JP3106196B1 - Method for producing TiAl-Ti based alloy sintered joint - Google Patents

Method for producing TiAl-Ti based alloy sintered joint

Info

Publication number
JP3106196B1
JP3106196B1 JP11164606A JP16460699A JP3106196B1 JP 3106196 B1 JP3106196 B1 JP 3106196B1 JP 11164606 A JP11164606 A JP 11164606A JP 16460699 A JP16460699 A JP 16460699A JP 3106196 B1 JP3106196 B1 JP 3106196B1
Authority
JP
Japan
Prior art keywords
powder
tial
based alloy
alloy
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11164606A
Other languages
Japanese (ja)
Other versions
JP2000355706A (en
Inventor
利彦 阿部
等 橋本
吉信 斎藤
義喬 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Original Assignee
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd filed Critical Tohoku Steel Co Ltd
Priority to JP11164606A priority Critical patent/JP3106196B1/en
Application granted granted Critical
Publication of JP3106196B1 publication Critical patent/JP3106196B1/en
Publication of JP2000355706A publication Critical patent/JP2000355706A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

【要約】 【課題】 パルス通電加圧によりTiAl合金、例えば
エンジンバルブのような傘部と軸部を持つ焼結体等を製
造する際に、該焼結体の結晶粒の粗大化を抑制し、空孔
の発生を抑え、全体に亘って緻密な組織を得る。また高
温の熱を受ける部位にTiAl合金を使用し、一部に一
体化した靭性の高いチタン基合金を用い、全体としてT
iAl合金の特性を向上させ、コスト低減と高品質の材
料を得る。 【解決手段】 Ti1−xAl(0.39≦x≦0.
59、x:原子分率)の割合からなる混合粉末若しくは
合金粉末又はこれらを主成分とする焼結用粉末と、前記
以外のTi基合金粉末又はTi基合金溶製体とを焼結と
同時に接合する。必要によりさらに1000〜1300
°CでTiAl合金部を押出し加工することを特徴とす
るTiAl−Ti基合金焼結接合体の製造方法。
Abstract: PROBLEM TO BE SOLVED: To suppress the coarsening of crystal grains of a TiAl alloy, for example, when manufacturing a TiAl alloy, for example, a sintered body having an umbrella portion and a shaft portion, such as an engine valve, by pulse current pressurization. , Suppressing the generation of vacancies and obtaining a dense structure throughout. In addition, a TiAl alloy is used for the part that receives high-temperature heat, and a titanium-based alloy with high toughness that is integrated into a part is used.
Improve the properties of iAl alloy, reduce costs and obtain high quality materials. SOLUTION: Ti 1-x Al x (0.39 ≦ x ≦ 0.
59, x: atomic fraction), and simultaneously sintering a mixed powder or alloy powder or a sintering powder containing these as a main component, and a Ti-based alloy powder or a Ti-based alloy ingot other than the above. Join. 1000 to 1300 if necessary
A method for producing a TiAl-Ti based alloy sintered joined body, comprising extruding a TiAl alloy portion at a temperature of ° C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、TiとAlの混合
粉末若しくは合金粉末又はこれらを主成分とする焼結用
粉末及びTi基合金粉末又はTi基合金溶製体(鋳造、
圧延等の加工を施したもの)とを用い、これらを通電加
圧焼結すると同時に接合し、さらに押出し加工してTi
Al−Ti基合金焼結接合体とすることにより、空孔が
なく緻密な組織を持ち、高温耐食性及び高温比強度に優
れ、特に自動車用エンジンバルブ、タービンブレード、
複合パイプ、ロッカーアーム等に好適な加圧焼結方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed powder or alloy powder of Ti and Al, a sintering powder containing these as a main component, and a Ti-based alloy powder or a Ti-based alloy ingot (cast,
Which are subjected to processing such as rolling), and are simultaneously sintered under current pressure and joined together, and further extruded to form Ti
By forming an Al-Ti based alloy sintered joint, it has a dense structure without voids, and is excellent in high-temperature corrosion resistance and high-temperature specific strength.
The present invention relates to a pressure sintering method suitable for composite pipes, rocker arms, and the like.

【0002】[0002]

【従来の技術】TiAl金属間化合物(合金)は、高温
耐食性及び高温比強度に優れているので、高温に曝され
る機械構造部品の軽量化材として利用及び開発が進めら
れている。TiAl合金は軽量であるばかりでなく、こ
のような優れた特性をもっているので、特に高温の排気
ガスに曝される自動車用エンジンバルブ、タービンブレ
ード、ロッカーアーム、複合パイプ等への利用が検討さ
れている。しかし、一般に他の鉄鋼材料やチタン合金に
比べてTiAl合金は脆いので、自動車用エンジンバル
ブの軸部先端のように、常時カムに衝突する(叩かれ
る)部分では靭性の不足が実用化上の問題となってい
る。また、合金自体の製造も容易ではない。例えばTi
Al合金の製造方法として溶解鋳造法が考えられる。こ
の場合、TiとAlは反応性が高く、水冷銅るつぼを用
いて高真空下で溶解するという極めて特殊な溶解方法を
必要である。また、原料に含まれる水素や酸素などの吸
着ガスを除去するために長時間真空に保持することが必
要であるが、実際には一旦吸着されたガスは真空処理の
みでは揮発除去されず、むしろ長時間の真空処理のため
に一方の合金成分であるAlが揮散してしまい、目的と
する成分比率が変わってしまうという問題を生じた。ま
た、TiAl合金を溶解後鋳造すると、多数の空孔が生
ずる等の欠陥を伴い、このような欠陥の除去のために時
間のかかるHIP処理をするなど、溶解鋳造法全体とし
て、品質が劣りしかも製造装置が特殊なのでコスト高に
なる欠点を有していた。
2. Description of the Related Art TiAl intermetallic compounds (alloys) are excellent in high-temperature corrosion resistance and high-temperature specific strength, and are being used and developed as lightening materials for mechanical structural parts exposed to high temperatures. Since TiAl alloys are not only lightweight but also have such excellent properties, their use in automobile engine valves, turbine blades, rocker arms, composite pipes, etc., which are particularly exposed to high-temperature exhaust gas, has been studied. I have. However, TiAl alloys are generally brittle compared to other steel materials and titanium alloys, and therefore, there is a lack of toughness in parts that constantly hit (hit) the cam, such as the tip of the shaft of an engine valve for an automobile. It is a problem. Also, it is not easy to manufacture the alloy itself. For example, Ti
As a method for producing an Al alloy, a melting casting method is considered. In this case, Ti and Al have high reactivity and require a very special melting method of melting under high vacuum using a water-cooled copper crucible. In addition, it is necessary to maintain the vacuum for a long time to remove the adsorbed gas such as hydrogen and oxygen contained in the raw material, but actually the gas once adsorbed is not volatilized and removed only by the vacuum treatment, but rather is removed. Due to the long-time vacuum treatment, Al, which is one of the alloy components, is volatilized, causing a problem that the target component ratio changes. In addition, when the TiAl alloy is cast after being melted, defects such as generation of a large number of pores are involved, and time-consuming HIP processing is required to remove such defects. There was a disadvantage that the cost was high because the manufacturing equipment was special.

