JP2588889B2 - Forming method of Ti-Al based intermetallic compound member - Google Patents

Forming method of Ti-Al based intermetallic compound member

Info

Publication number
JP2588889B2
JP2588889B2 JP62081998A JP8199887A JP2588889B2 JP 2588889 B2 JP2588889 B2 JP 2588889B2 JP 62081998 A JP62081998 A JP 62081998A JP 8199887 A JP8199887 A JP 8199887A JP 2588889 B2 JP2588889 B2 JP 2588889B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
powder
based intermetallic
forging
alloying reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62081998A
Other languages
Japanese (ja)
Other versions
JPS63247321A (en
Inventor
重徳 山内
和久 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP62081998A priority Critical patent/JP2588889B2/en
Publication of JPS63247321A publication Critical patent/JPS63247321A/en
Application granted granted Critical
Publication of JP2588889B2 publication Critical patent/JP2588889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末治金法によるTi−Al系金属間化合物部
材の成形法に関するもので、特に緻密なTi−Al系金属間
化合物部材の成形法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a Ti—Al-based intermetallic compound member by powder metallurgy, and particularly relates to a method for forming a dense Ti—Al-based intermetallic compound member. It relates to a molding method.

[従来の技術およびその問題点] 従来、Ti−Al系金属間化合物(Ti3Al、TiAl、TiAl
3等)は、優れた高温強度及び耐酸化性を有することが
知られている。しかし、この部材は、常温および高温で
展延性に乏しいので、従来の加工技術では成形すること
が困難であり、実用材料に供することができないという
問題点があった。
[Prior art and its problems] Conventionally, Ti-Al based intermetallic compounds (Ti 3 Al, TiAl, TiAl
3 ) are known to have excellent high-temperature strength and oxidation resistance. However, since this member has poor ductility at normal and high temperatures, it is difficult to form it by conventional processing techniques, and there is a problem that it cannot be used as a practical material.

これを解決する手段として、たとえば、Ti−37%Al合
金部材(以下、%は重量%を示す。)を側圧付加押出法
等の特別な押出加工方法により実現しようとする試みが
なされているが、実用化に至っていない。
As a means for solving this, for example, an attempt has been made to realize a Ti-37% Al alloy member (hereinafter,% indicates weight%) by a special extrusion processing method such as a lateral pressure addition extrusion method. Has not been put to practical use.

また、他の手段として、特願昭60−213386号に記載さ
れているような、粉末治金法によるTi−Al系金属間化合
物部材の成形法が本発明者らにより提案されている。
As another means, the present inventors have proposed a method of forming a Ti-Al-based intermetallic compound member by powder metallurgy as described in Japanese Patent Application No. 60-213386.

本発明は、上記した先の出願発明の改良および検討の
結果なされたもので、より一層成形性の優れたTi−Al系
金属間化合物部材の成形法を提供することを目的とす
る。
The present invention has been made as a result of the improvement and study of the above-mentioned prior application invention, and an object of the present invention is to provide a method for forming a Ti-Al-based intermetallic compound member having more excellent formability.

[問題点を解決するための手段および作用] 上記問題点を解決するためになされた本発明は、A
14〜63重量%、Ti37〜86重量%の割合で、AlおよびTiの
粉末を混合し、該混合物を脱気し、該脱気された混合物
の相対密度を95%以上に圧縮して粉末圧縮体を形成し、
該粉末圧縮体を、TiとAlとが合金化反応を起こしてTi−
Al系金属間化合物を形成する温度に加熱し、該加熱され
た粉末圧縮体を、上記合金化反応中に塑性加工すること
を特徴とするものであり、本発明の主たる工程を、第1
図、さらに、その変形例を第2図に示す。
[Means and Actions for Solving the Problems] The present invention made to solve the above problems has the following features.
Powder of Al and Ti is mixed at a ratio of 14 to 63% by weight and Ti to 37 to 86% by weight, the mixture is degassed, and the relative density of the degassed mixture is compressed to 95% or more to powder compression. Form the body,
The powder compact is subjected to an alloying reaction between Ti and Al to form Ti-
It is characterized by heating to a temperature at which an Al-based intermetallic compound is formed, and subjecting the heated powder compact to plastic working during the alloying reaction.
FIG. 2 and a modification thereof are shown in FIG.

