JP2588890B2 - Forming method of Ti-Al based intermetallic compound member - Google Patents

Forming method of Ti-Al based intermetallic compound member

Info

Publication number
JP2588890B2
JP2588890B2 JP62083456A JP8345687A JP2588890B2 JP 2588890 B2 JP2588890 B2 JP 2588890B2 JP 62083456 A JP62083456 A JP 62083456A JP 8345687 A JP8345687 A JP 8345687A JP 2588890 B2 JP2588890 B2 JP 2588890B2
Authority
JP
Japan
Prior art keywords
powder
intermetallic compound
based intermetallic
extrusion
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62083456A
Other languages
Japanese (ja)
Other versions
JPS63247322A (en
Inventor
和久 渋江
重徳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP62083456A priority Critical patent/JP2588890B2/en
Publication of JPS63247322A publication Critical patent/JPS63247322A/en
Application granted granted Critical
Publication of JP2588890B2 publication Critical patent/JP2588890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末治金法によるTi−Al系金属間化合物部
材の成形法に関するもので、特に緻密なTi−Al系金属間
化合物部材の成形法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a Ti—Al-based intermetallic compound member by powder metallurgy, and particularly relates to a method for forming a dense Ti—Al-based intermetallic compound member. It relates to a molding method.

[従来の技術およびその問題点] 従来、Ti−Al系金属間化合物(Ti3Al、TiAl、TiAl
3等)は、優れた高温強度及び耐酸化性を有することが
知られている。しかし、この部材は、常温および高温で
展延性に乏しいので、従来の加工技術では成形すること
が困難であり、実用材料に供することができないという
問題点があった。
[Prior art and its problems] Conventionally, Ti-Al based intermetallic compounds (Ti 3 Al, TiAl, TiAl
3 ) are known to have excellent high-temperature strength and oxidation resistance. However, since this member has poor ductility at normal and high temperatures, it is difficult to form it by conventional processing techniques, and there is a problem that it cannot be used as a practical material.

これを解決する手段として、たとえば、Ti−37%Al合
金部材(以下、%は重量%を示す。)を側圧付加押出法
等の特別な押出加工方法により実現しようとする試みが
なされているが、実用化に至っていない。
As a means for solving this, for example, an attempt has been made to realize a Ti-37% Al alloy member (hereinafter,% indicates weight%) by a special extrusion processing method such as a lateral pressure addition extrusion method. Has not been put to practical use.

また、他の手段として、特願昭60−213386号に記載さ
れているような、粉末治金法によるTi−Al系金属間化合
物部材の成形法が本発明者らにより提案されている。
As another means, the present inventors have proposed a method of forming a Ti-Al-based intermetallic compound member by powder metallurgy as described in Japanese Patent Application No. 60-213386.

本発明は、上記した先の出願発明の改良および検討の
結果なされたもので、より一層成形性の優れたTi−Al系
金属間化合物部材の成形法を提供することを目的とす
る。
The present invention has been made as a result of the improvement and study of the above-mentioned prior application invention, and an object of the present invention is to provide a method for forming a Ti-Al-based intermetallic compound member having more excellent formability.

[問題点を解決するための手段および作用] 上記問題点を解決するためになされた本発明は、Al 1
4〜63重量%、Ti 37〜86重量%の割合で、AlおよびTiの
粉末を混合し、該混合物を脱気し、該脱気された混合物
の相対密度を押出加工により95%以上に圧縮して粉末圧
縮体を形成し、該粉末圧縮体を、200気圧以上の圧力条
件、および、Ti−Al系金属間化合物を形成する温度条件
において、カプセルに封入することなく熱間静水圧プレ
ス処理するTi−Al系金属間化合物部材の成形法であっ
て、上記押出加工における加工前の混合物と加工後の粉
末圧縮体との断面積比Rが、上記混合物の粉末粒度d
(μm)との間に下記式1の関係を有することを特徴と
するものである。
[Means and Actions for Solving the Problems] The present invention made to solve the above problems is based on Al 1
Al and Ti powders are mixed at a ratio of 4 to 63% by weight and 37 to 86% by weight of Ti, the mixture is degassed, and the relative density of the degassed mixture is compressed to 95% or more by extrusion. To form a powder compact, and the powder compact is subjected to hot isostatic pressing without encapsulation under a pressure condition of 200 atm or more and a temperature condition of forming a Ti-Al-based intermetallic compound. A cross-sectional area ratio R between the mixture before processing and the compacted powder after processing in the above-mentioned extrusion, wherein the powder particle size d of the mixture is
(Μm) and the following equation (1).