【0003】このようなことから、TiAl金属間化合
物を製造する方法として燃焼合成法を利用する方法が提
案された。これは、Ti−Al金属間化合物を構成する
元素の反応熱を利用するものであり、比較的簡単な装置
で製造エネルギーが少なくてすむという利点を有する
が、この燃焼合成法の急速な反応が大きく災いして多孔
質体となり、強度の高い材料が得られないという欠点が
あった。このように、高純度で成分偏析がなく、また緻
密な組織を有するTiAl合金(金属間化合物)を製造
することは、従来の溶解法または燃焼合成法いずれの場
合も容易でないという問題があった。
[0003] For this reason, a method utilizing a combustion synthesis method has been proposed as a method for producing a TiAl intermetallic compound. This utilizes the reaction heat of the elements constituting the Ti-Al intermetallic compound, and has the advantage that the production energy can be reduced with a relatively simple apparatus. There was a drawback that a porous body was formed due to great disaster, and a material having high strength could not be obtained. As described above, there is a problem that it is not easy to produce a TiAl alloy (intermetallic compound) having high purity, no component segregation, and a dense structure by any of the conventional melting method and combustion synthesis method. .

【0004】このような中で、パルス通電加圧焼結法が
提案された。これは従来の溶解法または燃焼合成法に比
べ、材料の成分偏析を減少させ、組織を緻密化し、かつ
高純度化する点で格段に優れた材料が得られることが分
かった。しかし、従来技術よりは大幅に減少したが、材
料の一部に結晶粒が粗大化した部分が依然として残存
し、例えばエンジンバルブを例に上げると、エンジンバ
ルブの傘部の下に軸が結合しており、このような長尺の
材料では、材料の途中に空孔が発生する傾向があり、全
体に亘って均一かつ緻密な組織を得る課題を十分には解
決していなかった。
In such circumstances, a pulse current pressure sintering method has been proposed. It has been found that, compared with the conventional melting method or combustion synthesis method, a material excellent in reducing segregation of components of the material, densifying the structure and achieving high purity is obtained. However, although greatly reduced compared to the prior art, there is still a part where the crystal grains are coarsened in a part of the material.For example, in the case of an engine valve, for example, the shaft is connected under the head of the engine valve. In such a long material, pores tend to be generated in the middle of the material, and the problem of obtaining a uniform and dense structure throughout has not been sufficiently solved.

【0005】また、前記エンジンバルブの軸部について
は断面積に対して長さが大きいため、型の中に焼結用粉
末を数回に分けて圧粉しながら徐々に足していく方法が
取ってみたが、これは圧粉体の途中に隙間ができたり、
密度にばらつきが生じたり全く使い物にならなかった。
このため長い型を使用し、一度に焼結用の粉末を入れ圧
粉する方法が取られた。しかし、この場合は単なる圧粉
のためにのみ焼結ストロークを長くしなければならない
という不都合を生じ、またその後の焼結では加熱電流が
無駄に消費され、さらに焼結後の焼結品の取出しが大変
であるという問題があった。
Further, since the length of the shaft portion of the engine valve is large with respect to the cross-sectional area, it is necessary to gradually add the sintering powder into the mold while dividing the powder into several parts. I tried to make a gap in the middle of the compact,
The density fluctuated or was unusable at all.
For this reason, a method has been adopted in which a long mold is used, and powder for sintering is put at once and pressed. However, in this case, there is a disadvantage that the sintering stroke must be lengthened only for mere compaction, and in the subsequent sintering, the heating current is wastefully consumed, and further, removal of the sintered product after sintering There was a problem that it was serious.

【0006】さらに、TiAl合金(金属間化合物)の
製品をパルス通電加圧法で製造する場合の大きな問題と
して、焼結品と成形用型との食いつきがある。パルス通
電加圧法による場合、成形型やパンチに電流を流して直
接通電するので短時間に焼結できる利点があるが、耐熱
性と高温強度が要求されるので、成形型等の材質は黒鉛
に限定される。ところが、黒鉛はチタン、鉄、クロムな
どと高温で反応するという問題があり、型部品や材料の
消耗が激しく効率よくかつ低コストで製造する上で著し
い制約になっている。
Further, as a major problem in the case of manufacturing a product of a TiAl alloy (intermetallic compound) by a pulse current pressing method, there is a bite between a sintered product and a molding die. In the case of the pulse current pressurization method, there is an advantage that sintering can be performed in a short time because an electric current is directly applied to a forming die or a punch, but heat resistance and high-temperature strength are required. Limited. However, graphite has a problem that it reacts with titanium, iron, chromium, and the like at high temperatures, and is severely consumed by mold parts and materials, which is a remarkable limitation in manufacturing efficiently and at low cost.

【0007】したがって、このような反応を防止するた
めに、成形型とは別の黒鉛シートを間に入れたり、窒化
硼素(BN)の粉を剥離(離型)材として塗布するなど
の工夫がなされている。しかし、これらも高温の焼結温
度ではTi、Alと反応するので、焼結表面がざらざら
になって製品精度が低下するとともに、焼結体が黒鉛型
に食いつきを生ずるので、型離れが良い場合で2〜3
回、通常は1回で型が壊れることが多く実用上の大きな
問題となっている。
Therefore, in order to prevent such a reaction, a device such as inserting a graphite sheet different from the molding die or applying a powder of boron nitride (BN) as a release (release) material has been devised. It has been done. However, these also react with Ti and Al at a high sintering temperature, so that the sintering surface becomes rough and the product accuracy decreases, and the sintered body bites into the graphite mold. 2-3
The mold is often broken once, usually once, which is a serious problem in practical use.

【0008】上記黒鉛シートを使用しても焼結体と反応
を起こすし、また窒化硼素(BN)を使用した場合に、
これが高温では分解し、硬いチタン窒化やチタン硼化物
が生ずる。このため、Ti、Alとの反応が起こらない
最高温度である設定温度1100°Cで焼結した後、一
旦取出し、また別の炉で1300°Cに熱処理し、必要
な組織を得るなど手法が取られている。しかし、このよ
うな工程は煩雑であり、温度コントロールや材質の調整
が難しいという問題があった。
Even when the above graphite sheet is used, it reacts with the sintered body, and when boron nitride (BN) is used,
It decomposes at high temperatures, producing hard titanium nitride and titanium boride. For this reason, after sintering at a set temperature of 1100 ° C, which is the maximum temperature at which the reaction with Ti and Al does not occur, take out once, heat-treat it in another furnace at 1300 ° C, and obtain a necessary structure. Has been taken. However, such a process is complicated and there is a problem that it is difficult to control the temperature and adjust the material.

【0009】[0009]

【発明が解決しようとする課題】以上の問題点を解決す
るために、本発明はパルス通電加圧によりTiAl合
金、特にエンジンバルブのような傘部と軸部を持つ焼結
体、TiAl合金焼結体タービンブレードと軸部、ロッ
カーアーム等を製造する際に、該焼結体の結晶粒の粗大
化を抑制し、空孔の発生を抑え、全体に亘って緻密な組
織を得ようとするものであり、また高温の熱を受ける例
えば傘部をTiAl合金を使用し、軸部の先端に靭性の
高いチタン基合金を用いることにより、接合体全体とし
ての特性を向上させ、さらに適切な離型剤を使用するこ
とにより、焼結品と成形用黒鉛型との食いつきを防止し
て、成形用型を繰り返し使用できようにし、コスト低減
と高品質のTiAl合金を製造できる加圧焼結接合体の
製造方法及び強度及び耐久性に優れたエンジンバルブ、
タービンブレード、ロッカーアーム等の接合体を得るこ
とを課題とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a TiAl alloy, particularly a sintered body having an umbrella portion and a shaft portion, such as an engine valve, and a TiAl alloy sintered by a pulse current pressurization. When manufacturing the consolidated turbine blade, shaft, rocker arm, etc., it is intended to suppress the coarsening of the crystal grains of the sintered body, suppress the generation of vacancies, and obtain a dense structure throughout. For example, by using a TiAl alloy for the umbrella portion that receives high-temperature heat and using a titanium-based alloy having high toughness at the tip of the shaft portion, the characteristics of the entire joined body can be improved, and more appropriate separation can be achieved. The use of a mold agent prevents pressure between the sintered product and the graphite mold for molding, enabling the molding mold to be used repeatedly, reducing costs and producing high quality TiAl alloys by pressure sintering. Body manufacturing method and strength and durability Excellent engine valve,
It is an object to obtain a joined body such as a turbine blade and a rocker arm.