(Ti粉末の製造工程I) 第1図において、Ti粉末は、常法の粉末製造法や、鋳
塊等の切削で製作されたものを用いることができ、その
粒度を1000μm以下に調整したものを用いる。
(Ti Powder Manufacturing Process I) In FIG. 1, Ti powder produced by a conventional powder production method or by cutting an ingot can be used, and the particle size is adjusted to 1000 μm or less. Is used.

この場合、必要に応じて、Tiと、Al,Mo,V,Zr,B,Nb,Y,
Mn,Si、Wなどとの合金粉末を用いてもよい。
In this case, if necessary, Ti and Al, Mo, V, Zr, B, Nb, Y,
An alloy powder with Mn, Si, W, etc. may be used.

(Al粉末の製造工程II) Al粉末は、常法の粉末製造法により作られ、望ましく
は、価格の点からガスアトマイズ法がよい。粒度は1000
μm以下に調整し、必要に応じて、Alと、Ti,Mo,V,Zr,
B,Nb,Y,Mn,Si、Wなどとの合金粉末を用いてもよい。
(Al Powder Manufacturing Step II) The Al powder is produced by a conventional powder manufacturing method, and desirably, the gas atomization method is preferable in terms of cost. Particle size is 1000
μm or less, and if necessary, Al, Ti, Mo, V, Zr,
An alloy powder with B, Nb, Y, Mn, Si, W or the like may be used.

(混合工程III) つぎは、上記Ti粉末とAl粉末とを、A14〜63%、Ti
37〜86%の割合にて混合機で混合する。
(Mixing Step III) Next, the above-mentioned Ti powder and Al powder were mixed with A14 to 63%
Mix with a mixer at a ratio of 37-86%.

上記のような混合割合にするのは、Alが14%より少、
およびTiが86%より多では、所定の金属間化合物となら
ず、耐熱性が不十分であり、一方、Alが63%より多、お
よびTiが37%より少でも、Ti−Al系の金属間化合物とな
らないからである。
The above mixing ratio is for Al less than 14%,
If Ti and Ti are more than 86%, the resulting intermetallic compound is not obtained and the heat resistance is insufficient. On the other hand, even if Al is more than 63% and Ti is less than 37%, Ti-Al based metal This is because they do not become inter-compounds.

(脱気工程IV) つぎに、混合物を容器に収納して真空ポンプ等により
脱気処理を行う。これは、粉末表面の吸着ガス、吸着水
を除去するとともに、後の工程における酸化を防止する
ことにある。この脱気処理は、粉末の酸化を防止するた
めに真空度10Torr以下で行われることが好ましい。ま
た、この脱気処理を常温〜550℃、さらに望ましくは400
〜550℃で行うと、吸着水、吸着ガスの除去がより容易
となり好ましい。550℃を越える場合には、TiとAlとの
合金化反応が生じることがある。
(Deaeration Step IV) Next, the mixture is stored in a container and deaeration is performed by a vacuum pump or the like. This is to remove the adsorbed gas and adsorbed water on the powder surface and to prevent oxidation in the subsequent steps. This deaeration treatment is preferably performed at a degree of vacuum of 10 Torr or less to prevent oxidation of the powder. In addition, this deaeration treatment is carried out at room temperature to 550 ° C, more preferably at 400 ° C.
It is preferable to carry out at a temperature of up to 550 [deg.] C., because the removal of adsorbed water and adsorbed gas becomes easier. If it exceeds 550 ° C., an alloying reaction between Ti and Al may occur.

