケーシング、
1
4・・・シール箱、
1
6・・・回転軸、
1
7・・・軸
受、
1
8・・・羽根、
1
9・・・流体入口、
20・・・流体通
路。
第
図(0)
19
旧20
第
I
図(b)
第
2
図(b)
第
3
図
3
(b)FIG. 1(a) is a sectional view of a pump according to Example 1 of the present invention, and FIG. 1(b) is a perspective view of an impeller of the pump. FIG. 2(a) is a sectional view of a pump according to a second embodiment of the present invention, and FIG. 2(b) is a plan view of an impeller of the pump. FIG. 3 is a plan view and a sectional view of an apparatus used for electrolytic composite polishing. FIG. 4 is a system layout diagram for measuring the quality of feed water. FIG. 5 is a graph showing the start-up time of the supply water. (Explanation of symbols) 1...A tool connected to a drive shaft and rotated by a drive device, 2...A disc-shaped cathode made of a copper plate formed at the bottom of the tool I, 3...A cathode 2 Exposed surface formed in a cross shape on the lower surface, 4... Outlet of an electrolytic chamber provided through the center of the cathode 2, 5... Electrolyte outlet, 6... Exposed surface of the lower surface of the cathode 2 3 and abrasive grains attached to the entire surface except for the outlet 4, 7...a thin film of electrically insulating paint, etc.]
2... Impeller, 13... Casing, 1 4... Seal box, 1 6... Rotating shaft, 1 7... Bearing, 1 8... Vane, 1 9... Fluid inlet , 20...Fluid passage. Figure (0) 19 Old 20 Figure I (b) Figure 2 (b) Figure 3 Figure 3 (b)
Claims (4)
電解複合研磨により表面を鏡面とした材料により構成さ
れていることを特徴とするポンプ。(1) At least the main surface of the liquid-contacted parts inside the pump is
A pump characterized in that it is made of a material whose surface has been made mirror-finished by electrolytic composite polishing.
求項1記載のポンプ。(2) The pump according to claim 1, wherein the mirror surface has a surface roughness of 0.1 μmRmax or less.
載のポンプ。(3) The pump according to claim 1 or 2, wherein the pump is a vortex pump.
載のポンプ。(4) The pump according to claim 1 or 2, wherein the pump is a centrifugal pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1341991A JP2775036B2 (en) | 1989-12-30 | 1989-12-30 | pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1341991A JP2775036B2 (en) | 1989-12-30 | 1989-12-30 | pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03206396A true JPH03206396A (en) | 1991-09-09 |
JP2775036B2 JP2775036B2 (en) | 1998-07-09 |
Family
ID=18350333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1341991A Expired - Lifetime JP2775036B2 (en) | 1989-12-30 | 1989-12-30 | pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2775036B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5283278A (en) * | 1975-12-30 | 1977-07-12 | Nippon Oil Co Ltd | Method and apparatus for preparing thinnfilm specimens for analyzing infrareddray absorption spectrum |
JPS5745915A (en) * | 1980-09-02 | 1982-03-16 | Mitsubishi Electric Corp | Condenser unit |
JPS5747759A (en) * | 1980-08-08 | 1982-03-18 | Kobe Steel Ltd | Fly ash stably sintering method |
JPS5819409A (en) * | 1981-07-25 | 1983-02-04 | Sumitomo Electric Ind Ltd | Manufacture of isotropic mn-al-c magnet |
-
1989
- 1989-12-30 JP JP1341991A patent/JP2775036B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5283278A (en) * | 1975-12-30 | 1977-07-12 | Nippon Oil Co Ltd | Method and apparatus for preparing thinnfilm specimens for analyzing infrareddray absorption spectrum |
JPS5747759A (en) * | 1980-08-08 | 1982-03-18 | Kobe Steel Ltd | Fly ash stably sintering method |
JPS5745915A (en) * | 1980-09-02 | 1982-03-16 | Mitsubishi Electric Corp | Condenser unit |
JPS5819409A (en) * | 1981-07-25 | 1983-02-04 | Sumitomo Electric Ind Ltd | Manufacture of isotropic mn-al-c magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2775036B2 (en) | 1998-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI328486B (en) | ||
US8377324B2 (en) | Methods for removing coatings from a metal component | |
CN103418991B (en) | The processing technology of large-scale two phase stainless steel impeller | |
CN104191340A (en) | Ultra-precision machining device based on non-Newtonian fluid shear thickening and electrolysis composition effect | |
EP2305411B1 (en) | Method of manufacturing impeller for centrifugal rotary machine | |
CN102137736A (en) | Method of polishing bladed disks (blisks) for a turbomachine and polishing device | |
Sun et al. | Development of magnetic abrasive finishing combined with electrolytic process for finishing SUS304 stainless steel plane | |
CN204123241U (en) | Based on the ultra-precision processing apparatus of non-Newtonian shear thickening and electrolysis complex effect | |
CN105603414A (en) | Abrasive particle abrasion pretreatment method for preparing compact passivation film on stainless steel surface | |
JPH03206396A (en) | Pump | |
RU2346080C2 (en) | Modification method of products surface made of titanium alloy | |
CN105369205B (en) | A kind of stainless steel surface prepares the process of multi-function membrane | |
CN111077004A (en) | High-efficiency metallographic sample corrosion process for high-temperature-resistant alloy sample of gas turbine | |
CN109706465A (en) | A kind of pipe fitting ultrasonic cleaning system and cleaning method | |
JP2013151740A (en) | Method for recovering platinum from aviation engine component | |
JP2546965B2 (en) | Single suction centrifugal pump device for high-purity liquid transfer | |
JP2747199B2 (en) | Titanium-based hard sintered material and sliding bearing using the same | |
US9488184B2 (en) | Method and system of increasing wear resistance of a part of a rotating mechanism exposed to fluid flow therethrough | |
JPH0586483A (en) | Plating method and plating device for scroll compressor and scroll member | |
Yang et al. | A study on quartz wafer slot polishing by using the ultrasonic-assisted wire electrophoretic deposition method | |
JP6693827B2 (en) | Method of manufacturing integrated impeller | |
CN221936437U (en) | Quick cooling device for polishing solution | |
CN110257008B (en) | Method for manufacturing polymerized polycrystalline diamond abrasive particles | |
RU213580U1 (en) | STAGE OF SUBMERSIBLE MULTI-STAGE CENTRIFUGAL PUMP | |
XI et al. | Cobalt-based Alloy Material Removing Method under Photocatalytic Conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100501 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100501 Year of fee payment: 12 |