【0010】[0010]

【課題を解決するための手段】以上の知見に基づいて、
本発明は、1)Ti1−xAl(0.39≦x≦0.
59、x:原子分率)の割合からなる混合粉末若しくは
合金粉末又はこれらを主成分とする焼結用粉末と、前記
以外のTi基合金(純Tiを含む。以下同様)粉末又は
Ti基合金溶製体とを焼結と同時に接合する際に、上パ
ンチ若しくはダイの下面と圧粉体の上面及び下パンチ若
しくはダイの上面と圧粉体の下面を電気的に絶縁して焼
結することを特徴とするTiAl−Ti基合金焼結接合
体の製造方法、2)TiAl粉末がメカニカルアロイン
グ粉であることを特徴とする上記1)記載のTiAl−
Ti基合金焼結接合体の製造方法、3)850〜100
0°Cで加圧焼結することを特徴とする上記1)又は
2)記載のTiAl−Ti基合金焼結接合体の製造方
法、4)Ti1−xAl(0.39≦x≦0.59、
x:原子分率)の割合からなる混合粉末若しくは合金粉
末又はこれらを主成分とする焼結用粉末と、前記以外の
Ti基合金(純Tiを含む。以下同様)粉末又はTi基
合金溶製体とを焼結と同時に接合した後、1000〜1
300°CでTiAl合金部を押出し加工することを特
徴とするTiAl−Ti合金焼結接合体の製造方法、
5)歪み速度1×10−2〜1×10−5で超塑性押出
し加工することを特徴とする上記4)記載のTiAl−
Ti基合金焼結接合体の製造方法、6)上部電極を備え
た上パンチ又はダイ、成形空間を有する上部黒鉛型又は
ダイス、下部焼結用黒鉛型又は下部電極を備えた下パン
チ若しくはダイからなる成形装置を用い、前記上部黒鉛
型又はダイスにTiとAlの混合粉末若しくは合金粉末
又はこれらを主成分とする焼結用粉末を充填し、かつそ
の焼結用粉末に連続させてTi基合金粉末又はTi基合
金溶製体とを充填又は配置して、粉末を通電加圧焼結す
ると同時にTiAl合金焼結体とTi基合金とを接合す
際に、上パンチ若しくはダイの下面と圧粉体の上面及
び下パンチ若しくはダイの上面と圧粉体の下面を電気的
に絶縁して焼結することを特徴とするTiAl−Ti基
合金焼結接合体の製造方法、7)上部電極を備えた上パ
ンチ又はダイ、成形空間を有する上部黒鉛型又はダイ
ス、下部焼結用黒鉛型又は下部電極を備えた下パンチ若
しくはダイからなる成形装置を用い、前記上部黒鉛型又
はダイスにTiとAlの混合粉末若しくは合金粉末又は
これらを主成分とする焼結用粉末を充填し、かつその焼
結用粉末に連続させてTi基合金粉末又はTi基合金溶
製体とを充填又は配置し、粉末を通電加圧焼結すると同
時にTiAl合金焼結体とTi基合金とを接合した後、
1000〜1300°CでTiAl合金部を押出し加工
することを特徴とするTiAl−Ti基合金焼結接合体
の製造方法、8)TiAlとTi基合金とを接合した
後、下部焼結用黒鉛型又は下部電極を備えた下パンチ若
しくはダイを押出し用型に置換えるか又は該押出し用型
を継足して押出し加工することを特徴とする請求項7記
載のTiAl−Ti基合金焼結接合体の製造方法、9)
上パンチ若しくはダイの下面と圧粉体の上面及び又は下
パンチ若しくはダイの上面と圧粉体の下面を電気的に絶
縁して焼結することを特徴とする上記4)、5)、7)
又は8)のそれぞれに記載のTiAl−Ti基合金焼結
接合体の製造方法、を提供する。
Means for Solving the Problems Based on the above findings,
The present invention provides 1) Ti 1-x Al x (0.39 ≦ x ≦ 0.
59, x: atomic fraction), a mixed powder or alloy powder or a sintering powder containing these as a main component, and a Ti-based alloy (including pure Ti; the same applies hereinafter) powder or Ti-based alloy other than the above. When joining the ingot and sintering at the same time,
Punch or die, and the upper and lower punches of the green compact
Alternatively, the upper surface of the die and the lower surface of
Process for producing a TiAl-Ti based alloy sintered joined body, which comprises sintering, 2) TiAl powder is above 1, characterized in that a mechanical alloying powder) according TiAl-
3) 850-100
The method for producing a TiAl-Ti-based alloy sintered joined body according to the above 1) or 2), wherein the sintered body is subjected to pressure sintering at 0 ° C. 4) Ti 1-x Al x (0.39 ≦ x ≦ 0.59,
x: atomic fraction), a mixed powder or an alloy powder or a sintering powder containing these as a main component, and a Ti-based alloy (including pure Ti; the same applies hereinafter) powder or a Ti-based alloy ingot other than the above. After joining with the body at the same time as sintering,
A method for producing a TiAl-Ti alloy sintered joined body, comprising extruding a TiAl alloy portion at 300 ° C;
5) The TiAl- according to the above 4), wherein superplastic extrusion is performed at a strain rate of 1 × 10 −2 to 1 × 10 −5.
Method for manufacturing Ti-based alloy sintered joined body, 6) From upper punch or die with upper electrode, upper graphite mold or die having molding space, graphite die for lower sintering or lower punch or die with lower electrode The upper graphite mold or die is filled with a mixed powder or alloy powder of Ti and Al or a sintering powder containing these as a main component, and is continuously connected to the sintering powder by using a Ti-based alloy. Filling or arranging a powder or a Ti-based alloy ingot and sintering the powder under current and pressure simultaneously with joining the TiAl alloy sintered body and the Ti-based alloy , the upper punch or the lower surface of the die and the powder compact Top of body
The upper surface of the lower punch or die and the lower surface of the compact are electrically connected.
Manufacturing method of TiAl-Ti based alloy sintered joint characterized by being insulated and sintered , 7) upper punch or die having upper electrode, upper graphite mold or die having molding space, lower sintering Using a molding apparatus consisting of a lower punch or a die having a lower graphite electrode or a lower electrode, filling the upper graphite die or die with a mixed powder of Ti and Al or an alloy powder or a sintering powder containing these as a main component. And a Ti-based alloy powder or a Ti-based alloy ingot is filled or arranged continuously with the sintering powder, and the powder is subjected to current pressure sintering and, at the same time, the TiAl alloy sintered body and the Ti-based alloy are joined. After doing
A method for producing a TiAl-Ti-based alloy sintered joined body characterized by extruding a TiAl alloy portion at 1000 to 1300 ° C. 8) A graphite mold for lower sintering after joining TiAl and a Ti-based alloy. 8. The TiAl-Ti-based alloy sintered joined body according to claim 7, wherein the lower punch or the die provided with the lower electrode is replaced with an extrusion die, or the extrusion die is added and extruded. Manufacturing method, 9)
Lower surface of upper punch or die and upper and / or lower surface of compact
The upper surface of the punch or die and the lower surface of the compact are electrically disconnected.
4), 5), 7) above, characterized in that they are edged and sintered.
Or 8) a method for producing a TiAl-Ti-based alloy sintered joined body according to any one of the above items.