(緻密化工程V) つぎに、上記脱気された混合物を、押出、ホットプレ
ス、真空ホットプレス、冷間静水圧プレス等を用いて相
対密度を95%以上に圧縮し、粉末圧縮体とする。この緻
密化処理は、続く焼結処理において、焼結時のTiとAlと
の合金化反応をより容易とするために行われる。ここで
相対密度とは、混合物の密度を、完全に緻密化した場合
の密度に対する割合(%)として表したものである。ま
た、この緻密化処理は、TiとAlとの合金化反応を発生さ
せないように550℃以下で行われる。尚、上記粉末圧縮
体は緻密化しているが、Ti−Al系金属間化合物は形成さ
れていない。
(Densification Step V) Next, the above degassed mixture is compressed to a powder density of 95% or more by extrusion, hot pressing, vacuum hot pressing, cold isostatic pressing or the like to obtain a powder compact. . This densification treatment is performed in the subsequent sintering treatment to make the alloying reaction between Ti and Al easier during sintering. Here, the relative density indicates the density of the mixture as a ratio (%) to the density when the mixture is completely densified. This densification treatment is performed at 550 ° C. or lower so as not to cause an alloying reaction between Ti and Al. The powder compact was densified, but no Ti-Al-based intermetallic compound was formed.

(焼結塑性加工工程VI) つぎに、上記粉末圧縮体あるいはその一部を550〜650
℃に加熱して、TiとAlとの合金化反応を生じさせる。こ
の合金化反応は発熱反応なので、合金化反応が生じた粉
末圧縮体は特に加熱しなくても1000℃以上となる。そし
て、この熱を利用して熱間鍛造等の塑性加工を行う。
(Sintering plastic processing step VI) Next, the above-mentioned powder compact or a part thereof is 550-650.
C. to cause an alloying reaction between Ti and Al. Since this alloying reaction is an exothermic reaction, the powder compact having undergone the alloying reaction has a temperature of 1000 ° C. or more without particularly heating. Then, plastic working such as hot forging is performed using this heat.

この焼結塑性加工工程は、例えば上記粉末圧縮体を炉
中で加熱した後に鍛造したり、予め加熱した金型に上記
粉末圧縮体を入れて鍛造したり、あるいは、金型に入れ
た上記粉末圧縮体をアーク放電等によって加熱した後に
鍛造することにより行われる。
This sintering plastic working step is, for example, forging after heating the powder compact in a furnace, or forging by placing the powder compact in a preheated mold, or the powder placed in a mold. The forging is performed by heating the compressed body by arc discharge or the like and then forging.

上記焼結塑性加工工程により、Ti中にAlが拡散しTi−
Al系金属間化合物を形成する。このとき、カーケンダー
ル効果、つまり、Alの拡散により多数の空孔が発生し空
洞となるが、これらの空洞は塑性加工によってつぶされ
る。
By the above sintering plastic working process, Al diffuses into Ti and Ti-
Form Al-based intermetallic compounds. At this time, the Kirkendall effect, that is, a number of vacancies are generated due to the diffusion of Al to form cavities, and these cavities are crushed by plastic working.

上記したIからVIの処理工程により、Ti3Al、TiAl及
びTiAl3等の金属間化合物が形成される。
Through the processing steps I to VI described above, intermetallic compounds such as Ti 3 Al, TiAl and TiAl 3 are formed.

本発明の主たる工程は以上であるが、必要に応じて、
第2図に示す処理を加えてもよい。
Although the main steps of the present invention are as described above, if necessary,
The processing shown in FIG. 2 may be added.