R≧(d/44)2 …(1) なお、本発明の主たる工程を、第1図、さらに、その
変形例を第2図に示す。
R ≧ (d / 44) 2 (1) The main steps of the present invention are shown in FIG. 1, and a modification thereof is shown in FIG.

(Ti粉末の製造工程I) 第1図において、Ti粉末は、常法の粉末製造法や、鋳
塊等の切削で製作されたものを用いることができ、その
粒度を1000μm以下に調整したものを用いる。尚、ここ
で粒度とは、その大きさ以下の粒子の割合が80重量%以
上となる大きさのことである。例えば、粒径が105μm
以下の粒子が全体の80重量%以上である粉末の粒度は10
5μmとなる。
(Ti Powder Manufacturing Process I) In FIG. 1, Ti powder produced by a conventional powder production method or by cutting an ingot can be used, and the particle size is adjusted to 1000 μm or less. Is used. Here, the particle size means a size at which the ratio of particles having a size smaller than the size is 80% by weight or more. For example, the particle size is 105 μm
The particle size of the powder in which the following particles are 80% by weight or more of the whole is 10
5 μm.

この場合、必要に応じて、Tiと、Al,Mo,V,Zr,B,Nb,Y,
Mn,Si,Wなどとの合金粉末を用いてもよい。
In this case, if necessary, Ti and Al, Mo, V, Zr, B, Nb, Y,
An alloy powder with Mn, Si, W or the like may be used.

(Al粉末の製造工程II) Al粉末は、常法の粉末製造法により作られ、望ましく
は、価格の点からガスアトマイズ法がよい。粒度は1000
μm以下に調整し、必要に応じて、Alと、Ti,Mo,V,Zr,
B,Nb,Y,Mn,Si、Wなどとの合金粉末を用いてもよい。
(Al Powder Manufacturing Step II) The Al powder is produced by a conventional powder manufacturing method, and desirably, the gas atomization method is preferable in terms of cost. Particle size is 1000
μm or less, and if necessary, Al, Ti, Mo, V, Zr,
An alloy powder with B, Nb, Y, Mn, Si, W or the like may be used.

(混合工程III) つぎは、上記Ti粉末とAl粉末とを、Al 14〜63%、Ti
37〜86%の割合にて混合機で混合する。
(Mixing Step III) Next, the above Ti powder and Al powder were mixed with 14 to 63% of Al
Mix with a mixer at a ratio of 37-86%.

上記のような混合割合にするのは、Alが14%より少、
およびTiが86%より多では、所定の金属間化合物となら
ず、耐熱性が不十分であり、一方、Alが63%より多、お
よびTiが37%より少でも、Ti−Al系の金属間化合物とな
らないからである。
The above mixing ratio is for Al less than 14%,
If Ti and Ti are more than 86%, the resulting intermetallic compound is not obtained and the heat resistance is insufficient. On the other hand, even if Al is more than 63% and Ti is less than 37%, Ti-Al based metal This is because they do not become inter-compounds.

(脱気工程IV) つぎに、混合物を容器に収納して真空ポンプ等により
脱気処理を行う。これは、粉末表面の吸着ガス、吸着水
を除去するとともに、後の工程における酸化を防止する
ことにある。この脱気処理は、粉末の酸化を防止するた
めに真空度10Torr以下で行われることが好ましい。ま
た、この脱気処理を常温〜550℃、さらに望ましくは400
〜550℃で行うと、吸着水、吸着ガスの除去がより容易
となり好ましい。550℃を越える場合には、TiとAlとの
合金化反応が生じることがあり、好ましくない。
(Deaeration Step IV) Next, the mixture is stored in a container and deaeration is performed by a vacuum pump or the like. This is to remove the adsorbed gas and adsorbed water on the powder surface and to prevent oxidation in the subsequent steps. This deaeration treatment is preferably performed at a degree of vacuum of 10 Torr or less to prevent oxidation of the powder. In addition, this deaeration treatment is carried out at room temperature to 550 ° C, more preferably at 400 ° C.
It is preferable to carry out at a temperature of up to 550 [deg.] C., because the removal of adsorbed water and adsorbed gas becomes easier. If the temperature exceeds 550 ° C., an alloying reaction between Ti and Al may occur, which is not preferable.