【0011】[0011]

【発明の実施の形態】次に、本発明を図に基づいて説明
する。図1は本発明に使用する焼結接合装置の一例を示
す断面説明図である。図1に示すように、本装置は上パ
ンチ1、成形空間を備えた上部黒鉛型2、同下部黒鉛型
3を備えている。必要により下パンチを配置することが
できる。図1はエンジンバルブの製造を例にしたもの
で、黒鉛型その他はエンジンバルブ形状の空間を備えて
いる。なお、この例はあくまで、好適な例を示すもので
あって、本発明はこの例に制限されるものではなく、例
えば、高温耐食性や高温比強度を必要とするタービンブ
レード(翼)、ロッカーアーム、複合パイプ等にも適応
できるものである。この上部黒鉛型2は後述する押出し
工程におけるダイスを兼ねている。上下部黒鉛型2、3
のみならず、上パンチ1及び下パンチも、耐熱強度を保
有させるために黒鉛製とすることができる。上部又は下
部電極(図示せず)から電気エネルギーを供給し、上記
黒鉛型を通じて焼結用粉末を加熱焼結する。
Next, the present invention will be described with reference to the drawings. FIG. 1 is an explanatory sectional view showing an example of a sintering and joining apparatus used in the present invention. As shown in FIG. 1, the present apparatus includes an upper punch 1, an upper graphite mold 2 having a molding space, and a lower graphite mold 3. If necessary, a lower punch can be arranged. FIG. 1 shows an example of manufacturing an engine valve, and a graphite type or the like has an engine valve-shaped space. Note that this example is merely a preferable example, and the present invention is not limited to this example. For example, a turbine blade (blade), a rocker arm, which requires high-temperature corrosion resistance and high-temperature specific strength, And composite pipes. The upper graphite mold 2 also serves as a die in an extrusion process described later. Upper and lower graphite molds 2, 3
Not only that, the upper punch 1 and the lower punch can also be made of graphite in order to maintain heat resistance. Electric energy is supplied from an upper or lower electrode (not shown), and the sintering powder is heated and sintered through the graphite mold.

【0012】まず、下部黒鉛型3にTi基合金粉末又はT
i基合金溶製体4を充填又は配置する。この「Ti基合
金溶製体」はTi基合金粉末に対比させて述べたもの
で、Ti基合金を溶解、鋳造、圧延熱処理等の加工を施
してエンジンバルブの軸としての必要な強度をもつよう
に軸状に成形加工したものである。すなわち、エンジン
バルブ用軸等は、TiAl合金の焼結と同時に焼結して
得た焼結Ti基合金焼結体でもよいし、また上記のよう
にTi基合金溶製体であってもよい。Ti基合金として代
表てきなものを挙げると、Ti−5Al−2.5Snな
どのα型合金、Ti−6Al−4Vなどのα+β型合
金、Ti−10V−2Fe−3Alなどのβ型合金等で
あるが、これらを目的に応じて選択し使用することがで
きる。特にエンジンバルブ用軸等には強度及び靭性の高
いチタン基合金を用いる。図1ではこのようなTi基合
金溶製体4を示す。
First, a Ti-based alloy powder or T
The i-base alloy ingot 4 is filled or arranged. This “Ti-based alloy ingot” is described in comparison with the Ti-based alloy powder, and has a necessary strength as a shaft of an engine valve by processing such as melting, casting, and rolling heat treatment of the Ti-based alloy. As described above. That is, the shaft for the engine valve or the like may be a sintered Ti-based alloy sintered body obtained by sintering simultaneously with the sintering of the TiAl alloy, or may be a Ti-based alloy ingot as described above. . Typical Ti-based alloys include α-type alloys such as Ti-5Al-2.5Sn, α + β-type alloys such as Ti-6Al-4V, and β-type alloys such as Ti-10V-2Fe-3Al. However, these can be selected and used according to the purpose. In particular, a titanium-based alloy having high strength and toughness is used for a shaft for an engine valve or the like. FIG. 1 shows such a Ti-based alloy ingot 4.

【0013】次に、上部黒鉛型2の内部にTiとAlの
混合粉末若しくは合金粉末又はこれらを主成分とする焼
結用粉末5を充填する。上記の通りTiとAlが主成分
であるが、焼結用粉末の副成分として機械的性質および
耐食性を改善する目的で、Cr、Mo、W、Nb、M
n、V、Ni、Co、Cu、Zr、Hf、Sn、Zn、
B、TiBの一種または二種以上を、10wt%を超
えない範囲で添加することができる。また、さらに耐酸
化性を向上させる目的で、Si、P、SiC、TiC、
ZrC、VC、WC、MoCの一種または二種以上を、
20wt%を超えない範囲で添加することができる。こ
の焼結用粉末5の材料として、メカニカルアロイング粉
が好適である。焼結用原料としてはTiとAlの混合粉
末若しくは合金粉末又はこれらを主成分とする焼結粉末
が使用できるが、特にメカニカルアロイング(MA)粉
末が好適である。TiAlメカニカルアロイング(M
A)粉末は、例えば水素吸収処理した水素を3.5ma
ss%以上含有するスポンジチタンとアルミニウム粉、
粒又は片とをアルゴン雰囲気又は真空中でボールミリン
グすることによって得ることができる。この水素吸収処
理したスポンジチタンは脆化し易く、微細に粉砕されア
ルミニウムとの合金化が容易に達成される。また、焼結
の際には温度500°C近傍で脱水素化し、焼結中雰囲
気は還元性に保たれるので酸化が抑制され、焼結体の品
質がさらに向上するという特徴がある。
Next, a mixed powder of Ti and Al, an alloy powder, or a sintering powder 5 containing these as a main component is filled in the upper graphite mold 2. As described above, Ti and Al are main components, but Cr, Mo, W, Nb, and M are used as secondary components of the sintering powder for the purpose of improving mechanical properties and corrosion resistance.
n, V, Ni, Co, Cu, Zr, Hf, Sn, Zn,
One or more of B and TiB 2 can be added in a range not exceeding 10 wt%. In order to further improve oxidation resistance, Si, P, SiC, TiC,
One or more of ZrC, VC, WC, MoC,
It can be added in a range not exceeding 20 wt%. As a material of the sintering powder 5, a mechanical alloying powder is preferable. As a raw material for sintering, a mixed powder or alloy powder of Ti and Al or a sintered powder containing these as a main component can be used, and mechanical alloying (MA) powder is particularly preferable. TiAl mechanical alloying (M
A) The powder is, for example, 3.5 ma of hydrogen subjected to hydrogen absorption treatment.
sponge titanium and aluminum powder containing ss% or more,
It can be obtained by ball milling the particles or pieces in an argon atmosphere or vacuum. The sponge titanium that has been subjected to the hydrogen absorption treatment is easily embrittled, and is finely pulverized to easily achieve alloying with aluminum. Further, during sintering, dehydrogenation is performed at a temperature of about 500 ° C., and since the atmosphere during sintering is kept reducible, oxidation is suppressed, and the quality of the sintered body is further improved.