(他の金属、合金の粉末製造工程VII) Ti−Al系金属間化合物部材に必要な添加元素、たとえ
ば、延性改良に効果のある、Mo,V,Zr,B,Nbなどを単体ま
たは合金粉末としてTi粉末及びAl粉末と同時に混合す
る。このとき、各元素の添加量は、最終金属間化合物の
組成でMo1〜5%、V1〜5%、Zr1〜5%、B0.005〜3
%、Nb1〜30%であり、いずれの元素においても下限値
以下では延性改良の効果がみられず、上限値以上では、
延性改良の効果がほぼ飽和し、強度特性も低下する。ま
た、上記元素の他にY0.1〜5%を加えると上記カーケン
ダール効果による空孔の発生を抑制し、Mn0.1〜5%を
加えると上記カーケンダール効果による空孔の発生を抑
制すると共に延性を改良し、Si0.05〜5%、W0.1〜10%
を加えると耐酸化性が向上する。
(Process for producing powders of other metals and alloys VII) Additive elements necessary for Ti-Al intermetallic compound members, for example, Mo, V, Zr, B, Nb, etc., which are effective for improving ductility, are used alone or in alloy powder. And simultaneously mixed with the Ti powder and the Al powder. At this time, the addition amount of each element is Mo 1 to 5%, V 1 to 5%, Zr 1 to 5%, and B 0.005 to 3 in the composition of the final intermetallic compound.
%, Nb1 to 30%, the effect of improving ductility is not seen below the lower limit of any element, and above the upper limit,
The effect of ductility improvement is almost saturated, and the strength characteristics are also reduced. In addition, when 0.1 to 5% of Y is added in addition to the above elements, generation of vacancies due to the Kirkendall effect is suppressed, and when 0.1 to 5% of Mn is added, generation of vacancies due to the Kirkendall effect is suppressed and ductility is suppressed. Improved, Si 0.05-5%, W 0.1-10%
When added, the oxidation resistance is improved.

(圧縮工程VIII) 混合工程III後の混合体を冷間静水圧プレスや一軸プ
レスを行い、相対密度を60%〜95%にする。このとき、
相対密度が60%以下では、圧縮後に圧縮体としての形状
が保てなく、また、95%以上では、脱気処理の実効を得
られない。
(Compression Step VIII) The mixture after the mixing step III is subjected to cold isostatic pressing or uniaxial pressing to make the relative density 60% to 95%. At this time,
If the relative density is less than 60%, the shape as a compressed body cannot be maintained after compression, and if it is more than 95%, the deaeration cannot be effectively performed.

(真空封入工程IX) 脱気処理IV後の圧縮体を缶などの容器に真空状態で封
入する。
(Vacuum sealing step IX) The compressed body after the degassing treatment IV is sealed in a container such as a can in a vacuum state.

(鍛造素加工工程X) 緻密化工程Vを経た圧縮体を所望の部品形状又はそれ
に近い形状に、冷間または熱間塑性加工、あるいは、機
械加工にて成形する。この段階では、未だTi−Al系金属
間化合物を形成していないために、容易に加工が行える
のである。
(Forging Element Processing Step X) The compressed body that has passed through the densification step V is formed into a desired part shape or a shape close thereto by cold or hot plastic working or mechanical processing. At this stage, since the Ti-Al-based intermetallic compound has not been formed yet, it can be easily processed.

この処理は、脱気工程後に、所望により、粉末鍛造等
でNear Net Shapeにしてもよい。また、この処理はTiと
Alとの合金化反応が生じないように550℃以下で行う。
In this process, after the deaeration step, if necessary, a Near Net Shape may be formed by powder forging or the like. Also, this process is
This is performed at 550 ° C. or lower so that no alloying reaction with Al occurs.