(押出工程V) つぎに、上記脱気された混合物を、押出により相対密
度を95%以上に圧縮し、粉末圧縮体とする。ここで相対
密度とは、混合物の密度を、完全に緻密化した場合の密
度に対する割合(%)として、表したものである。
(Extrusion Step V) Next, the degassed mixture is compressed to a relative density of 95% or more by extrusion to obtain a powder compact. Here, the relative density indicates the density of the mixture as a ratio (%) to the density when the mixture is completely densified.

この押出工程は、上記混合物をコンテナ中にいれダイ
スあるいはポンチを移動させることによって、ダイスに
設けられた押出孔より所望の断面形状となった粉末圧縮
体を押出すものである。
In this extrusion step, a powder compact having a desired cross-sectional shape is extruded from an extrusion hole provided in the die by placing the mixture in a container and moving a die or a punch.

この押出工程における押出比R(加工前の混合物の断
面積と、加工後の粉末圧縮体の断面積、即ち上記押出孔
の開口面積との比R)は、上記混合物の粉末粒度d(μ
m)との間に下記式1の関係を有するよう設定する。
The extrusion ratio R (the ratio R between the cross-sectional area of the mixture before processing and the cross-sectional area of the powder compact after processing, that is, the opening area of the extrusion hole) in this extrusion step is the powder particle size d (μ) of the mixture.
m) is set to have the relationship of the following equation 1.

R≧(d/44)2 …(1) 押出比Rがこの範囲外であると、続く高温高圧工程で
カプセルに封入することなく、十分緻密なTi−Al系金属
間化合物部材とすることができない。この押出による緻
密化処理は、続く高温高圧工程において、合金化反応を
より容易とするために行われる。この押出工程は、Tiと
Alとの合金化反応を発生させないように550℃以下で行
われる。そのため、上記粉末圧縮体は緻密化している
が、Ti−Al系金属間化合物は形成されていない。
R ≧ (d / 44) 2 (1) If the extrusion ratio R is out of this range, a sufficiently dense Ti—Al-based intermetallic compound member can be obtained without being encapsulated in the subsequent high-temperature and high-pressure step. Can not. The densification treatment by the extrusion is performed in the subsequent high-temperature and high-pressure step to make the alloying reaction easier. This extrusion process involves
It is performed at 550 ° C. or less so as not to cause an alloying reaction with Al. Therefore, the powder compact is densified, but no Ti-Al-based intermetallic compound is formed.

(高温高圧工程VI) 粉末圧縮体をHIP処理する。(High-temperature high-pressure step VI) The powder compact is HIPed.

HIP処理圧力は、少なくとも、200atm以上に、望まし
くは500〜7000atmに設定する。
The HIP processing pressure is set to at least 200 atm or more, preferably 500 to 7000 atm.

HIP処理温度は、550℃〜Ti−Al系金属間化合物の固相
線温度で、望ましくは1000〜1400℃で行う。これは、55
0℃未満であると、TiとAlの合金化反応が進行せず、一
方、Ti−Al系金属間化合物の固相線温度より高いと、材
料が一部溶解し、部材としての形状が保てないからであ
る。
The HIP treatment temperature is from 550 ° C to the solidus temperature of the Ti-Al-based intermetallic compound, preferably from 1000 to 1400 ° C. This is 55
If the temperature is lower than 0 ° C, the alloying reaction between Ti and Al does not proceed, while if the temperature is higher than the solidus temperature of the Ti-Al-based intermetallic compound, the material partially dissolves and the shape as a member is maintained. Because it is not.

上記HIP処理により、Ti中にAlを拡散させることによ
りTi−Al系金属間化合物を形成する。なお、このHIP処
理は上記粉末圧縮体をカプセルに封入することなく行わ
れる。このとき、カーケンダール効果、即ち、Alの拡散
により多数の空孔が発生し、空洞となるが、これらの空
洞はHIP処理で用いられる高圧によりつぶされる。
By the HIP treatment, Al is diffused into Ti to form a Ti-Al intermetallic compound. This HIP treatment is performed without encapsulating the powder compact in a capsule. At this time, a number of vacancies are generated due to the Kirkendall effect, that is, diffusion of Al, and the cavities are formed. These cavities are crushed by the high pressure used in the HIP process.

上記したIからVIの処理工程により、Ti3Al、TiAl及
びTiAl3等の金属間化合物が形成される。
Through the processing steps I to VI described above, intermetallic compounds such as Ti 3 Al, TiAl and TiAl 3 are formed.