【0014】TiとAlの比率は、Ti1−xAl
(0.39≦x≦0.59、x:原子分率)の割合と
する。この比率以外では、高温排ガスに曝される個所、
例えばエンジンバルブの傘部等に使用する場合には耐熱
が十分でない。なお、TiとAl以外に、さらに副成分
として機械的性質および耐食性を改善する目的で、C
r、Mo、W、Nb、Mn、V、Ni、Co、Cu、Z
r、Hf、Sn、Zn、B、TiBの一種または二種
以上を、10wt%を超えない範囲で添加することがで
きる。また、さらに耐酸化性を向上させる目的で、S
i、P、SiC、TiC、ZrC、VC、WC、MoC
の一種または二種以上を、20wt%を超えない範囲で
添加することができる。そしてこれらの添加成分は併用
を妨げるものではない。上下パンチ若しくはダイ等の黒
鉛と圧粉体又は焼結体との接触部分に、反応防止剤とし
てアルミナ系または窒化硼素(BN)の離型剤6を塗布
する。この離型剤6は乾燥後ひび割れを発生したり、簡
単に剥離するものは好ましくない。離型剤6の塗布乾燥
後焼結粉末を充填し、これを圧粉とする工程で剥離しな
い十分な耐剥離(付着)強度を持つことが必要である。
The ratio of Ti to Al is Ti 1-x Al
x (0.39 ≦ x ≦ 0.59, x: atomic fraction). Other than this ratio, places exposed to high-temperature exhaust gas,
For example, when used for an umbrella portion of an engine valve or the like, heat resistance is not sufficient. In addition to Ti and Al, in order to further improve mechanical properties and corrosion resistance as a secondary component, C
r, Mo, W, Nb, Mn, V, Ni, Co, Cu, Z
One or more of r, Hf, Sn, Zn, B, and TiB 2 can be added in a range not exceeding 10 wt%. In order to further improve oxidation resistance, S
i, P, SiC, TiC, ZrC, VC, WC, MoC
Or two or more of them can be added in a range not exceeding 20 wt%. And these additional components do not prevent the combined use. A release agent 6 of alumina or boron nitride (BN) is applied as a reaction inhibitor to a contact portion between graphite such as an upper and lower punch or a die and a green compact or a sintered body. It is not preferable that the release agent 6 generates cracks after drying or peels off easily. After applying and drying the release agent 6, it is necessary to have a sufficient peeling (adhesion) strength so as not to peel off in a step of filling the sintered powder with the sintered powder and using this as a compact.

【0015】この離型剤6としてアルミナ系または窒化
硼素(BN)の反応防止剤の利用は、焼結品と成形用黒
鉛型との食いつきを防止する上で極めて有効である。ま
た、この離型剤6は焼結の際の電気絶縁体としても機能
する。そして、特にこのような離型剤6を使用すること
により、離型剤が1460°C付近の高温で溶融状態に
なるまで黒鉛型と反応せず、焼結後に黒鉛型から焼結体
を容易に分離することができる。離型剤6としてのアル
ミナまたは窒化硼素(BN)の利用は、通電加圧焼結用
黒鉛型のみならず、ホットプレスなどの成形用黒鉛型を
使用した焼結体の製造に使用することができる。これに
よって、成形用黒鉛型の使用頻度を高め、コスト低減に
大きく寄与する。また、BN(窒化硼素)潤滑材は後述す
る押出しのために重要な役割をする。BN(窒化硼素)潤
滑材は黒鉛型(ダイス)2の面に塗布して使用する。
The use of a reaction inhibitor such as alumina or boron nitride (BN) as the release agent 6 is extremely effective in preventing the bite between the sintered product and the graphite mold for molding. The release agent 6 also functions as an electric insulator during sintering. In particular, by using such a release agent 6, the release agent does not react with the graphite mold until it is in a molten state at a high temperature of about 1460 ° C., and the sintered body can be easily formed from the graphite mold after sintering. Can be separated. The use of alumina or boron nitride (BN) as the release agent 6 can be used not only for the production of sintered compacts using a graphite mold for molding such as hot pressing, but also for a graphite mold for current pressure sintering. it can. Thereby, the use frequency of the graphite mold for molding is increased, which greatly contributes to cost reduction. In addition, BN (boron nitride) lubricant plays an important role for extrusion described later. BN (boron nitride) lubricant is applied to the surface of the graphite mold (die) 2 and used.

【0016】次に、上記焼結用粉末を圧粉して下部黒鉛
型2に押し込めた後、図に示す状態でパルス通電加圧焼
結を行う。焼結中雰囲気は真空(例えば真空度10−3
Pa)とし、昇温速度10〜100K/min、好まし
くは10〜40K/min、圧力45〜70MPaの条
件で、850〜1000°Cに通電加圧焼結する。加熱
温度は結晶粒の成長が生じない1000°C以下とす
る。TiAl合金焼結体が微細結晶粒を持つことは、次
工程の超塑性押出し加工で特に必要である。上部電極又
は下部電極から上下パンチを介して供給される電気エネ
ルギーは電気絶縁体であるアルミナ塗膜6が存在するた
めに、焼結用粉末5に直接供給されず、一旦下部黒鉛型
2に供給され、この黒鉛型2の加熱を通じて焼結され
る。これにより、TiとAlの混合粉末若しくは合金粉
末又はこれらを主成分とする焼結粉末の急速な合成反応
を抑止でき、例えばエンジンバルブの傘部及び軸部の結
晶粒が粗大化したり、材料の途中に空孔が発生すること
なく、全体に亘って緻密な組織が得られる効果がある。
また、本発明によればTiAlと黒鉛型との反応が防止
できる優れた効果を有する。
Next, after the above sintering powder is compacted and pressed into the lower graphite mold 2, pulse current pressure sintering is performed in the state shown in the figure. The atmosphere during sintering is vacuum (for example, a degree of vacuum of 10 −3).
Pa), and sintering is carried out at 850 to 1000 ° C. under a pressure of 10 to 100 K / min, preferably 10 to 40 K / min, and a pressure of 45 to 70 MPa. The heating temperature is 1000 ° C. or less at which no crystal grains grow. It is particularly necessary for the TiAl alloy sintered body to have fine crystal grains in the superplastic extrusion processing in the next step. Electric energy supplied from the upper electrode or the lower electrode via the upper and lower punches is not directly supplied to the sintering powder 5 but is supplied to the lower graphite mold 2 once because the alumina coating 6 which is an electric insulator is present. Then, the graphite mold 2 is sintered through heating. As a result, a rapid synthesis reaction of a mixed powder or an alloy powder of Ti and Al or a sintered powder containing these as a main component can be suppressed, for example, the crystal grains of an umbrella portion and a shaft portion of an engine valve become coarse, and There is an effect that a dense structure can be obtained over the whole without generating voids on the way.
Further, the present invention has an excellent effect of preventing the reaction between TiAl and the graphite mold.