(熱処理工程XI) 焼結塑性加工工程VI後に、得られたTi−Al系金属間化
合物部材中に存在する合金元素の濃度分布をより均一に
すること、相対密度をより向上させること、あるいはTi
−Al系金属間化合物部材の疲労特性等の機械的性質を悪
化させる該部材中のCl、MgあるいはNaの濃度を減少させ
ることを目的として、上記金属間化合物を800℃〜Ti−A
l合金の固相線温度に加熱する。この加熱時に周囲雰囲
気の圧力を調整してもよい。例えば、雰囲気圧力を10
-10〜0.5TorrとするとCl、Mg、Naの減少に有効であり、
200〜5000atmとすると金属間化合物の相対密度を97%以
上とするのに有効である。
(Heat Treatment Step XI) After the sintering plastic working step VI, to make the concentration distribution of alloying elements present in the obtained Ti-Al-based intermetallic compound member more uniform, to further improve the relative density,
For the purpose of reducing the concentration of Cl, Mg or Na in the member which deteriorates mechanical properties such as fatigue characteristics of the Al-based intermetallic compound member, the intermetallic compound is heated at 800 ° C. to Ti-A
Heat to the solidus temperature of the alloy. During this heating, the pressure of the surrounding atmosphere may be adjusted. For example, if the atmospheric pressure is 10
-10 to 0.5 Torr is effective for decreasing Cl, Mg and Na,
It is effective to set the relative density of the intermetallic compound to 97% or more when it is 200 to 5000 atm.

(仕上成形工程XII) 高温、高圧処理工程後に、機械加工等により最終製品
の形状に仕上げる。
(Finishing process XII) After the high-temperature and high-pressure treatment process, finish the shape of the final product by machining.

[発明の効果] 以上説明したように、本発明では、TiとAlとが合金化
反応を起こしてTi−Al系金属間化合物を形成する温度に
粉末圧縮体を加熱し、その合金化反応中に塑性加工して
いる。このため、上記合金化反応の反応熱を利用して熱
間鍛造等の塑性加工を容易に施すことができると共に、
上記合金化反応中にカーケンダール効果により発生する
空洞を上記塑性加工によってつぶすことができる。従っ
て、緻密で優れた高温強度を有するTi−Al系金属間化合
物部材が得られると共に、そのTi−Al系金属間化合物部
材を所望の形状に容易に塑性加工することができる。
[Effects of the Invention] As described above, in the present invention, the powder compact is heated to a temperature at which Ti and Al cause an alloying reaction to form a Ti-Al-based intermetallic compound. Plastic working. Therefore, plastic working such as hot forging can be easily performed using the reaction heat of the alloying reaction,
The cavity generated by the Kirkendall effect during the alloying reaction can be crushed by the plastic working. Therefore, a Ti-Al-based intermetallic compound member having a high density and excellent high-temperature strength can be obtained, and the Ti-Al-based intermetallic compound member can be easily plastically worked into a desired shape.

[実施例] 以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

実施例1 まず、48メッシュ以下のスポンジTiと、48メッシュ以
下のガスアトマイズ法によるAl粉末とを製造し、これら
の粉末を重量分率で64:36の割合で、V型混合機によっ
て混合した。この粉末を冷間静水圧プレスにて圧縮成形
し、その相対密度を68%にした。
Example 1 First, sponge Ti of 48 mesh or less and Al powder of 48 mesh or less by a gas atomizing method were manufactured, and these powders were mixed at a weight fraction of 64:36 by a V-type mixer. This powder was compression-molded with a cold isostatic press to make the relative density 68%.

つぎに、第3図に示すように、圧縮成形体10をアルミ
ニウム製の缶11に装入し、缶端部11aに脱気用パイプ12
を溶接した。この後、パイプ12に真空ポンプ(図示省
略)を接続して、455℃で1時間加熱した状態で、10-1T
orr以下の真空度まで脱気処理を行った。
Next, as shown in FIG. 3, the compression-molded body 10 was charged into an aluminum can 11, and a degassing pipe 12 was attached to the can end 11a.
Was welded. Thereafter, a vacuum pump (not shown) is connected to the pipe 12 and heated at 455 ° C. for 1 hour, and the pressure is reduced to 10 −1 T
Degassing was performed to a degree of vacuum of orr or less.