前述のように、本発明は、原料粉末の粒度dと押出工
程における押出比Rを一定の関係としているために、上
記粉末圧縮体は、カプセルに封入せずにHIP処理を行う
ことができる。そして、得られたTi−Al系金属間化合物
部材はカーケンダール効果による空孔の発生が抑制され
緻密となっている。
As described above, in the present invention, since the particle size d of the raw material powder and the extrusion ratio R in the extrusion step have a fixed relationship, the powder compact can be subjected to the HIP treatment without being encapsulated. The resulting Ti-Al-based intermetallic compound member is dense with suppressed generation of vacancies due to the Kirkendall effect.

本発明の主たる工程は以上であるが、必要に応じて、
第2図に示す処理を加えてもよい。
Although the main steps of the present invention are as described above, if necessary,
The processing shown in FIG. 2 may be added.

(他の金属、合金の粉末製造工程VII) Ti−Al系金属間化合物部材に必要な添加元素、たとえ
ば、延性改良に効果のある、Mo,V,Zr,B,Nbなどを単体ま
たは合金粉末としてTi粉末およびAl粉末と同時に混合す
る。このとき、各元素の添加量は、最終金属間化合物の
組成でMo1〜5%、V1〜5%、Zr1〜5%、B0.005〜3
%、Nb1〜30%であり、いずれの元素においても下限値
以下では延性改良の効果がみられず、上限値以上では、
延性改良の効果がほぼ飽和し、強度特性も低下する。ま
た、上記元素の他にY0.1〜5%を加えると上記カーケン
ダール効果による空孔の発生を抑制し、Mn0.1〜5%を
加えると上記カーケンダール効果による空孔の発生を抑
制すると共に延性を改良し、Si0.05〜5%、W1.0〜10%
を加えると耐酸化性が向上する。
(Process VII for producing powders of other metals and alloys) Additives necessary for Ti-Al intermetallic compound members, for example, Mo, V, Zr, B, Nb, etc., which are effective for improving ductility, are used alone or in alloy powder. And simultaneously with the Ti powder and the Al powder. At this time, the addition amount of each element is Mo 1 to 5%, V 1 to 5%, Zr 1 to 5%, and B 0.005 to 3 in the composition of the final intermetallic compound.
%, Nb1 to 30%, the effect of improving ductility is not seen below the lower limit of any element, and above the upper limit,
The effect of ductility improvement is almost saturated, and the strength characteristics are also reduced. In addition, when 0.1 to 5% of Y is added in addition to the above elements, generation of vacancies due to the Kirkendall effect is suppressed, and when 0.1 to 5% of Mn is added, generation of vacancies due to the Kirkendall effect is suppressed and ductility is suppressed. Improved, Si 0.05-5%, W 1.0-10%
When added, the oxidation resistance is improved.

(圧縮工程VIII) 混合工程III後の混合体を冷間静水圧プレスや一軸プ
レスを行い、相対密度を60%〜95%にする。このとき、
相対密度が60%以下では、圧縮後に圧縮体としての形状
が保てなく、また、95%以上では、脱気処理の実効を得
られない。
(Compression Step VIII) The mixture after the mixing step III is subjected to cold isostatic pressing or uniaxial pressing to make the relative density 60% to 95%. At this time,
If the relative density is less than 60%, the shape as a compressed body cannot be maintained after compression, and if it is more than 95%, the deaeration cannot be effectively performed.

(真空封入工程IX) 脱気処理IV後の圧縮体を缶などの容器に真空状態で封
入する。
(Vacuum sealing step IX) The compressed body after the degassing treatment IV is sealed in a container such as a can in a vacuum state.

(鍛造素加工工程X) 押出工程Vを経た圧縮体を所望の部品形状又はそれに
近い形状に、冷間または熱間鍛造、あるいは、機械加工
にて成形する。この工程は、TiとAlとの合金化反応が生
じないように550℃未満で行われる。この段階では、未
だTi−Al系金属間化合物を形成していないために、容易
に加工が行えるのである。
(Forging Element Processing Step X) The compressed body that has been subjected to the extrusion step V is formed into a desired part shape or a shape close thereto by cold or hot forging or machining. This step is performed at a temperature lower than 550 ° C. so that an alloying reaction between Ti and Al does not occur. At this stage, since the Ti-Al-based intermetallic compound has not been formed yet, it can be easily processed.

この処理は、脱気工程後に、所望により、粉末鍛造等
でNear Net Shapeにしてもよい。
In this process, after the deaeration step, if necessary, a Near Net Shape may be formed by powder forging or the like.