【0017】さらに重要なことは、この通電加圧焼結の
段階で前記Ti基合金溶製体4とTiAl焼結体は緊密に
結合していることである。後述する押出し後に接合部が
中央にくるように平板試験片を作成し、曲げ試験を行っ
たところ、破断は接合部ではなくTiAl焼結体の母材
で起き、接合部は十分な強度を保有していた。接合部の
曲げ強度は850MPaであり、TiAl焼結体の母材
と同程度の強度を有していた。上記Ti基合金溶製体4
に替えて、Ti基合金粉末をTiAl合金の焼結と同時に
焼結しても同様な結果が得られた。この場合にも黒鉛型
と接触する部分にはアルミナ系または窒化硼素(BN)
離型剤6を塗布する。
It is more important that the Ti-based alloy ingot 4 and the TiAl sintered body are tightly connected to each other at the current pressure sintering stage. A flat test piece was prepared so that the joint was at the center after extrusion, which was described later, and a bending test was performed. The fracture occurred not in the joint but in the base material of the TiAl sintered body, and the joint had sufficient strength. Was. The bending strength of the joint was 850 MPa, which was almost the same as that of the base material of the TiAl sintered body. The above Ti-based alloy ingot 4
Alternatively, the same result was obtained when the Ti-based alloy powder was sintered simultaneously with the sintering of the TiAl alloy. Also in this case, the part in contact with the graphite mold is made of alumina or boron nitride (BN).
A release agent 6 is applied.

【0018】次に、通電加圧焼結によりTiAl合金を
焼結すると同時に該TiAl合金焼結体とTi基合金と
を接合した後、1000〜1300°CでTiAl合金
部をBN(窒化硼素)潤滑材を塗布したダイを通して押出
し加工する。歪み速度1×10−2〜1×10−5で超
塑性押出し加工するのが好適である。上記の通り、Ti
Al合金焼結体は微細結晶粒組織を持つので、押出し加
工は容易である。この押出し加工に際しては、図2に示
すように下部焼結用黒鉛型又は下部電極を備えた下パン
チ若しくはダイを、押出し用型7に置換えるか又は該押
出し用型を継足して押出し加工する。例えば、7mmφ
の中空部を有する下部焼結用黒鉛型3に替えて8mmφ
の中空部を有する押出し用型7に置換えて押出しを行
う。
Next, after sintering the TiAl alloy by electric current pressure sintering and simultaneously joining the TiAl alloy sintered body and the Ti-based alloy, the TiAl alloy part is BN (boron nitride) at 1000-1300 ° C. Extrude through a lubricated die. It is preferable to perform superplastic extrusion at a strain rate of 1 × 10 −2 to 1 × 10 −5 . As described above, Ti
Since the Al alloy sintered body has a fine crystal grain structure, extrusion processing is easy. At the time of this extrusion, as shown in FIG. 2, a graphite die for lower sintering or a lower punch or die having a lower electrode is replaced with an extrusion die 7 or the extrusion die is extended and extruded. . For example, 7mmφ
8mmφ instead of graphite mold 3 for lower sintering with hollow part
The extrusion is performed by replacing the extrusion die 7 having the hollow portion of the above.

【0019】この結果、エンジンバルブの例では高温排
ガスの最も影響を受ける傘部及び該傘部に近接する軸部
をTiAl合金焼結体製とし、これを押出し加工で傘部
と一体加工することにより該傘部と軸との高温強度を維
持し、かつカムに接触する軸部先端はTi基合金とする
ことにより靭性を高めた複合材料を得ることができる。
このようにして得たエンジンバルブの例の概略説明図を
図3に示す。符号9はエンジンバルブの傘部、これに結
合する押出し部である軸8は傘部と同材料のTiAl合
金焼結体であり、その下部軸10はTi基合金である。
前記のように、TiAl合金焼結体とTi基合金の軸接
合部は、800MPaの強度が得られている。このよう
に主としてTiとAlを主成分とすることにより、軽量
化を図ることができ、例えばエンジンの軽量化に大きく
影響する重要なものである。元来チタンアルミニウム合
金(金属間化合物)は、高温耐食性及び高温比強度に優
れているので、低コストでエンジンバルブ等の軽量化を
達成できる本発明方法は優れた効果を有する。以上、主
としてエンジンバルブを中心に説明してきたが、本発明
はこの用途に制限されることはなく、本発明係るTiA
l合金焼結体とTi基合金の接合体は、高温耐食性ある
いは高温比強度を必要とする複合パイプ、タービン翼、
ロッカーアーム等にも使用できる。そしてこの具体的事
例は、これはあくまで一例であり、この例のみに制限さ
れるものではない。すなわち、本発明の技術思想に含ま
れる他の態様または変形を包含する。
As a result, in the example of the engine valve, the head portion which is most affected by the high temperature exhaust gas and the shaft portion adjacent to the head portion are made of a TiAl alloy sintered body, and are integrally formed with the head portion by extrusion. Accordingly, a composite material having high toughness can be obtained by maintaining the high-temperature strength between the head portion and the shaft, and using a Ti-based alloy at the tip of the shaft portion in contact with the cam.
FIG. 3 shows a schematic explanatory view of an example of the engine valve thus obtained. Reference numeral 9 denotes an umbrella portion of an engine valve, a shaft 8 serving as an extruded portion connected to the umbrella portion is a TiAl alloy sintered body of the same material as the umbrella portion, and a lower shaft 10 is a Ti-based alloy.
As described above, the shaft joint between the TiAl alloy sintered body and the Ti-based alloy has a strength of 800 MPa. As described above, by mainly using Ti and Al as main components, it is possible to reduce the weight, and for example, it is important that greatly affects the weight reduction of the engine. Originally, a titanium-aluminum alloy (intermetallic compound) is excellent in high-temperature corrosion resistance and high-temperature specific strength. Therefore, the method of the present invention, which can reduce the weight of an engine valve or the like at low cost, has an excellent effect. As described above, mainly the engine valve has been mainly described, but the present invention is not limited to this application, and the TiA according to the present invention is not limited to this application.
The joined body of the l-alloy sintered body and the Ti-based alloy is a composite pipe, turbine blade,
It can also be used for rocker arms. And this specific example is only an example, and is not limited to this example. That is, the present invention includes other aspects or modifications included in the technical concept of the present invention.

【0020】[0020]