つぎに、上記脱気用パイプ12を圧着することにより圧
縮成形体10を缶11内に真空封入した。この封入後の圧縮
成形体11を押出温度450℃、押出比12、押出速度2m/分で
押出加工を行い、直径44mmの押出棒を得た。この押出棒
は、Ti相とAl相とが混合状態にあり、Ti−Al系金属間化
合物相が殆どみあたらず、また、組織中に空洞は観察さ
れなかった。
Next, the compression molded body 10 was vacuum-sealed in the can 11 by pressing the degassing pipe 12. The compression-molded body 11 after the sealing was extruded at an extrusion temperature of 450 ° C., an extrusion ratio of 12, and an extrusion speed of 2 m / min to obtain an extruded rod having a diameter of 44 mm. In this extruded rod, the Ti phase and the Al phase were in a mixed state, the Ti-Al-based intermetallic compound phase was hardly found, and no cavities were observed in the structure.

つぎに、押出棒の外周部を被覆しているアルミニウム
部材を切削除去し、直径38mmφ×長さ50mmの棒状部材と
した。
Next, the aluminum member covering the outer peripheral portion of the extruded rod was cut and removed to obtain a rod-shaped member having a diameter of 38 mmφ and a length of 50 mm.

つぎに、棒状部材を以下の(A)、(B)、(C)の
何れかの方法で焼結鍛造を行った。さらに一部の試料に
ついては、第1表に示す条件で熱処理した。
Next, the bar-shaped member was sintered and forged by any of the following methods (A), (B), and (C). Further, some of the samples were heat-treated under the conditions shown in Table 1.

このようにして得られた焼結部材について判定し、そ
の結果を第1表にあわせて示す。第1表中で○が付いて
いるものは、カーケンダール効果による空孔がなく相対
密度が95%以上のものである。×が付いているものは空
孔が観察され相対密度が95%未満のものであり、Ti−Al
系金属間化合物部材として不適当なものである。尚、第
1表には、上記棒状部材を焼結鍛造せずに熱処理だけを
行ったものを比較例として記した。この比較例は表中に
は焼結鍛造無しと記した。尚、第1表には参考のためX
線回折による結果もあわせて記した。
Judgments were made on the sintered members obtained in this manner, and the results are shown in Table 1. In Table 1, the circles indicate that there are no voids due to the Kirkendall effect and the relative density is 95% or more. In the case of X, pores were observed and the relative density was less than 95%, and Ti-Al
It is unsuitable as a system intermetallic compound member. Table 1 shows comparative examples in which the rod-shaped members were subjected to only heat treatment without sintering and forging. This comparative example described in the table that there was no sintering forging. Table 1 shows X for reference.
The results obtained by line diffraction are also shown.

焼結鍛造方法:第4図ないし第6図に示すように、プ
レスにセットされた上型20と下型21とによって上記棒状
部材22を鍛造しTi−Al系金属間化合物部材25とする。
Sintering and forging method: As shown in FIGS. 4 to 6, the bar-shaped member 22 is forged by an upper die 20 and a lower die 21 set in a press to form a Ti-Al-based intermetallic compound member 25.

(A)先ず、棒状部材22を発熱体30を有する加熱炉31で
650℃に加熱する(第4図(a))。次いで、加熱され
た棒状部材22を下型21に入れ、鍛造する(第4図
(b))。棒状部材22は加熱炉31の加熱で、TiとAlとの
合金化反応が開始され、この合金化反応中に鍛造され、
Ti−Al系金属間化合物部材25となる。
(A) First, the rod-shaped member 22 is heated in a heating furnace 31 having a heating element 30.
Heat to 650 ° C. (FIG. 4 (a)). Next, the heated bar-shaped member 22 is placed in the lower mold 21 and forged (FIG. 4 (b)). With the heating of the heating furnace 31, the rod-shaped member 22 starts an alloying reaction between Ti and Al, and is forged during this alloying reaction,
The Ti-Al based intermetallic compound member 25 is obtained.