(熱処理工程XI) 高温高圧工程VI後に、得られたTi−Al系金属間化合物
部材中に存在する合金元素の濃度分布をより均一にする
こと、相対密度をより向上させること、あるいはTi−Al
系金属間化合物部材の疲労特性等の機械的性質を悪化さ
せる該部材中のCl、MgあるいはNaの濃度を減少させるこ
とを目的として、上記Ti−Al系金属間化合物を、800℃
〜Ti−Al系金属間化合物の固相線温度に加熱する。この
加熱時に、周囲雰囲気の圧力を調整してもよい。たとえ
ば、雰囲気圧力を10-10〜0.5TorrとするとCl、Mg、Naの
減少に有効であり、200〜7000atmとするとTi−Al系金属
間化合物の相対密度を97%以上とするのに有効である。
(Heat Treatment Step XI) After the high-temperature and high-pressure step VI, to make the concentration distribution of alloy elements present in the obtained Ti-Al-based intermetallic compound member more uniform, to further improve the relative density, or to make the Ti-Al
For the purpose of reducing the concentration of Cl, Mg or Na in the member which deteriorates the mechanical properties such as the fatigue characteristics of the system-based intermetallic compound member, the Ti-Al-based intermetallic compound is heated at 800 ° C.
To the solidus temperature of the Ti-Al intermetallic compound. During this heating, the pressure of the surrounding atmosphere may be adjusted. For example, when the atmospheric pressure is 10 -10 to 0.5 Torr, it is effective to reduce Cl, Mg, and Na. When the atmospheric pressure is 200 to 7000 atm, it is effective to make the relative density of the Ti-Al-based intermetallic compound 97% or more. is there.

(仕上成形工程XII) 高温、高圧処理工程後に、機械加工等により最終製品
の形状に仕上げる。
(Finishing process XII) After the high-temperature and high-pressure treatment process, finish the shape of the final product by machining.

[発明の効果] 以上説明したように、原料粉末の粒度と押出工程にお
ける押出比とを所定の関係といる本発明によれば、Ti−
Al系金属間化合物部材の優れた高温強度および耐酸化性
を活かすとともに、粉末治金法により所望の形状に容易
に成形することができる。
[Effects of the Invention] As described above, according to the present invention in which the particle size of the raw material powder and the extrusion ratio in the extrusion step have a predetermined relationship,
The high-temperature strength and oxidation resistance of the Al-based intermetallic compound member can be utilized, and the member can be easily formed into a desired shape by powder metallurgy.

しかも、HIP処理にてカプセルを用いないので、Ti−A
l系金属間化合物部材の製造がより容易となる。
Moreover, since capsules are not used in HIP processing, Ti-A
Production of the l-based intermetallic compound member becomes easier.

[実施例] 以下、本発明の一実施例について説明する。Example An example of the present invention will be described below.

まず、第1表に示す粒度のTi粉末とAl粉末あるいはAl
合金粉末とを第1表に示す組成となるように、V型混合
機を用いて混合した。この混合粉末を冷間静水圧プレス
にて圧縮成形し、その相対密度を68%にした。
First, Ti powder having the particle size shown in Table 1 and Al powder or Al powder
The alloy powder was mixed with a V-type mixer so as to have the composition shown in Table 1. This mixed powder was compression-molded by a cold isostatic press to make the relative density 68%.

つぎに、第3図に示すように、圧縮成形体10をアルミ
ニウム製の缶11に装入し、缶端部11aに脱気用パイプ12
を溶接した。この後、パイプ12に真空ポンプ(図示省
略)を接続し、450℃で1時間加熱した状態で、10-3Tor
r以下の真空度まで脱気処理を行った。
Next, as shown in FIG. 3, the compression-molded body 10 was charged into an aluminum can 11, and a degassing pipe 12 was attached to the can end 11a.
Was welded. Thereafter, in a state that connects the vacuum pump (not shown) and heated for 1 hour at 450 ° C. in the pipe 12, 10 -3 Tor
Degassing was performed to a degree of vacuum of r or less.

つぎに、上記脱気用パイプ12を圧着することにより圧
縮成形体10を缶11内で真空封入した。この封入後の圧縮
成形体11を、第1表の押出比、押出温度450℃、押出ラ
ム速度8.3cm/分で押出加工を行い、押出棒を得た。この
押出棒は、Ti相とAl相とが混合状態にあり、Ti−Al系の
金属間化合物相が殆どみあたらず、また、組織中に空洞
は観察されなかった。
Next, the compression molded body 10 was vacuum-sealed in the can 11 by crimping the degassing pipe 12. The compression-molded body 11 after the sealing was extruded at an extrusion ratio, an extrusion temperature of 450 ° C., and an extrusion ram speed of 8.3 cm / min in Table 1 to obtain an extruded rod. In this extruded rod, the Ti phase and the Al phase were in a mixed state, almost no Ti-Al-based intermetallic compound phase was found, and no cavities were observed in the structure.