【発明の効果】従来の耐熱鋼等に替わるものとして、さ
らにエンジンバルブ、タービン、複合パイプ、ロッカー
アーム等を軽量化することができ、例えばエンジンバル
ブについては、同傘部及び軸部をTiAl合金焼結体と
して高温排ガスへの耐熱性を高め、さらに軸部先端をT
i基合金としカムとの接触に耐え得る材料とすることに
より、エンジンバルブの耐久性を向上させることが可能
となった。また、上記の通りTiAl合金焼結とTi基
合金軸部先端とを同時に行うことができ、エネルギーコ
ストを低減させるとともに工程を簡略化し、さらにTi
Al合金軸部とTi基合金軸部先端との結合強度を維持
できるという優れた特徴と有している。さらに、離型剤
としてアルミナまたはBN(窒化硼素)を利用することに
より、焼結品と成形用黒鉛型との食いつきを防止し、黒
鉛型と反応させず、焼結後に黒鉛型から焼結体を容易に
分離することができた。これによって、非常に高い寸法
精度の焼結体を得ることができ、また成形用黒鉛型の使
用頻度を高め、コスト低減に大きく寄与するものであ
る。またこの離型剤を焼結の際の電気絶縁体として機能
させ、焼結粉末の急速な合成反応を抑止して、例えば接
合体としてのエンジンバルブや軸部の結晶粒が粗大化し
たり、材料の途中に空孔が発生することなく、全体に亘
って緻密な組織を得ることができるという優れた特徴を
有する。
As an alternative to the conventional heat-resistant steel, the engine valve, turbine, composite pipe, rocker arm, etc. can be further reduced in weight. For example, in the case of the engine valve, the head and shaft are made of TiAl alloy. As a sintered body, heat resistance to high-temperature exhaust gas is improved, and the tip of the shaft is T
By using an i-base alloy and a material that can withstand contact with the cam, the durability of the engine valve can be improved. Further, as described above, the sintering of the TiAl alloy and the tip of the shaft of the Ti-based alloy can be performed at the same time, thereby reducing the energy cost and simplifying the process.
It has an excellent feature that the bonding strength between the Al alloy shaft and the tip of the Ti-based alloy shaft can be maintained. In addition, the use of alumina or BN (boron nitride) as a release agent prevents bite between the sintered product and the graphite mold for molding, does not react with the graphite mold, and the sintering from the graphite mold after sintering. Could be easily separated. As a result, a sintered body having extremely high dimensional accuracy can be obtained, and the use frequency of the graphite mold for molding is increased, which greatly contributes to cost reduction. In addition, this release agent functions as an electrical insulator during sintering and suppresses the rapid synthesis reaction of the sintered powder. This has an excellent feature that a dense structure can be obtained over the whole without generating voids in the middle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】上パンチ、成形空間を備えた上部黒鉛型、同下
部黒鉛型等を備えた本装置の1例を示す断面説明図であ
る。
FIG. 1 is an explanatory cross-sectional view showing an example of the present apparatus provided with an upper punch, an upper graphite mold having a molding space, a lower graphite mold, and the like.

【図2】下部黒鉛型を取り除き、押出し用型に交換した
装置の1例を示す断面説明図である。
FIG. 2 is an explanatory cross-sectional view showing an example of an apparatus in which a lower graphite mold has been removed and replaced with an extrusion mold.

【図3】本発明を適用して製造したエンジンバルブの概
略説明図である。
FIG. 3 is a schematic explanatory view of an engine valve manufactured by applying the present invention.

【符号の説明】[Explanation of symbols]

1 上パンチ 2 上部黒鉛型 3 下部黒鉛型 4 Ti基合金軸先端部 5 TiAl合金焼結粉末又は焼結体 6 離型剤 7 押出し用型 8 押出し部のTiAl合金軸 9 TiAl合金傘部 10 Ti基合金軸先端部 REFERENCE SIGNS LIST 1 upper punch 2 upper graphite mold 3 lower graphite mold 4 tip end of Ti-based alloy shaft 5 TiAl alloy sintered powder or sintered body 6 release agent 7 extrusion die 8 extruded portion TiAl alloy shaft 9 TiAl alloy head 10 Ti Base alloy shaft tip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01L 3/02 F01L 3/02 G 3/24 3/24 D (72)発明者 斎藤 吉信 宮城県柴田郡村田町大字村田字西ケ丘23 東北特殊鋼株式会社内 (72)発明者 西澤 義喬 宮城県柴田郡村田町大字村田字西ケ丘23 東北特殊鋼株式会社内 審査官 山本 一正 (56)参考文献 特開 平4−118182(JP,A) 特開 平7−3306(JP,A) 特開 平9−300024(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 7/04 B22F 3/14 101 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI F01L 3/02 F01L 3/02 G 3/24 3/24 D (72) Inventor Yoshinobu Saito Murata-cho, Shibata-gun, Miyagi Prefecture Nishigaoka 23 Tohoku Special Steel Co., Ltd. (72) Inventor Yoshitaka Nishizawa, Murata-cho, Shibata-gun, Miyagi Prefecture Nishigaoka 23 Tohoku Special Steel Co., Ltd.Examiner, Kazuma Yamamoto (56) References JP 4-118182 (JP, A) JP-A-7-3306 (JP, A) JP-A-9-300024 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 7/04 B22F 3/14 101

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ti1−xAl(0.39≦x≦0.
59、x:原子分率)の割合からなる混合粉末若しくは
合金粉末又はこれらを主成分とする焼結用粉末と、前記
以外のTi基合金(純Tiを含む。以下同様)粉末又は
Ti基合金溶製体とを焼結と同時に接合する際に、上パ
ンチ若しくはダイの下面と圧粉体の上面及び下パンチ若
しくはダイの上面と圧粉体の下面を電気的に絶縁して焼
結することを特徴とするTiAl−Ti基合金焼結接合
体の製造方法。
1. The method according to claim 1, wherein Ti 1-x Al x (0.39 ≦ x ≦ 0.
59, x: atomic fraction), a mixed powder or alloy powder or a sintering powder containing these as a main component, and a Ti-based alloy (including pure Ti; the same applies hereinafter) powder or Ti-based alloy other than the above. When joining the ingot and sintering at the same time,
Punch or die, and the upper and lower punches of the green compact
Alternatively, the upper surface of the die and the lower surface of
A method for producing a TiAl-Ti-based alloy sintered joint, comprising:
【請求項2】 TiAl粉末がメカニカルアロイング粉
であることを特徴とする請求項1記載のTiAl−Ti
基合金焼結接合体の製造方法。
2. The TiAl—Ti according to claim 1, wherein the TiAl powder is a mechanical alloying powder.
A method for producing a base alloy sintered joint.
【請求項3】 850〜1000°Cで加圧焼結するこ
とを特徴とする請求項1又は2記載のTiAl−Ti基
合金焼結接合体の製造方法。
3. The method for producing a TiAl—Ti-based alloy sintered joined body according to claim 1, wherein the sintered body is pressure-sintered at 850 to 1000 ° C.
【請求項4】 Ti1−xAl(0.39≦x≦0.
59、x:原子分率)の割合からなる混合粉末若しくは
合金粉末又はこれらを主成分とする焼結用粉末と、前記
以外のTi基合金(純Tiを含む。以下同様)粉末又は
Ti基合金溶製体とを焼結と同時に接合した後、100
0〜1300°CでTiAl合金部を押出し加工するこ
とを特徴とするTiAl−Ti合金焼結接合体の製造方
法。
4. The method according to claim 1, wherein Ti 1-x Al x (0.39 ≦ x ≦ 0.
59, x: atomic fraction), a mixed powder or alloy powder or a sintering powder containing these as a main component, and a Ti-based alloy (including pure Ti; the same applies hereinafter) powder or Ti-based alloy other than the above. After joining the ingot and sintering simultaneously, 100
A method for producing a TiAl-Ti alloy sintered joint, comprising extruding a TiAl alloy portion at 0 to 1300 ° C.
【請求項5】 歪み速度1×10−2〜1×10−5
超塑性押出し加工することを特徴とする請求項4記載の
TiAl−Ti基合金焼結接合体の製造方法。
5. The method according to claim 4, wherein the superplastic extrusion is performed at a strain rate of 1 × 10 −2 to 1 × 10 −5 .
【請求項6】 上部電極を備えた上パンチ又はダイ、成
形空間を有する上部黒鉛型又はダイス、下部焼結用黒鉛
型又は下部電極を備えた下パンチ若しくはダイからなる
成形装置を用い、前記上部黒鉛型又はダイスにTiとA
lの混合粉末若しくは合金粉末又はこれらを主成分とす
る焼結用粉末を充填し、かつその焼結用粉末に連続させ
てTi基合金粉末又はTi基合金溶製体とを充填又は配
置して、粉末を通電加圧焼結すると同時にTiAl焼結
体とTi基合金とを接合する際に、上パンチ若しくはダ
イの下面と圧粉体の上面及び下パンチ若しくはダイの上
面と圧粉体の下面を電気的に絶縁して焼結することを特
徴とするTiAl−Ti基合金焼結接合体の製造方法。
6. A molding apparatus comprising an upper punch or a die having an upper electrode, an upper graphite mold or a die having a molding space, a lower sintering graphite mold or a lower punch or a die having a lower electrode. Ti and A for graphite mold or die
l mixed powder or alloy powder or a sintering powder containing these as a main component and filled or arranged with a Ti-based alloy powder or a Ti-based alloy ingot continuously with the sintering powder. When the TiAl sintered body and the Ti-based alloy are joined at the same time when the
The lower surface of a and the upper surface of the green compact and the lower punch or die
A method for producing a TiAl-Ti-based alloy sintered joined body, characterized in that a surface and a lower surface of a green compact are electrically insulated and sintered .
【請求項7】 上部電極を備えた上パンチ又はダイ、成
形空間を有する上部黒鉛型又はダイス、下部焼結用黒鉛
型又は下部電極を備えた下パンチ若しくはダイからなる
成形装置を用い、前記上部黒鉛型又はダイスにTiとA
lの混合粉末若しくは合金粉末又はこれらを主成分とす
る焼結用粉末を充填し、かつその焼結用粉末に連続させ
てTi基合金粉末又はTi基合金溶製体とを充填又は配
置し、粉末を通電加圧焼結すると同時にTiAl焼結体
とTi基合金とを接合した後、1000〜1300°C
でTiAl合金部を押出し加工することを特徴とするT
iAl−Ti基合金焼結接合体の製造方法。
7. A molding apparatus comprising an upper punch or a die having an upper electrode, an upper graphite mold or a die having a molding space, a lower sintering graphite mold or a lower punch or a die having a lower electrode. Ti and A for graphite mold or die
l mixed powder or alloy powder or a sintering powder containing these as a main component, and filled or arranged with a Ti-based alloy powder or a Ti-based alloy ingot continuously with the sintering powder; After sintering the powder under current pressure and simultaneously joining the TiAl sintered body and the Ti-based alloy, 1000-1300 ° C
Extruding the TiAl alloy part with T
A method for producing an iAl-Ti-based alloy sintered joint.
【請求項8】 TiAlとTi基合金とを接合した後、
下部焼結用黒鉛型又は下部電極を備えた下パンチ若しく
はダイを押出し用型に置換えるか又は該押出し用型を継
足して押出し加工することを特徴とする請求項7記載の
TiAl−Ti基合金焼結接合体の製造方法。
8. After joining TiAl and a Ti-based alloy,
8. The TiAl-Ti base according to claim 7, wherein a graphite die for lower sintering or a lower punch or a die provided with a lower electrode is replaced with an extrusion die, or the extrusion die is extended and extruded. A method for producing an alloy sintered joint.
【請求項9】 上パンチ若しくはダイの下面と圧粉体の
上面及び下パンチ若しくはダイの上面と圧粉体の下面を
電気的に絶縁して焼結することを特徴とする請求項4、
5、7又は8のそれぞれに記載のTiAl−Ti基合金
焼結接合体の製造方法。
9. The method of manufacturing a green compact, comprising:
The upper surface and the upper surface of the lower punch or die and the lower surface of the green compact
5. The method according to claim 4, wherein the sintering is performed while being electrically insulated.
The method for producing a TiAl-Ti-based alloy sintered joint according to any one of 5, 7, and 8 .
JP11164606A 1999-06-11 1999-06-11 Method for producing TiAl-Ti based alloy sintered joint Expired - Lifetime JP3106196B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11164606A JP3106196B1 (en) 1999-06-11 1999-06-11 Method for producing TiAl-Ti based alloy sintered joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11164606A JP3106196B1 (en) 1999-06-11 1999-06-11 Method for producing TiAl-Ti based alloy sintered joint

Publications (2)

Publication Number Publication Date
JP3106196B1 true JP3106196B1 (en) 2000-11-06
JP2000355706A JP2000355706A (en) 2000-12-26

Family

ID=15796389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11164606A Expired - Lifetime JP3106196B1 (en) 1999-06-11 1999-06-11 Method for producing TiAl-Ti based alloy sintered joint

Country Status (1)

Country Link
JP (1) JP3106196B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414086A (en) * 2017-08-14 2017-12-01 陕西理工大学 A kind of carbide cooperates with Strengthening and Toughening TiAl-base alloy and preparation method thereof with titanium alloy layer
CN109312427A (en) * 2016-09-02 2019-02-05 株式会社Ihi TiAl alloy and its manufacturing method
CN116200622A (en) * 2023-04-27 2023-06-02 西安稀有金属材料研究院有限公司 Preparation method of superfine crystal TiAl alloy and composite material thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312427A (en) * 2016-09-02 2019-02-05 株式会社Ihi TiAl alloy and its manufacturing method
US11078563B2 (en) 2016-09-02 2021-08-03 Ihi Corporation TiAl alloy and method of manufacturing the same
CN107414086A (en) * 2017-08-14 2017-12-01 陕西理工大学 A kind of carbide cooperates with Strengthening and Toughening TiAl-base alloy and preparation method thereof with titanium alloy layer
CN116200622A (en) * 2023-04-27 2023-06-02 西安稀有金属材料研究院有限公司 Preparation method of superfine crystal TiAl alloy and composite material thereof
CN116200622B (en) * 2023-04-27 2023-08-04 西安稀有金属材料研究院有限公司 Preparation method of superfine crystal TiAl alloy and composite material thereof

Also Published As

Publication number Publication date
JP2000355706A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP3103359B2 (en) Method of manufacturing tungsten-titanium sputtering target
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
CN112322933B (en) High-performance near-alpha high-temperature titanium alloy and powder metallurgy preparation method thereof
WO1998024575A1 (en) P/m titanium composite casting
CN111822711B (en) High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof
CN112063869B (en) Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material
TW500807B (en) Creep resistant titanium aluminide alloys
JP2863675B2 (en) Manufacturing method of particle reinforced composite material
US20020085941A1 (en) Processing of aluminides by sintering of intermetallic powders
JP3106196B1 (en) Method for producing TiAl-Ti based alloy sintered joint
JPH093503A (en) Method for reactive sintering of intermetallic material molding
JPH04325648A (en) Production of sintered aluminum alloy
CN112296606B (en) Preparation method of vacuum centrifugal TiAl intermetallic compound plate
JP4326110B2 (en) Method for producing Ti-Al intermetallic compound member
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JP4272777B2 (en) TiAl-based alloy automotive engine valve manufacturing method
JP3343557B2 (en) Pressure sintering method
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
JP3069115B2 (en) Manufacturing method of ceramic dispersion strengthened copper
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2959912B2 (en) Discharge coating composite
JP2004315877A (en) Method of canning precompact for sintering, and method of producing sintered material thereby
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH06100969A (en) Production of ti-al intermetallic compound sintered body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000801

R150 Certificate of patent or registration of utility model

Ref document number: 3106196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term