(B)棒状部材22を予め700℃に加熱された下型21にセ
ットし鍛造する(第5図)。上記棒状部材22は、下型21
の予熱で、TiとAlとの合金化反応が開始され、この合金
反応中に鍛造されTi−Al系金属間化合物部材25となる。
(B) The bar-shaped member 22 is set in the lower mold 21 preheated to 700 ° C. and forged (FIG. 5). The rod-shaped member 22 includes a lower mold 21.
The alloying reaction between Ti and Al is started by the preheating of, and forged during this alloying reaction, a Ti-Al-based intermetallic compound member 25 is formed.

(C)棒状部材22を下型21にセットし、一対の電極40a,
40bのアーク放電により加熱する(第6図)。この加熱
で、TiとAlとの合金化反応が開始されると、一対の電極
40a,40bをはずし、この合金反応中に鍛造し、上記棒状
部材22はTi−Al系金属間化合物部材25となる。
(C) The rod-shaped member 22 is set on the lower mold 21, and a pair of electrodes 40a,
Heat by arc discharge of 40b (FIG. 6). When this heating initiates the alloying reaction between Ti and Al, a pair of electrodes
The bars 40a and 40b are removed and forged during this alloy reaction, so that the rod-shaped member 22 becomes a Ti-Al-based intermetallic compound member 25.

第1表より、本実施例の如く、焼結鍛造により得られ
たTi−Al系金属間化合物部材は、カーケンダール効果に
よる空孔の発生が抑制され、緻密となることが確認され
た。
From Table 1, it was confirmed that the Ti—Al-based intermetallic compound member obtained by the sintering forging was suppressed in generation of pores due to the Kirkendall effect and became dense as in the present example.

実施例2 48メッシュ以下のスポンジTiと、48メッシュ以下のガ
スアトマイズ法による第2表に示した組成のAl合金粉末
とを製造し、これらの粉末を重量分率で64:36の割合
で、V型混合機によって混合した。この粉末を実施例1
と同じ工程で焼結鍛造((A)ないし(C)まで実施
し、続いて、得られた焼結部材をArガス雰囲気中におい
て1000℃、1000atmで1時間の熱処理(HIP処理)行った
後に、実施例1と同様にして判定した結果を第2表に示
した。尚、表中における焼結鍛造方法及び結果の項に用
いられる印は実施例1と同じ意味である。また、比較例
として焼結鍛造を行わずに熱処理のみを行ったものを第
2表中に焼結鍛造無しとして記した。
Example 2 A sponge Ti of 48 mesh or less and an Al alloy powder having a composition shown in Table 2 by a gas atomizing method of 48 mesh or less were produced, and these powders were mixed at a weight ratio of 64:36 to V: The mixture was mixed by a mold mixer. This powder was prepared in Example 1
After performing the sintering forging ((A) to (C)) in the same process as above, and then subjecting the obtained sintered member to heat treatment (HIP treatment) at 1000 ° C. and 1000 atm for 1 hour in an Ar gas atmosphere, The results determined in the same manner as in Example 1 are shown in Table 2. The symbols used in the sections of the sintering forging method and the results in the table have the same meanings as in Example 1. Also, Comparative Examples Table 2 shows the result of only heat treatment without sintering forging in Table 2 as "no sintering forging".

第2表より、本実施例の如く、原料としてTi粉末とAl
合金粉末とを用い焼結鍛造により得られたTi−Al系金属
間化合物部材も、上記実施例1と同じくカーケンダール
効果による空孔の発生が抑制され、緻密となることが確
認された。
From Table 2, it can be seen that Ti powder and Al
It was confirmed that the Ti—Al-based intermetallic compound member obtained by sintering and forging using the alloy powder was suppressed in generation of pores due to the Kirkendall effect and dense as in Example 1.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の成形法を示す工程図、第2図は第1図
の変形例を示す工程図、第3図は本発明の実施例による
脱気工程を説明する説明図、第4図ないし第6図は焼結
鍛造工程を説明する説明図である。
FIG. 1 is a process diagram showing a molding method of the present invention, FIG. 2 is a process diagram showing a modification of FIG. 1, FIG. 3 is an explanatory diagram for explaining a deaeration process according to an embodiment of the present invention, FIG. FIG. 6 to FIG. 6 are explanatory views for explaining the sintering forging process.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A14〜63重量%、Ti37〜86重量%の割合
で、AlおよびTiの粉末を混合し、 該混合物を脱気し、 該脱気された混合物の相対密度を95%以上に圧縮して粉
末圧縮体を形成し、該粉末圧縮体を、TiとAlとが合金化
反応を起こしてTi−Al系金属間化合物を形成する温度に
加熱し、 該加熱された粉末圧縮体を、上記合金化反応中に塑性加
工することを特徴とするTi−Al系金属間化合物部材の成
形法。
1. A mixture of Al and Ti powders in a ratio of 14 to 63% by weight of A and 37 to 86% by weight of Ti, degassing the mixture, and increasing the relative density of the degassed mixture to 95% or more. Compressing to form a powder compact, heating the powder compact to a temperature at which Ti and Al cause an alloying reaction to form a Ti-Al-based intermetallic compound, Forming a Ti-Al-based intermetallic compound member by plastic working during the alloying reaction.
JP62081998A 1987-04-02 1987-04-02 Forming method of Ti-Al based intermetallic compound member Expired - Lifetime JP2588889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62081998A JP2588889B2 (en) 1987-04-02 1987-04-02 Forming method of Ti-Al based intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62081998A JP2588889B2 (en) 1987-04-02 1987-04-02 Forming method of Ti-Al based intermetallic compound member

Publications (2)

Publication Number Publication Date
JPS63247321A JPS63247321A (en) 1988-10-14
JP2588889B2 true JP2588889B2 (en) 1997-03-12

Family

ID=13762141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62081998A Expired - Lifetime JP2588889B2 (en) 1987-04-02 1987-04-02 Forming method of Ti-Al based intermetallic compound member

Country Status (1)

Country Link
JP (1) JP2588889B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL83656A (en) * 1982-09-27 1991-01-31 United Technologies Corp Titanium aluminum alloys containing niobium,vanadium and molybdenum
JP2569710B2 (en) * 1988-04-04 1997-01-08 三菱マテリアル株式会社 Ti-A1 intermetallic compound type cast alloy having room temperature toughness
JP2605152B2 (en) * 1989-12-14 1997-04-30 日本発条株式会社 Method for producing elastic member mainly composed of intermetallic compound
JPH0543958A (en) * 1991-01-17 1993-02-23 Sumitomo Light Metal Ind Ltd Production of oxidation resistant titanium aluminide
DE102011007898B4 (en) 2011-04-21 2016-07-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Process for the production of semi-finished products based on intermetallic compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270531A (en) * 1985-09-24 1987-04-01 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member

Also Published As

Publication number Publication date
JPS63247321A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
JPH0130898B2 (en)
US20020085941A1 (en) Processing of aluminides by sintering of intermetallic powders
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JPH0225961B2 (en)
JP2737498B2 (en) Titanium alloy for high density powder sintering
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JP2551285B2 (en) Titanium alloy for high density powder sintering
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPH0791603B2 (en) Method for forming Ti-Al intermetallic compound member
JPH0428833A (en) Method for compacting fe-al series intermetallic compound member
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP2803455B2 (en) Manufacturing method of high density powder sintered titanium alloy
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0368724A (en) Manufacture of aluminide-base composite material
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH0791602B2 (en) Method for manufacturing aluminum sintered material