つぎに、押出棒の外周部を被覆しているアルミニウム
部材を切削除去し、直径5mmφ×長さ30mmの棒状部材と
した。
Next, the aluminum member covering the outer periphery of the extruded rod was cut and removed to obtain a rod-shaped member having a diameter of 5 mmφ and a length of 30 mm.

続いて、この棒状部材に対し、温度1200℃、圧力1500
atmの条件で3時間HIP処理を行い、焼結部材を得た。
Subsequently, a temperature of 1200 ° C. and a pressure of 1500
HIP processing was performed for 3 hours under the conditions of atm to obtain a sintered member.

尚、試料No.20、21、22においては、HIP処理の後に以
下の熱処理(イ)、(ロ)、(ハ)を行った。
In Samples Nos. 20, 21, and 22, the following heat treatments (a), (b), and (c) were performed after the HIP treatment.

(イ)真空度10-3Torr、1000℃に10時間保持した。(A) The vacuum was maintained at 10 −3 Torr and 1000 ° C. for 10 hours.

(ロ)1atmのArガス中、1300℃に3時間保持した。(B) It was kept at 1300 ° C. for 3 hours in 1 atm of Ar gas.

(ハ)真空度の10-3Torr、1300℃に3時間保持した。(C) It was kept at 10 -3 Torr of vacuum and 1300 ° C. for 3 hours.

このようにして、得られた焼結部材について相対密度
を測定し、得られた焼結部材がTi−Al系金属間化合物部
材として適当なものであるか否か判定し、その結果を前
述の第1表に示す。第1表中で◎がついているものはカ
ーケンダール効果による空孔がなく相対密度が98%以上
であり特に好ましいもの、○が付いているものはカーケ
ンダール効果による空孔がなく相対密度が95%以上のも
のである。また、×が付いているものは空孔が観察され
相対密度が95%未満のものであり、Ti−Al系金属間化合
物部材として不適当なものである。
Thus, the relative density of the obtained sintered member was measured, and it was determined whether or not the obtained sintered member was suitable as a Ti-Al-based intermetallic compound member. It is shown in Table 1. In Table 1, those marked with ◎ have no voids due to the Kirkendale effect and have a relative density of 98% or more, and are particularly preferable. Those marked with ○ have no voids due to the Kirkendale effect and have a relative density of 95% or more. belongs to. In addition, those marked with “x” indicate that pores are observed and the relative density is less than 95%, and are unsuitable as Ti-Al-based intermetallic compound members.

また、この粒度dと押出比Rとの関係を第4図に示
す。図中の◎、○及び×は第1表と同様であり、この印
の横にふられた番号は試料No.である。
FIG. 4 shows the relationship between the particle size d and the extrusion ratio R. ◎, 、, and × in the figure are the same as those in Table 1, and the number given beside this mark is the sample number.

第1表および第4図から、カプセルに封入することな
く相対密度が95%以上の好ましいTi−Al系金属間化合物
部材を得るためには、粒度d(μm)と押出比Rとの間
に、図中に斜線で示されるR≧(d/44)2の関係が成立
することが必要であることが分かる。また、カプセルに
封入することなく、特に好ましい相対密度が98%以上の
Ti−Al系金属間化合物部材を得るためには、粒度d(μ
m)と押出比Rとの間に、R≧(d/13.9)2で示される
関係が成立することが必要であることが分かる。
From Table 1 and FIG. 4, in order to obtain a preferable Ti-Al-based intermetallic compound member having a relative density of 95% or more without encapsulation, it is necessary to determine the relation between the particle size d (μm) and the extrusion ratio R. It is understood that the relationship of R ≧ (d / 44) 2 shown by oblique lines in the drawing needs to be established. Also, without encapsulation, particularly preferred relative density is 98% or more
In order to obtain a Ti-Al-based intermetallic compound member, the particle size d (μ
It is understood that it is necessary that a relationship represented by R ≧ (d / 13.9) 2 be established between m) and the extrusion ratio R.

第1表では、Ti粉末の粒度とAl粉末あるいはAl合金粉
末の粒度とが同じとしてTi−Al系金属間化合物部材を成
形している。第2表は、Ti粉末の粒度とAl粉末の粒度と
を変えてTi−Al系金属間化合物部材を成形した場合であ
る。
In Table 1, a Ti-Al-based intermetallic compound member is formed assuming that the particle size of Ti powder is the same as the particle size of Al powder or Al alloy powder. Table 2 shows the case where the particle size of the Ti powder and the particle size of the Al powder were changed to form a Ti—Al-based intermetallic compound member.

第2表に示される粒度のTi粉末とAl粉末とを第1表の
場合と同様の方法で、混合し、圧縮成形体とし、第2表
に示す押出比で第1表の場合と同様に押出棒とした。こ
の押出棒を第1表の場合と同様にして棒状部材とし、HI
P処理を行った。このようにして得られた焼結部材につ
いて第1表の場合と同様に相対密度を測定し、その結果
を判定した。判定結果は第1表の場合と同様の意味であ
る。
A Ti powder and an Al powder having the particle sizes shown in Table 2 were mixed in the same manner as in Table 1 to obtain a compression-molded body, and at the extrusion ratio shown in Table 2, the same as in Table 1 An extruded rod was used. This extruded rod was made into a rod-shaped member in the same manner as in Table 1 and HI
P processing was performed. The relative density of the thus obtained sintered member was measured in the same manner as in Table 1, and the result was determined. The determination result has the same meaning as in Table 1.

第2表から、原料粉末の粒度が種々ある場合には、最
大の粒度dと押出比Rとの間に上記関係が成立していれ
ば、第1表の場合と同じく、カプセルに封入することな
くHIP処理で好ましいTi−Al系金属間化合物部材を得る
ことができることが確認された。
From Table 2, when the particle size of the raw material powder is various, if the above relationship is established between the maximum particle size d and the extrusion ratio R, the powder should be encapsulated as in Table 1. It was confirmed that a preferable Ti-Al-based intermetallic compound member could be obtained by HIP treatment.

第3表及び第4表は、押出比を6と一定にしたとき
に、原料粉末中の上記粒度と押出比との関係を満たさな
い粉末の量と、得られた焼結部材の判定結果との関係を
示すものである。
Tables 3 and 4 show the amount of powder that does not satisfy the relationship between the particle size and the extrusion ratio in the raw material powder when the extrusion ratio is fixed at 6, and the determination results of the obtained sintered members. This shows the relationship.

第3表および第4表では、何れも押出比が6であるの
で、上記粒度と押出比との関係より、原料粉末の粒度が
105μm以下のときにカプセルに封入せずにHIP処理が可
能となる。
In Tables 3 and 4, since the extrusion ratio is 6 in both cases, the particle size of the raw material powder is determined from the relationship between the particle size and the extrusion ratio.
When it is 105 μm or less, HIP processing becomes possible without encapsulation.

そこで、各原料粉末にしめる105μmより大きい粉末
量を調整し、原料粉末全体にしめる105μmより大きい
粉末量の割合(重量%)を算出し、該原料粉末により上
記第1表の場合と同様にして焼結処理を行った。
Therefore, the amount of powder larger than 105 μm for each raw material powder was adjusted, and the ratio (% by weight) of the amount of powder larger than 105 μm for the whole raw material powder was calculated, and the raw material powder was sintered in the same manner as in Table 1 above. Processing was performed.

その結果、第3表に示す組成及び第4表に示す組成の
場合にも105μmより大きい粒子が全体で20重量%以下
のときに、即ち、105μm以下の粒子が80重量%以上の
ときにカプセルに封入せずにHIP処理が可能となること
が確認された。
As a result, in the case of the compositions shown in Table 3 and the compositions shown in Table 4, when the total of particles larger than 105 μm is 20% by weight or less, that is, when the particles of 105 μm or less are 80% by weight or more, It was confirmed that HIP treatment could be performed without encapsulating in HIP.

したがって、個々の原料粉末において粒度が上記関係
を満たさなくても全体としての粒度が上記粒度と押出比
との関係を満たしていれば、カプセルに封入することな
く、HIP処理により緻密なTi−Al系金属間化合物部材を
得ることができる。
Therefore, even if the particle size of each raw material powder does not satisfy the above relationship, if the overall particle size satisfies the relationship between the particle size and the extrusion ratio, without encapsulation, dense Ti-Al A system-based intermetallic compound member can be obtained.

以上のように、第1表ないし第4表及び第4図より、
原料粉末の粒度dと押出工程における押出比Rとの間に
所定の関係が成立するときには、該粉末による圧縮体を
カプセルに封入せずにHIP処理を行うことにより得られ
たTi−Al系金属間化合物部材は、カーケンダール効果に
よる空孔の発生が抑制され、緻密となることが確認され
た。
As described above, from Tables 1 to 4 and FIG.
When a predetermined relationship is established between the particle size d of the raw material powder and the extrusion ratio R in the extrusion process, the Ti-Al-based metal obtained by performing the HIP treatment without encapsulating the compact of the powder in a capsule. It was confirmed that the inter-compound member was suppressed from generating voids due to the Kirkendall effect and became dense.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の成形法を示す工程図、第2図は第1図
の変形例を示す工程図、第3図は本発明の一実施例によ
る工程を説明する説明図、第4図は粒度と押出比との関
係を説明する説明図である。
FIG. 1 is a process diagram showing a molding method of the present invention, FIG. 2 is a process diagram showing a modification of FIG. 1, FIG. 3 is an explanatory diagram for explaining a process according to an embodiment of the present invention, FIG. FIG. 3 is an explanatory diagram for explaining the relationship between the particle size and the extrusion ratio.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al 14〜63重量%、Ti 37〜86重量%の割合
で、AlおよびTiの粉末を混合し、 該混合物を脱気し、 該脱気された混合物の相対密度を押出加工により95%以
上に圧縮して粉末圧縮体を形成し、 該粉末圧縮体を、200気圧以上の圧力条件、および、Ti
−Al系金属間化合物を形成する温度条件において、カプ
セルに封入することなく熱間静水圧プレス処理するTi−
Al系金属間化合物部材の成形法であって、 上記押出加工における加工前の混合物と加工後の粉末圧
縮体との断面積比Rが、上記混合物の粉末粒度d(μ
m)との間に下記式1の関係を有することを特徴とする
Ti−Al系金属間化合物部材の成形法。 R≧(d/44)2 …(1)
An Al and Ti powder are mixed in a ratio of 14 to 63% by weight of Al and 37 to 86% by weight of Ti, the mixture is degassed, and the relative density of the degassed mixture is extruded. To form a powder compact by compressing the powder compact at a pressure of 200 atm or more,
-Ti subjected to hot isostatic pressing without encapsulation under the temperature conditions that form Al-based intermetallic compounds
A method of molding an Al-based intermetallic compound member, wherein the cross-sectional area ratio R of the mixture before processing and the powder compact after processing in the extrusion is determined by the powder particle size d (μ)
m) and the following formula 1
A method for forming a Ti-Al intermetallic compound member. R ≧ (d / 44) 2 … (1)
JP62083456A 1987-04-03 1987-04-03 Forming method of Ti-Al based intermetallic compound member Expired - Lifetime JP2588890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083456A JP2588890B2 (en) 1987-04-03 1987-04-03 Forming method of Ti-Al based intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083456A JP2588890B2 (en) 1987-04-03 1987-04-03 Forming method of Ti-Al based intermetallic compound member

Publications (2)

Publication Number Publication Date
JPS63247322A JPS63247322A (en) 1988-10-14
JP2588890B2 true JP2588890B2 (en) 1997-03-12

Family

ID=13802958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083456A Expired - Lifetime JP2588890B2 (en) 1987-04-03 1987-04-03 Forming method of Ti-Al based intermetallic compound member

Country Status (1)

Country Link
JP (1) JP2588890B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259030A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of aluminide
JPH04128329A (en) * 1990-09-18 1992-04-28 Sumitomo Light Metal Ind Ltd Production of aluminide
JP2636114B2 (en) * 1991-12-25 1997-07-30 科学技術庁金属材料技術研究所長 Production of TiAl-based intermetallic compounds by diffusion synthesis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270531A (en) * 1985-09-24 1987-04-01 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member

Also Published As

Publication number Publication date
JPS63247322A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US3950166A (en) Process for producing a sintered article of a titanium alloy
CN105522156B (en) A kind of manufacture method of powder metallurgy silumin compressor piston
US4365996A (en) Method of producing a memory alloy
JPH0130898B2 (en)
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
EP0202886B1 (en) Canless method for hot working gas atomized powders
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
JPH0791603B2 (en) Method for forming Ti-Al intermetallic compound member
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0428833A (en) Method for compacting fe-al series intermetallic compound member
JPS63243233A (en) Molding method for member of ti-al intermetallic compound
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPS6386831A (en) Manufacture of working stock of aluminum-base sintered alloy
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis