JP2000173810A - Magnetic anisotropic bond magnet and its manufacture - Google Patents

Magnetic anisotropic bond magnet and its manufacture

Info

Publication number
JP2000173810A
JP2000173810A JP10345113A JP34511398A JP2000173810A JP 2000173810 A JP2000173810 A JP 2000173810A JP 10345113 A JP10345113 A JP 10345113A JP 34511398 A JP34511398 A JP 34511398A JP 2000173810 A JP2000173810 A JP 2000173810A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
powder
magnetic field
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10345113A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Masahiro Tobise
飛世  正博
Mikio Shindo
幹夫 新藤
Hiroshi Okajima
弘 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10345113A priority Critical patent/JP2000173810A/en
Publication of JP2000173810A publication Critical patent/JP2000173810A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve orientation by a method wherein slurry composed of rare earth/ iron/nitrogen based magnet material powder, liquid state thermosetting resin and organic solvent is wet-molded in magnetic field by a compression molding method, and the molded member is held at a temperature higher than or equal to a boiling point of organic solvent and lower than a curing start temperature of liquid state thermosetting resin, subjected to desolvation and heated and cured. SOLUTION: In a magnetic anisotropic bond magnet, nitride magnet powder as magnet powder wherein mean powder grain diameter is about 15 μm, powder grain diameter distribution is 0.5-30 μm, composition of at.% is Sm9.1Fe77.3N13.6 is pulverized to fine powder wherein powder grain diameter distribution is in a range of 0.5-30 μm and mean powder grain diameter is 1.9 μm, with a jet mill and by wet ball mill crushing. Liquid state epoxy resin of 2.6 wt.%, hardener of 2.6 wt.% and methyl ethyl ketone of 2.6 wt.% are mixed with the magnet fine powder of 100 wt.%. Stirring and kneading are performed, and a slurry state is obtained. After this slurry is wet compression-molded in magnetic field, the molded member is heated for one hour at 85 deg.C, and subjected to desolvation and further to thermosetting treatment for two hours at 170 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁場配向性を大きく
向上した希土類・鉄・窒素系の磁気異方性ボンド磁石お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth / iron / nitrogen based magnetically anisotropic bonded magnet having greatly improved magnetic field orientation and a method of manufacturing the same.

【0002】[0002]

【従来の技術】希土類ボンド磁石に多用されている磁石
粉末の主流はNd2Fe14B型金属間化合物を主相とす
る磁気等方性の磁石粉末である。この磁気等方性磁石粉
末はNd、Fe、Bを主成分として所定組成に配合した
原料合金を溶解後、溶湯急冷法により超急冷しいったん
非晶質合金を作製し、その後適温で熱処理を施すことに
より平均結晶粒径を0.01〜0.5μmにしたもので
ある。その他、Nd2Fe14B型金属間化合物を主相と
する磁気異方性の磁石粉末として、前記所定組成に配合
した原料合金をストリップキャスト法や高周波溶解法等
により溶解、鋳造して所定の組成、結晶粒径の合金を
得、その後この合金を適当なサイズに粉砕し、続いてい
わゆるHDDR法により異方性を付与しながら結晶を微
細化する方法による磁気異方性磁石粉末がある。あるい
は前記非晶質合金の薄片をホットプレス等により温間で
加圧成形し高密度化後、さらに温間で据込み加工等の塑
性加工を施すことにより異方性を付与した磁石粉末があ
る。
2. Description of the Related Art The mainstream of magnetic powder frequently used in rare-earth bonded magnets is a magnetic isotropic magnetic powder having an Nd 2 Fe 14 B type intermetallic compound as a main phase. This magnetic isotropic magnet powder is prepared by melting a raw material alloy containing Nd, Fe, and B as main components and having a predetermined composition, then rapidly quenching by a molten metal quenching method to produce an amorphous alloy, and then performing heat treatment at an appropriate temperature. Thereby, the average crystal grain size is set to 0.01 to 0.5 μm. In addition, as a magnetic anisotropic magnet powder having a Nd 2 Fe 14 B type intermetallic compound as a main phase, a raw material alloy blended with the above-mentioned predetermined composition is melted and cast by a strip casting method, a high frequency melting method, or the like, and a predetermined amount is cast. There is a magnetic anisotropic magnet powder obtained by obtaining an alloy having a composition and a grain size, then pulverizing the alloy to an appropriate size, and then refining the crystal while giving anisotropy by a so-called HDDR method. Alternatively, there is a magnet powder that is anisotropically imparted by subjecting a thin piece of the amorphous alloy to hot pressing or the like and then hot-pressing and densifying it, and then performing plastic working such as upsetting in the warm state. .

【0003】昨今の希土類ボンド磁石応用製品のダウン
サイジング化にともない、必然的に前記製品に使用され
る希土類ボンド磁石にはより小寸法で高い磁気特性のも
のが求められている。例えばコンピューターのハードデ
ィスクを構成するスピンドルモーター用、CD−ROM
駆動装置のモーター用、さらには今後DVD(デジタル
ビデオディスク)用等といった回転機器用途で小型化、
高性能化の要求が非常に強く、この要求を満足できる希
土類ボンド磁石が切望されている。前記回転機器用途の
希土類ボンド磁石は、ほぼリング形状のものが主であ
り、用途に応じて特有の着磁が施されて所定の磁気回路
に実装される。
[0003] With the recent downsizing of rare earth bonded magnet applied products, rare earth bonded magnets used for such products are necessarily required to have smaller dimensions and higher magnetic properties. For example, a CD-ROM for a spindle motor that constitutes a hard disk of a computer
Downsizing for motors of drive units and for rotating equipment such as DVDs (digital video discs) in the future.
There is an extremely strong demand for higher performance, and there is a strong demand for a rare earth bonded magnet that can satisfy this demand. The rare-earth bonded magnets for rotating equipment are mainly ring-shaped, and are subjected to specific magnetization depending on the application and mounted on a predetermined magnetic circuit.

【0004】Nd2Fe14B型金属間化合物を主相とす
る磁気等方性の希土類磁石粉末を配合した希土類ボンド
磁石は成形が容易でかつ着磁に自由度があるため総合的
に使い勝手に優れている。しかし、磁気異方性が付与さ
れていないので前記磁石応用製品の小型化、高性能化の
要求に適合しない場合が多い。
A rare-earth bonded magnet containing a magnetic isotropic rare-earth magnet powder containing a Nd 2 Fe 14 B-type intermetallic compound as a main phase is easy to mold and has a high degree of freedom in magnetization, so that it is generally easy to use. Are better. However, since magnetic anisotropy is not provided, the magnet-applied products often do not meet the requirements for miniaturization and high performance.

【0005】前記の磁石応用製品の小型化、高性能化の
要求を満たす候補として、上記のNd2Fe14B型金属
間化合物を主相とする磁気異方性の希土類磁石粉末を配
合した磁気異方性ボンド磁石があるが、下記の問題点を
有している。まず、磁気異方性を付与するための磁場中
成形工程において、Nd2Fe14B型金属間化合物を主
相とする磁気異方性の磁石粉末を十分に配向させるには
例えば30〜50kOeという非常に強い印加磁場強度
(配向磁場強度)を必要とする。しかし、実用に供され
る希土類ボンド磁石は単純ブロック状、リング状、アー
クセグメント状、亀の子状等種々の多様な形状を有す
る。のみならず、これらの多様な希土類ボンド磁石に、
それぞれの用途に応じて極異方性やラジアル異方性等の
実用に即した多様な磁気異方性が付与される。しかし、
これらの多様な磁気異方性の付与のために、30〜50
kOeという非常に強い印加磁場強度を確保することは
工業生産上困難を伴う。例えばリング形状のラジアル異
方性希土類ボンド磁石を製作する場合、成形体のリング
形状に対応する成形金型のキャビティの内径側に設けた
強磁性コアからラジアル(外径)方向に印加磁場を通す
必要があるが、金型構造上の制約から印加磁場発生用磁
気回路の一部を担う前記内径側の強磁性コアの断面積が
大きくとれないので、低い印加磁場強度を発生した段階
でその強磁性コア部が磁気飽和してしまい、結果的に3
0〜50kOeというような高い印加磁場強度を得るこ
とは困難である。したがって、コンパウンド中のNd2
Fe14B型金属間化合物を主相とする希土類磁石粉末を
ラジアル方向に配列させるための十分な印加磁場強度が
得られないという問題がある。この印加磁場強度不足の
問題は極異方性のリング形状、あるいはラジアル異方性
または極異方性を有するセグメント磁石のみならず、一
般的な問題である。さらに印加磁場強度不足による配向
不足(不良)のボンド磁石は着磁した後の脱磁が困難で
あるという問題がある。磁場配向性を向上するために、
特開平9−199363では加熱した金型内に磁気異方
性を有する希土類磁石粉末および熱硬化性樹脂から実質
的になる混合物を充填し前記樹脂が液状化した時に最大
磁場を印加する成形方法を提案している。この提案によ
れば希土類磁石粉末の保磁力が低下して磁場配向性が向
上し、希土類磁石粉末本来のポテンシャルに近い磁気特
性が得られる旨報告されている。しかし、この提案では
金型を加熱する煩雑さに加えて結着樹脂を液状化するま
での時間を要し成形タクトが劣るという問題を有する。
As a candidate satisfying the requirements for downsizing and high performance of the magnet application products, a magnetic anisotropic rare earth magnet powder containing the above-mentioned Nd 2 Fe 14 B type intermetallic compound as a main phase is blended. Although there is an anisotropic bonded magnet, it has the following problems. First, in a molding step in a magnetic field for imparting magnetic anisotropy, for example, 30 to 50 kOe is required to sufficiently orient magnetic anisotropic magnet powder having Nd 2 Fe 14 B type intermetallic compound as a main phase. A very strong applied magnetic field strength (alignment magnetic field strength) is required. However, rare earth bonded magnets used in practical use have various various shapes such as a simple block shape, a ring shape, an arc segment shape, and a tortoise shape. In addition to these various rare-earth bonded magnets,
Various magnetic anisotropies suitable for practical use, such as polar anisotropy and radial anisotropy, are provided according to the respective applications. But,
In order to impart these various magnetic anisotropies, 30 to 50
Ensuring a very high applied magnetic field strength of kOe involves difficulties in industrial production. For example, when manufacturing a ring-shaped radial anisotropic rare earth bonded magnet, an applied magnetic field is passed in the radial (outer diameter) direction from a ferromagnetic core provided on the inner diameter side of a cavity of a molding die corresponding to the ring shape of the molded body. Although it is necessary, the cross-sectional area of the ferromagnetic core on the inner diameter side, which plays a part of the magnetic circuit for generating the applied magnetic field, cannot be increased due to restrictions on the mold structure. The magnetic core is magnetically saturated, resulting in 3
It is difficult to obtain a high applied magnetic field strength of 0 to 50 kOe. Therefore, Nd 2 in the compound
There is a problem that a sufficient applied magnetic field strength for arranging the rare earth magnet powder having the Fe 14 B type intermetallic compound as a main phase in the radial direction cannot be obtained. The problem of insufficient applied magnetic field strength is a general problem as well as a polar magnet with an anisotropic ring shape or a segment magnet having radial or polar anisotropy. Further, there is a problem that bond magnets having insufficient orientation (defective) due to insufficient applied magnetic field strength are difficult to demagnetize after being magnetized. In order to improve the magnetic field orientation,
JP-A-9-199363 discloses a molding method in which a heated mold is filled with a mixture substantially consisting of a rare earth magnet powder having magnetic anisotropy and a thermosetting resin, and a maximum magnetic field is applied when the resin liquefies. is suggesting. According to this proposal, it is reported that the coercive force of the rare earth magnet powder is reduced, the magnetic field orientation is improved, and magnetic properties close to the original potential of the rare earth magnet powder are obtained. However, this proposal has a problem that in addition to the complexity of heating the mold, it takes time to liquefy the binder resin and the molding tact time is inferior.

【0006】近年上記従来のNd−Fe−B系磁石粉末
に代わるボンド磁石用の希土類磁石粉末として、希土類
・鉄・窒素系磁石粉末の研究が行われている。この磁石
粉末は磁化機構がニュークリエーション型に属し、平均
粒径数μmのものが用いられる。この希土類・鉄・窒素
系磁石粉末を樹脂で結着した成形原料(コンパウンド)
を用いて例えば180〜250℃で磁場中射出成形を行
うことにより異方性ボンド磁石を得ることができる。こ
の場合は特開平9−199363の提案と同様に加熱に
よりコンパウンド中の希土類・鉄・窒素系磁石粉末の保
磁力が低下し、かつ結着樹脂の比率が多いため比較的良
好な配向性を有するものが得られる。しかし、磁場中射
出成形法による場合はコンパウンドの流動性を確保する
ために約20〜50体積%の樹脂が添加されるので、希
土類・鉄・窒素系磁石粉末の充填比率が相対的に低くな
り、より高性能の異方性ボンド磁石を得ることが困難で
ある。
In recent years, researches on rare earth / iron / nitrogen magnet powders have been conducted as rare earth magnet powders for bond magnets which replace the above-mentioned conventional Nd-Fe-B magnet powders. This magnet powder has a magnetization mechanism belonging to a nucleation type and has an average particle size of several μm. Molding raw material (compound) obtained by binding this rare earth / iron / nitrogen magnet powder with resin
The anisotropic bonded magnet can be obtained by performing injection molding in a magnetic field at, for example, 180 to 250 ° C. In this case, the coercive force of the rare-earth / iron / nitrogen-based magnet powder in the compound is reduced by heating as in the proposal of JP-A-9-199363, and the ratio of the binder resin is large, so that the compound has relatively good orientation. Things are obtained. However, in the case of injection molding in a magnetic field, about 20 to 50% by volume of resin is added to secure the fluidity of the compound, so that the filling ratio of rare earth / iron / nitrogen based magnet powder becomes relatively low. It is difficult to obtain a higher performance anisotropic bonded magnet.

【0007】次に、磁場中射出成形用のコンパウンドよ
りも希土類・鉄・窒素系磁石粉末の充填比率を高めたコ
ンパウンドを用いて、従来の磁場中圧縮成形法により異
方性ボンド磁石を作製する場合は、3〜10kOe程度
の実用的な配向磁場強度で良好な配向性が付与できず、
高い磁気特性の希土類ボンド磁石が得られないという問
題がある。この点に関し、本発明者が詳細に調査した結
果以下の知見が得られた。従来はコンパウンドを得るた
めに適温に加熱した二軸混練機等を用いて混練するが、
比表面積の大きい(粉末粒径が小さい)希土類・鉄・窒
素系磁石粉末等の表面をまんべんなく結着樹脂で被覆す
ることは困難であり、この傾向は結着樹脂に対する希土
類・鉄・窒素系磁石粉末比率の高い圧縮成形用のコンパ
ウンドで顕著である。そして、上記の実用的な配向磁場
強度下で従来の圧縮成形を行うと、結着樹脂の高い粘性
による磁場配向の劣化要因に加えて、結着樹脂で被覆さ
れていない希土類・鉄・窒素系磁石粉末相互の接触が顕
著となり最終的に得られるボンド磁石の配向性が大きく
低下してしまう。
Next, an anisotropic bonded magnet is produced by a conventional compression molding method in a magnetic field using a compound having a higher filling ratio of rare earth / iron / nitrogen magnet powder than the compound for injection molding in a magnetic field. In this case, good orientation cannot be provided with a practical orientation magnetic field strength of about 3 to 10 kOe,
There is a problem that a rare-earth bonded magnet having high magnetic properties cannot be obtained. In this regard, as a result of a detailed investigation by the present inventors, the following findings were obtained. Conventionally kneading using a twin-screw kneader heated to an appropriate temperature to obtain the compound,
It is difficult to evenly cover the surface of a rare earth / iron / nitrogen magnet powder having a large specific surface area (small powder particle size) with a binder resin, and this tendency is due to the rare earth / iron / nitrogen magnets for the binder resin. This is remarkable in compression molding compounds having a high powder ratio. When the conventional compression molding is performed under the above-mentioned practical orientation magnetic field strength, in addition to the deterioration factor of the magnetic field orientation due to the high viscosity of the binder resin, the rare-earth / iron / nitrogen-based material not covered with the binder resin is used. The mutual contact between the magnet powders becomes remarkable, and the orientation of the finally obtained bonded magnet is greatly reduced.

【0008】[0008]

【発明が解決しようとする課題】したがって、本発明の
課題は実用的な低い配向磁場強度でも良好な異方性が付
与でき、従来よりも高い残留磁束密度(Br)および高
い最大エネルギー積((BH)max)を有する希土類・鉄・
窒素系の磁気異方性ボンド磁石およびその製造方法を提
供することである。
Accordingly, an object of the present invention is to provide good anisotropy even at a practically low intensity of the orientation magnetic field, and achieve a higher residual magnetic flux density (Br) and a higher maximum energy product (( Rare earth, iron,
An object of the present invention is to provide a nitrogen-based magnetic anisotropic bonded magnet and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決した本発
明は、磁気異方性を示す希土類・鉄・窒素系磁石材料粉
末を液状熱硬化性樹脂とこの液状熱硬化性樹脂の硬化開
始温度よりも低い沸点を有する有機溶媒とからなる混合
液中に投入してスラリー化し、このスラリーを用いて前
記有機溶媒の沸点未満の温度(例えば室温)にて圧縮成
形法により湿式磁場中成形し、得られた成形体を前記有
機溶媒の沸点以上でかつ前記液状熱硬化性樹脂の硬化開
始温度未満の温度に保持して脱溶媒後加熱硬化し、必要
に応じてコイニングあるいはサイジングを行い成形体密
度を高める磁気異方性ボンド磁石の製造方法である。磁
気異方性を有する希土類・鉄・窒素系磁石材料粉末の表
面を液状熱硬化性樹脂により略均一に被覆するために、
攪拌によりスラリー化することが好ましい。
According to the present invention, which solves the above-mentioned problems, a rare-earth / iron / nitrogen-based magnet material powder exhibiting magnetic anisotropy is cured by using a liquid thermosetting resin and a curing start temperature of the liquid thermosetting resin. Into a mixed solution comprising an organic solvent having a lower boiling point than to form a slurry, and using the slurry at a temperature lower than the boiling point of the organic solvent (for example, room temperature) by a compression molding method in a wet magnetic field, The obtained molded body is kept at a temperature equal to or higher than the boiling point of the organic solvent and less than the curing start temperature of the liquid thermosetting resin, and after desolvation, is heated and cured, and if necessary, is subjected to coining or sizing to obtain a molded body density. This is a method for producing a magnetically anisotropic bonded magnet that enhances. In order to cover the surface of rare earth / iron / nitrogen based magnet material powder with magnetic anisotropy with liquid thermosetting resin almost uniformly,
It is preferable to form a slurry by stirring.

【0010】液状熱硬化性樹脂は室温では高い粘性を有
するが有機溶媒で希釈することにより多くの有用な効果
をもたらす。前記の液状熱硬化性樹脂と有機溶媒とから
なる混合液の粘性は有機溶媒の寄与により小さくなるの
で混合液は前記磁石粉末の表面をほぼ完全に覆うことが
できる。同時に混合液が内部まで侵入して最終的に結着
効果を高めることができる。さらに、例えば加熱を要せ
ず室温において簡単な撹拌装置を用いてスラリー化でき
るので混練設備コストを低減できる他、容易に混練(樹
脂被覆)できる。特に有用な効果は、スラリー状にする
ことにより、湿式磁場中圧縮成形工程において、前記磁
石粉末同士の直接接触および結着樹脂の高い粘性による
拘束等の磁場配向劣化要因を大きく低減できることであ
る。このように、個々の磁石粉末粒子表面がほぼ均一に
樹脂被覆されており、かつ低粘度のスラリー状態にある
ために、室温において3〜10kOeという低い配向磁
場強度でもって個々の磁石粉末粒子を良好に配向させる
ことができる。したがって、従来に比べて高いBrおよ
び高い(BH)maxの希土類・鉄・窒素系磁気異方性ボン
ド磁石が得られる。さらに湿式磁場中圧縮成形工程にお
いて、混合液が成形中途の成形体から滲みだしてくるた
め一種の潤滑効果を有し、金型カジリを改善できる。な
お、有機溶媒は希土類・鉄・窒素系磁石材料粉末の酸化
を阻止するために防錆作用を有するものが選択される。
成形体の内部には有機溶媒が残留するため、有機溶媒の
沸点以上でかつ液状熱硬化性樹脂の硬化開始温度未満の
温度で脱溶媒する。脱溶媒後のものは有機溶媒が抜ける
ため実質的に上記磁石粉末とエポキシ樹脂とからなる。
続いて加熱硬化処理を施せば本発明の磁気異方性ボンド
磁石が得られる。この脱溶媒と加熱硬化とを同時に行え
る加熱条件を選択してもよい。あるいは、前記脱溶媒後
のものにコイニングあるいはサイジングを施して高密度
化後加熱硬化することにより、より高いBrおよび(B
H)maxを有する磁気異方性ボンド磁石が得られる。コ
イニングあるいはサイジング処理は、無磁場の圧縮成形
用金型のキャビティに前記の脱溶媒処理したものを投入
し、前記湿式磁場中圧縮成形の加圧力よりも高い加圧力
を1回または2回以上、短時間(通常1秒以下/回)加
えて高密度化する工程である。コイニングあるいはサイ
ジング処理により有機溶媒が抜けた後の空隙をある程度
まで埋められるが、完全になくすには至らない。よって
本発明により得られる磁気異方性ボンド磁石は高いBr
および高い(BH)maxを有するととともに必然的に体積
比率で5〜22%の空隙率を有する。
[0010] Liquid thermosetting resins have a high viscosity at room temperature, but when diluted with an organic solvent, have many useful effects. Since the viscosity of the liquid mixture composed of the liquid thermosetting resin and the organic solvent decreases due to the contribution of the organic solvent, the liquid mixture can almost completely cover the surface of the magnet powder. At the same time, the mixed solution penetrates into the inside, and finally the binding effect can be enhanced. Further, for example, since a slurry can be formed at room temperature by using a simple stirring device without heating, kneading equipment cost can be reduced, and kneading (resin coating) can be easily performed. A particularly useful effect is that by forming the slurry, in the wet compaction process in a magnetic field, the magnetic field orientation deterioration factors such as the direct contact between the magnet powders and the constraint due to the high viscosity of the binder resin can be greatly reduced. As described above, since the surfaces of the individual magnet powder particles are almost uniformly coated with the resin and are in a low-viscosity slurry state, the individual magnet powder particles can be favorably formed at room temperature with a low orientation magnetic field strength of 3 to 10 kOe. Can be oriented. Therefore, a rare earth / iron / nitrogen based magnetically anisotropic bonded magnet having higher Br and higher (BH) max than before can be obtained. Further, in the compression molding process in a wet magnetic field, the mixed solution oozes out of the molded body in the middle of molding, so that it has a kind of lubricating effect and can improve mold galling. The organic solvent is selected to have a rust-preventing action in order to prevent oxidation of the rare earth / iron / nitrogen based magnetic material powder.
Since the organic solvent remains inside the molded body, the solvent is removed at a temperature equal to or higher than the boiling point of the organic solvent and lower than the curing start temperature of the liquid thermosetting resin. After desolvation, since the organic solvent escapes, it substantially consists of the above-mentioned magnet powder and epoxy resin.
Subsequently, a magnetic anisotropic bonded magnet of the present invention can be obtained by performing a heat curing treatment. Heating conditions under which the solvent removal and the heat curing can be performed simultaneously may be selected. Alternatively, a higher Br and (B
H) A magnetically anisotropic bonded magnet having max is obtained. The coining or sizing treatment is performed by introducing the desolvation treatment into the cavity of the compression molding die having no magnetic field, and applying a pressure higher than the pressure of the compression molding in the wet magnetic field once or twice or more, This is a step of increasing the density by adding a short time (usually 1 second or less). The voids after the organic solvent has escaped by coining or sizing can be filled to some extent, but they cannot be completely eliminated. Therefore, the magnetic anisotropic bonded magnet obtained by the present invention has a high Br
And has a high (BH) max and necessarily has a porosity of 5 to 22% by volume.

【0011】前記の磁気異方性を示す希土類・鉄・窒素
系磁石材料粉末は、Rα100−α−ββ、(Rは
Yを含む希土類元素の1種または2種以上でありSmを
必ず含む、TはFeまたはFeとCo)、α、βはそれ
ぞれ原子百分率で、5≦α≦20、5≦β≦30で示さ
れる組成を有している。前記磁石粉末として例えばTh
2Zn17型、Th2Ni17型、TbCu7型の結晶構造の
うちのいずれかを磁石主相とするSm−T−N系磁石合
金粉末(TはFeまたはFeとCo)を用いることがで
きる。R含有量は原子百分率で5〜20%にあることが
好ましい。5%未満では保磁力が大きく低下する。20
%を越えると飽和磁化が小さくなり、Brが大きく低下
する。RにはYを含む希土類元素の1種または2種以上
を不可避に含有することが許容されるが、5KOe以上
の保磁力(iHc)を確保するために、Rに占めるSm
比率を原子百分率で50%以上、より好ましくは90%
以上、理想的には不可避不純物を除いてR=Smとする
ことがよい。窒素は原子百分率で5〜30%であること
が好ましい。5%未満では磁気異方性が小さくなり、保
磁力が大きく低下する。30%を越えると磁気異方性、
飽和磁化が小さくなるため、実用的な磁石材料を構成す
ることができない。本発明において、SmやFeの一部
をCo、Ni、Ti、Cr、Mn、Zn、Cu、Zr、
Nb、Mo、Ta、W、Ru、Rh、Hf、Re、Os
やIrに置換することができる。これらの添加量はCo
を除いてSmとFeの合計量に対して約10原子%以下
である。これより多くなると飽和磁化が小さくなるため
好ましくない。なお、Co置換の場合は飽和磁化の低下
は小さく、Fe量に対し0.1〜70原子%の範囲で置
換可能であり、キュリー温度を高める効果が得られる。
また、Nの一部をC、P、Si、S、Al等に置換す
ることも可能である。その添加量はN含有量に対し約1
0原子%以下であり、これより多い添加量では保磁力が
低下するため好ましくない。
The rare earth / iron / nitrogen based magnetic material powder exhibiting the magnetic anisotropy is R α T 100-α-β N β , wherein R is one or more of rare earth elements including Y. T necessarily contains Sm, T is Fe or Fe and Co), and α and β are atomic percentages, each having a composition represented by 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30. As the magnet powder, for example, Th
2 Zn 17 type, Th 2 Ni 17 type, Sm-T-N magnet alloy powder either to the magnet main phase of crystal structure of the TbCu 7 (T is Fe or Fe and Co) be used it can. Preferably, the R content is between 5 and 20% in atomic percent. If it is less than 5%, the coercive force is greatly reduced. 20
%, The saturation magnetization decreases and Br decreases significantly. It is permissible for R to contain one or more rare earth elements including Y inevitably. However, in order to secure a coercive force (iHc) of 5 KOe or more, R
The ratio is 50% or more in atomic percentage, more preferably 90%.
As described above, it is ideal that R = Sm except for inevitable impurities. Nitrogen is preferably from 5 to 30% by atomic percentage. If it is less than 5%, the magnetic anisotropy becomes small, and the coercive force is greatly reduced. When it exceeds 30%, magnetic anisotropy,
Since the saturation magnetization is small, a practical magnet material cannot be formed. In the present invention, some of Sm and Fe are replaced with Co, Ni, Ti, Cr, Mn, Zn, Cu, Zr,
Nb, Mo, Ta, W, Ru, Rh, Hf, Re, Os
Or Ir. The amount of these additives is Co
Except for about 10 atomic% or less based on the total amount of Sm and Fe. If it is more than this, the saturation magnetization becomes small, which is not preferable. In the case of Co substitution, the decrease in saturation magnetization is small, and substitution is possible in the range of 0.1 to 70 atomic% with respect to the Fe amount, and an effect of increasing the Curie temperature is obtained.
It is also possible to partially replace N with C, P, Si, S, Al, or the like. The addition amount is about 1 to the N content.
It is not more than 0 atomic%, and an addition amount larger than this is not preferable because the coercive force decreases.

【0012】また、本発明において、液状熱硬化性樹脂
がエポキシ樹脂であり、有機溶媒として沸点が130℃
未満のケトンを用いることが実用的である。粉末状エポ
キシ樹脂でも本発明を構成可能ではあるが有機溶媒への
可溶性を考慮した場合、液状熱硬化性樹脂の方が圧倒的
に短時間で混合液を作製できる。液状エポキシ樹脂に対
し可溶しうる好適な有機溶媒として、アセトン、メチル
エチルケトン、ブチルエチルケトン等の極性溶媒と称す
るケトンの1種または2種以上が望ましい。その理由は
室温付近での蒸発が少なくかつ結着樹脂の硬化開始温度
付近に沸点が存在する点である。液状熱硬化性エポキシ
樹脂には使用環境により種々のタイプが存在するため一
概に硬化開始温度を決定できないが、例えば120〜1
40℃に硬化開始温度を有するものがよい。
In the present invention, the liquid thermosetting resin is an epoxy resin, and the organic solvent has a boiling point of 130 ° C.
It is practical to use less than a ketone. Although the present invention can be constituted by a powdery epoxy resin, a liquid thermosetting resin can produce a mixed solution in a much shorter time in consideration of solubility in an organic solvent. As a suitable organic solvent soluble in the liquid epoxy resin, one or more of ketones called polar solvents such as acetone, methyl ethyl ketone and butyl ethyl ketone are desirable. The reason is that there is little evaporation around room temperature and a boiling point exists near the curing start temperature of the binder resin. Since there are various types of liquid thermosetting epoxy resins depending on the use environment, the curing start temperature cannot be determined steadily.
Those having a curing start temperature of 40 ° C. are preferred.

【0013】また本発明は、粒径分布が0.5〜30μ
mであり、かつRα100−α− ββ、(RはYを
含む希土類元素の1種または2種以上でありSmを必ず
含む、TはFeまたはFeとCo)、α、βはそれぞれ
原子百分率で、5≦α≦20、5≦β≦30で示される
組成を有する磁気異方性の希土類・鉄・窒素系磁石材料
粉末と熱硬化性樹脂とから実質的になる磁気異方性ボン
ド磁石であって、空隙率が5〜22%であり、かつ20
℃において10MGOe以上の最大エネルギー積((B
H)max)を有する高性能の磁気異方性ボンド磁石であ
る。本発明の磁気異方性ボンド磁石は湿式磁場中圧縮成
形法を用いて作製される。
In the present invention, the particle size distribution is 0.5 to 30 μm.
m, and and R α T 100-α- β N β, (R always includes one or two or more kinds Sm of rare earth elements including Y, T is Fe or Fe and Co), α, β Is a magnetic field substantially consisting of a magnetically anisotropic rare-earth / iron / nitrogen-based magnet material powder having a composition represented by 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30 in atomic percentage and a thermosetting resin. An isotropic bonded magnet having a porosity of 5 to 22% and a porosity of 20 to 20%.
Maximum energy product of 10 MGOe or more at (° C) ((B
H) max) high performance magnetic anisotropic bonded magnet. The magnetic anisotropic bonded magnet of the present invention is manufactured by using a compression molding method in a wet magnetic field.

【0014】本発明では窒化処理に供する母合金粉末の
作製または窒化処理後の粉末を微粒化するために粉砕を
行う。この粉砕は不活性ガス雰囲気に保持したハンマー
ミル、ディスクミル、振動ミル、アトライターあるいは
ジェットミル等で効率的に行うことができる。続いて、
粉砕して得られた窒化用母合金粉末に窒化処理を施すこ
とにより高い飽和磁化および高い異方性磁界を付与す
る。窒化処理は、窒化用母合金粉末を、窒素ガスあるい
は窒素と水素の混合ガスあるいはアンモニアガスあるい
はアンモニアを含む還元性の混合ガス(例えばアンモニ
アと水素の混合ガス、アンモニアと窒素の混合ガス、ア
ンモニアとアルゴンの混合ガス)雰囲気(気流中)に、
300〜650℃×0.1〜30時間加熱保持すること
により行う。300℃×0.1時間未満および650℃
×30時間を超えると上記の最適な窒素含有量のものを
得ることが困難である。窒化用母合金粉末は窒化処理の
有無に関係なく不可避に水素を含むが、水素を含む窒化
ガス中にさらされることにより、最終的に0.01〜1
0原子%の水素を含有する。窒化用母合金粉末が芯部ま
で窒化されるように粉末粒径分布を0.5〜30μmと
することが好ましい。30μmを超えると窒化されない
芯部が多くなり磁気特性が低下する。0.5μm未満で
は酸化が顕著になり磁気特性が劣化する。その後、窒
化、粉砕、スラリー化、湿式磁場中圧縮成形、脱溶媒、
加熱硬化、必要に応じてコイニング(サイジング)を順
次行う。本発明ではスラリー化に供する前記磁石粉末ま
たは液状熱硬化性樹脂に、予め、シラン系またはチタン
系カップリング剤等の公知の表面改質剤を0.5wt%
以下添加することが結着強度および磁気特性を向上する
ために好ましい。0.5wt%を越えて表面改質剤を添
加すると磁気特性が劣化する。
In the present invention, pulverization is performed to prepare a mother alloy powder to be subjected to the nitriding treatment or to pulverize the powder after the nitriding treatment. This pulverization can be efficiently performed by a hammer mill, a disk mill, a vibration mill, an attritor, a jet mill or the like maintained in an inert gas atmosphere. continue,
A high saturation magnetization and a high anisotropic magnetic field are imparted by subjecting the pulverized master alloy powder for nitriding to a nitriding treatment. In the nitriding treatment, the master alloy powder for nitriding is mixed with a nitrogen gas, a mixed gas of nitrogen and hydrogen, an ammonia gas, or a reducing mixed gas containing ammonia (for example, a mixed gas of ammonia and hydrogen, a mixed gas of ammonia and nitrogen, and a mixed gas of ammonia and ammonia). Argon mixed gas) atmosphere (in the air stream)
This is performed by heating and holding at 300 to 650 ° C. × 0.1 to 30 hours. 300 ° C x less than 0.1 hour and 650 ° C
If it exceeds 30 hours, it is difficult to obtain the one having the above-mentioned optimum nitrogen content. The master alloy powder for nitriding contains hydrogen inevitably irrespective of the presence or absence of nitriding treatment. However, when exposed to a nitriding gas containing hydrogen, the final
Contains 0 atomic% hydrogen. It is preferable that the powder particle size distribution is 0.5 to 30 μm so that the mother alloy powder for nitriding is nitrided to the core. If the thickness exceeds 30 μm, the core that is not nitrided increases, and the magnetic properties deteriorate. If the thickness is less than 0.5 μm, the oxidation is remarkable, and the magnetic characteristics are deteriorated. After that, nitriding, grinding, slurrying, compression molding in a wet magnetic field, desolvation,
Heat curing and, if necessary, coining (sizing) are performed sequentially. In the present invention, 0.5% by weight of a known surface modifier such as a silane-based or titanium-based coupling agent is previously added to the magnet powder or the liquid thermosetting resin to be slurried.
The following addition is preferable for improving the binding strength and the magnetic properties. If the surface modifier is added in an amount exceeding 0.5 wt%, the magnetic properties deteriorate.

【0015】[0015]

【発明の実施の形態】以下、実施例により本発明を詳し
く説明するが、これら実施例により本発明が限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0016】まず、スラリー化により実現された低い配
向磁場強度での良好な配向性について説明する。 (実施例1)磁石粉末として平均粉末粒径が約15μm
で粉末粒径分布が0.5〜30μmであり、かつat%
でSm9.1Fe77.313.6の組成を有する窒
化磁石粉末を準備した。続いて、ジェットミルにて平均
粉末粒径4.0μmまで微粉砕し、さらにヘキサンを用
いた湿式ボールミル粉砕により微粉砕して粉末粒径分布
が0.5〜30μmの範囲内にありかつ平均粉末粒径
1.9μmの微粉を得た。ジェットミル粉砕と湿式ボー
ルミル粉砕とを組み合わせた理由は、ジェットミル粉砕
では0.5〜30μmの範囲内のシャープな粒径分布の
微粉が得られるが平均粉末粒径を4μm未満にすること
は工業生産上困難を伴う。また、湿式ボールミル粉砕の
みでは0.5μm未満の非常に細かいサブミクロン微粒
子が多く発生するためである。この磁石微粉末100重
量部に対し、2.6重量部の液状エポキシ樹脂および2.
6重量部の硬化剤(DDS:ジアミノジフェニルスルフ
ォン)、ならびに有機溶媒として液状エポキシ樹脂と同
重量(2.6重量部)のメチルエチルケトン(沸点79.
5℃)を用いた。撹拌混練は前記の各重量比率に調整さ
れた液状エポキシ樹脂とDDSとメチルエチルケトンか
らなる混合液をあらかじめ作製した後に前記磁石粉末を
添加し20分間撹拌しスラリー化した。このスラリーを
用いて配向磁場強度5、10kOe、6ton/cm
の成形圧力で湿式磁場中圧縮成形した。得られた成形後
を85℃で1時間加熱保持し脱溶媒した後、170℃で
2時間加熱硬化処理することにより本発明の磁気異方性
ボンド磁石を得た。得られたボンド磁石の密度、空隙
率、磁気特性を評価した結果を表1に示す。磁気特性は
20℃において測定された。空隙率は下記式で定義し
た。
First, a description will be given of good orientation at a low orientation magnetic field strength realized by slurrying. (Example 1) The average powder particle diameter is about 15 μm as a magnet powder.
The powder particle size distribution is 0.5 to 30 μm and at%
A nitrided magnet powder having a composition of Sm 9.1 Fe 77.3 N 13.6 was prepared. Subsequently, the powder is finely pulverized by a jet mill to an average powder particle size of 4.0 μm, and further finely pulverized by wet ball mill pulverization using hexane, and the powder particle size distribution is in the range of 0.5 to 30 μm and the average powder is A fine powder having a particle size of 1.9 μm was obtained. The reason for combining jet mill pulverization and wet ball mill pulverization is that jet mill pulverization can provide fine powder having a sharp particle size distribution in the range of 0.5 to 30 μm, but reducing the average powder particle size to less than 4 μm is industrial. With production difficulties. Also, only by wet ball mill pulverization, very fine submicron fine particles of less than 0.5 μm are often generated. 2.6 parts by weight of the liquid epoxy resin and 2.
6 parts by weight of a curing agent (DDS: diaminodiphenylsulfone) and, as an organic solvent, the same weight (2.6 parts by weight) of a liquid epoxy resin as methyl ethyl ketone (boiling point 79.
5 ° C.). In the stirring and kneading, a liquid mixture of the liquid epoxy resin, DDS and methyl ethyl ketone adjusted to the respective weight ratios described above was prepared in advance, and then the magnet powder was added, and the mixture was stirred for 20 minutes to form a slurry. Using this slurry, an orientation magnetic field strength of 5, 10 kOe, 6 ton / cm 2
Compression molding in a wet magnetic field at a molding pressure of The obtained molded body was heated and held at 85 ° C. for 1 hour to remove the solvent, and then heat-cured at 170 ° C. for 2 hours to obtain a magnetic anisotropic bonded magnet of the present invention. Table 1 shows the results of evaluating the density, porosity, and magnetic properties of the obtained bonded magnet. Magnetic properties were measured at 20 ° C. The porosity was defined by the following equation.

【0017】[0017]

【数1】空隙率=(理論密度−実測密度)/(理論密
度)×100(%)
Porosity = (theoretical density−actual density) / (theoretical density) × 100 (%)

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例2)配向磁場強度を10kOeと
した以外は実施例1と同様にして本発明のボンド磁石を
作製し、評価した結果を表1に示す。 (比較例1、2)実施例1と同様の磁石粉末を用いて、
下記の通り、従来の混練条件により得られたコンパウン
ドを用いて乾式の磁場中圧縮成形法により比較例の磁気
異方性ボンド磁石を作製し、評価した。前記磁石粉末1
00重量部に対し2.6重量部の液状エポキシ樹脂およ
び2.6重量部の硬化剤(DDS)を配合し混合後、二
軸混練機により加熱混練した。この二軸混練機による混
練物のペレットは粘性に富んでいるため、さらに130
℃で1時間加熱処理を施した後粉砕してコンパウンドと
した。次に、配向磁場強度5、10kOe、6ton/
cmの成形圧力で乾式磁場中圧縮成形した。成形後、
170℃で2時間加熱硬化処理を施し比較例のボンド磁
石を得た。以後は実施例1と同様にして評価した結果を
表1に示す。 (比較例3)磁石粉末として米国MQI(マグネクエン
チインターナショナル)社のMQP−B材(MQP−B
材は溶湯急冷法により作製したNd−Fe−B系等方性
磁石粉末である)を用いた以外は、実施例1と同様にし
てスラリー化、湿式の圧縮成形、脱溶媒、加熱硬化を行
い比較例のボンド磁石を得た。なお、湿式の圧縮成形は
無磁場で行った。得られたボンド磁石の評価結果を表1
に示す。 (比較例4)磁石粉末として米国MQI(マグネクエン
チインターナショナル)社のMQP−B材(MQP−B
材は溶湯急冷法により作製したNd−Fe−B系等方性
磁石粉末である)を用いた以外は、比較例1と同様にし
て二軸混練機による混練、コンパウンド化、乾式の圧縮
成形、加熱硬化を行い比較例のボンド磁石を得た。な
お、乾式の圧縮成形は無磁場で行った。得られたボンド
磁石の評価結果を表1に示す。 (比較例5、6)磁石粉末として米国MQI(マグネク
エンチインターナショナル)社のMQA−T材(MQA
−T材はHDDR法により作製されたNd−Fe−B系
の異方性磁石粉末である)を用いた以外は、実施例1ま
たは実施例2と同様にしてスラリー化、湿式の磁場中圧
縮成形、脱溶媒、加熱硬化を行い比較例のボンド磁石を
得た。得られたボンド磁石の評価結果を表1に示す。 (比較例7、8)磁石粉末として米国MQI(マグネク
エンチインターナショナル)社のMQA−T材(MQA
−T材はHDDR法により作製されたNd−Fe−B系
の異方性磁石粉末である)を用いた以外は、比較例1ま
たは比較例2と同様にして二軸混練機による混練、コン
パウンド化、乾式の磁場中圧縮成形、加熱硬化を行い比
較例のボンド磁石を得た。得られたボンド磁石の評価結
果を表1に示す。表1より、実施例1、2のものは比較
例1〜8のものに比べて高いBrおよび高い(BH)ma
xを有しており、かつ15%を越えた大きな空隙率を有
していることがわかる。このように、スラリー化するこ
とによって、5〜10kOeという低い配向磁場強度に
て12MGOe以上の高いBr、(BH)maxのものが
得られた。さらに、関連した検討から、3kOe以上の
低い配向磁場強度にて10MGOe以上の高いBr、
(BH)maxのものを得られることが確認された。
Example 2 A bonded magnet of the present invention was prepared and evaluated in the same manner as in Example 1 except that the orientation magnetic field strength was changed to 10 kOe. Table 1 shows the results of the evaluation. (Comparative Examples 1 and 2) Using the same magnet powder as in Example 1,
As described below, a magnetic anisotropic bonded magnet of a comparative example was prepared by a dry compression molding method in a magnetic field using a compound obtained under conventional kneading conditions, and evaluated. The magnet powder 1
2.6 parts by weight of a liquid epoxy resin and 2.6 parts by weight of a curing agent (DDS) were mixed and mixed with 00 parts by weight, and then heated and kneaded by a biaxial kneader. Since the pellets of the kneaded material by this twin-screw kneader are rich in viscosity, the
After heat treatment at 1 ° C. for 1 hour, the mixture was pulverized into a compound. Next, the orientation magnetic field strength is 5, 10 kOe, 6 ton /
Compression molding was performed in a dry magnetic field at a molding pressure of cm 2 . After molding,
A heat hardening treatment was performed at 170 ° C. for 2 hours to obtain a bonded magnet of a comparative example. Thereafter, the results of evaluation in the same manner as in Example 1 are shown in Table 1. (Comparative Example 3) MQP-B material (MQP-B) manufactured by US MQI (Magnequench International) as a magnet powder
Slurry, wet compression molding, desolvation, and heat curing were performed in the same manner as in Example 1 except that the material was an Nd-Fe-B-based isotropic magnet powder produced by a melt quenching method. A bonded magnet of a comparative example was obtained. The wet compression molding was performed without a magnetic field. Table 1 shows the evaluation results of the obtained bonded magnets.
Shown in (Comparative Example 4) MQP-B material (MQP-B) manufactured by US MQI (Magnequench International), Inc. as a magnet powder
Kneading with a twin-screw kneader, compounding, dry compression molding in the same manner as in Comparative Example 1 except that the material is an Nd—Fe—B-based isotropic magnet powder produced by a melt quenching method. Heat curing was performed to obtain a bonded magnet of a comparative example. The dry compression molding was performed without a magnetic field. Table 1 shows the evaluation results of the obtained bonded magnets. (Comparative Examples 5 and 6) MQA-T material (MQA-MQ) manufactured by US MQI (Magnequench International), Inc. as a magnet powder
-T material is an Nd-Fe-B-based anisotropic magnet powder produced by an HDDR method), except that a slurry was formed in the same manner as in Example 1 or Example 2, and wet compression was performed in a magnetic field. Molding, solvent removal, and heat curing were performed to obtain a bonded magnet of a comparative example. Table 1 shows the evaluation results of the obtained bonded magnets. (Comparative Examples 7 and 8) MQA-T material (MQA) manufactured by US MQI (Magnequench International), Inc. as a magnet powder
-T material is an Nd-Fe-B-based anisotropic magnet powder produced by the HDDR method), except that kneading and compounding with a twin-screw kneader were performed in the same manner as in Comparative Example 1 or Comparative Example 2. The resultant was subjected to compression molding in a dry magnetic field and heat curing to obtain a bonded magnet of a comparative example. Table 1 shows the evaluation results of the obtained bonded magnets. From Table 1, it can be seen that Examples 1 and 2 have higher Br and higher (BH) ma than those of Comparative Examples 1 to 8.
It can be seen that it has x and has a large porosity exceeding 15%. In this way, a slurry having a high Br and (BH) max of 12 MGOe or more was obtained at a low orientation magnetic field strength of 5 to 10 kOe by slurrying. Further, from a related study, a high Br of 10 MGOe or more at a low orientation magnetic field strength of 3 kOe or more,
It was confirmed that (BH) max was obtained.

【0020】(実施例3)湿式磁場中圧縮成形の加圧力
を3ton/cmとした以外は実施例1と同様にして
湿式磁場中圧縮成形を行い成形体を得た。次に、成形体
を80℃で1時間脱溶媒後、さらに120℃で1時間の
加熱処理を施して結着樹脂をやや硬化させた。次に、こ
のボンド磁石試料にコイニング(サイジング)処理を施
した効果について以下に説明する。コイニング処理とし
て、前記ボンド磁石試料の任意のものを無磁場の乾式圧
縮成形機の金型キャビティに投入後4〜10ton/c
の成形圧力範囲で各1回約0.3秒間加圧する処理
を行い高密度化した。前記各加圧力範囲でコイニング処
理(高密度化)したものを170℃で2時間加熱硬化し
て本発明のボンド磁石を得た。図1にこのコイニングの
加圧力と空隙率、最大エネルギー積との相関の一例を示
す。図1より、コイニングにより空隙率を効果的に低減
できる(最大エネルギー積を向上できる)ことがわか
る。しかし、成形金型の破損の発生等を考慮すると10
ton/cmを越えるコイニングは工業生産上好まし
くない。また、空隙率が22%を越えると下記比較例9
のNd−Fe−B系ボンド磁石の最大エネルギー積との
有意差がほぼ消失する。よって、空隙率は5〜22%、
より好ましくは5〜20%、特に好ましくは5〜10%
がよい。 (比較例9)湿式磁場中圧縮成形の加圧力を3ton/
cmとした以外は比較例5と同様にして湿式磁場中圧
縮成形を行い成形体を得た。次に、成形体を80℃で1
時間脱溶媒後、さらに120℃で1時間の加熱処理を施
して結着樹脂をやや硬化させた。次に、このボンド磁石
試料に実施例3と同条件のコイニング(サイジング)処
理を施した結果を図1に示す。図1に示す通り、実施例
3の場合に比べて低い(BH)maxが得られた。
Example 3 A compact was obtained by performing compression molding in a wet magnetic field in the same manner as in Example 1 except that the pressing force in the wet magnetic field compression molding was set to 3 ton / cm 2 . Next, the molded body was desolvated at 80 ° C. for 1 hour, and then subjected to a heat treatment at 120 ° C. for 1 hour to slightly cure the binder resin. Next, the effect of performing a coining (sizing) process on the bonded magnet sample will be described below. As a coining process, any one of the bonded magnet samples is put into a mold cavity of a dry compression molding machine having no magnetic field, and then 4 to 10 ton / c.
Each time, a pressure of about 0.3 seconds was applied once in a molding pressure range of m 2 to increase the density. Coining treatment (densification) in each of the above pressure ranges was heated and cured at 170 ° C. for 2 hours to obtain a bonded magnet of the present invention. FIG. 1 shows an example of the correlation between the pressure of the coining, the porosity, and the maximum energy product. FIG. 1 shows that the porosity can be effectively reduced (the maximum energy product can be improved) by coining. However, considering the occurrence of breakage of the molding die, etc.
Coining exceeding ton / cm 2 is not preferable for industrial production. When the porosity exceeds 22%, the following Comparative Example 9
, The significant difference from the maximum energy product of the Nd—Fe—B-based bonded magnet almost disappears. Therefore, the porosity is 5 to 22%,
More preferably 5 to 20%, particularly preferably 5 to 10%
Is good. (Comparative Example 9) The pressing force of compression molding in a wet magnetic field was 3 ton /
Compression molding was performed in a wet magnetic field in the same manner as in Comparative Example 5 except that the pressure was set to cm 2 to obtain a molded body. Next, the molded body was heated at 80 ° C. for 1 hour.
After removing the solvent for one hour, a heat treatment was further performed at 120 ° C. for one hour to slightly cure the binder resin. Next, the result of subjecting the bonded magnet sample to a coining (sizing) treatment under the same conditions as in Example 3 is shown in FIG. As shown in FIG. 1, a lower (BH) max was obtained than in Example 3.

【0021】(実施例4)実施例1で作製したスラリー
を用いて、外径25mm、内径(コア外径)22mmの
キャビティを有し、対称8極の極異方性を付与すること
ができる磁場コイル付き磁気異方性金型(極異方性付与
方向の配向磁場強度は約5kOe)を設置した圧縮成形
機にて成形圧力3ton/cmで湿式磁場中成形し、
極異方性の対称8極のリング状ボンド磁石成形体(外径
25mm、内径22mm、厚さ1.5mm)を得た。成
形体を適温に加熱して脱溶媒後、無磁場の圧縮成形機を
用いて8ton/cmの加圧力でコイニングし、その
後加熱硬化して本発明による極異方性ボンド磁石が得ら
れた。このボンド磁石の空隙率は5〜22%の範囲に入
っていた。次にこのボンド磁石の極異方性付与方向に沿
って着磁(着磁磁場強度約5kOe)を行った後、表面
磁束密度を測定した結果を図2に示す。図2より、本発
明の対称8極極異方性リングボンド磁石の表面磁束密度
は2600〜2650Gという非常に高い値である。 (実施例5)実施例1で作製したスラリーを用いて、外
径25mm、内径(コア外径)22mmのキャビティを
有し、ラジアル異方性を付与することができる磁場コイ
ル付き磁気異方性金型(ラジアル異方性付与方向の配向
磁場強度は約5kOe)を設置した圧縮成形機にて成形
圧力3ton/cmで湿式磁場中成形し、ラジアル異
方性のリング状ボンド磁石成形体(外径25mm、内径
22mm、厚さ1.5mm)を得た。成形体を適温に加
熱して脱溶媒後、無磁場の圧縮成形機を用いて8ton
/cmの加圧力でコイニングし、その後加熱硬化して
本発明によるラジアル異方性ボンド磁石が得られた。こ
のボンド磁石の空隙率は5〜22%の範囲に入ってい
た。次に対称8極の極異方性着磁(着磁磁場約5kO
e)を行った後表面磁束密度を測定したところ、図2と
略同等の良好な結果が得られた。 (比較例10)比較例4のコンパウンドを用いてかつ実
施例4の成形機において無磁場でかつ8ton/cm
の成形圧力で乾式圧縮成形し、外径25mm、内径22
mm、厚さ1.5mmのボンド磁石成形体を得た。次
に、加熱硬化処理を施した後、実施例4と同条件で対称
8極の極異方性着磁を行い、表面磁束密度を測定した結
果を図2に示す。図2より、この比較例の極異方性ボン
ド磁石の表面磁束密度は約1700Gという低い値だっ
た。
(Embodiment 4) Using the slurry prepared in Embodiment 1, a cavity having an outer diameter of 25 mm and an inner diameter (core outer diameter) of 22 mm can be provided with symmetrical 8-pole polar anisotropy. Molding in a wet magnetic field at a molding pressure of 3 ton / cm 2 by a compression molding machine equipped with a magnetic anisotropic mold with a magnetic field coil (the orientation magnetic field strength in the direction of imparting polar anisotropy is about 5 kOe).
A polar anisotropic symmetrical 8-pole ring-shaped bonded magnet molded body (outside diameter 25 mm, inside diameter 22 mm, thickness 1.5 mm) was obtained. After the molded body was heated to an appropriate temperature to remove the solvent, it was coined at a pressure of 8 ton / cm 2 using a compression molding machine with no magnetic field, and then heated and cured to obtain a polar anisotropic bonded magnet according to the present invention. . The porosity of this bonded magnet was in the range of 5 to 22%. Next, the magnetization of the bonded magnet along the direction of imparting polar anisotropy (magnetizing magnetic field strength: about 5 kOe) was performed, and the result of measuring the surface magnetic flux density is shown in FIG. 2, the surface magnetic flux density of the symmetric octupole-pole anisotropic ring bond magnet of the present invention is a very high value of 2600-2650G. (Example 5) A magnetic anisotropic mold with a magnetic field coil having a cavity having an outer diameter of 25 mm and an inner diameter (core outer diameter) of 22 mm and capable of imparting radial anisotropy using the slurry prepared in Example 1. (The orientation magnetic field strength in the direction of imparting radial anisotropy is about 5 kOe.) Molding is performed in a wet magnetic field at a molding pressure of 3 ton / cm 2 with a compression molding machine installed, and a radially anisotropic ring-shaped bonded magnet molded product (outer diameter 25 mm, an inner diameter of 22 mm, and a thickness of 1.5 mm). After heating the molded body to an appropriate temperature to remove the solvent, use a compression molding machine without a magnetic field for 8 tons.
Coining was performed at a pressure of / cm 2 , followed by heat curing to obtain a radially anisotropic bonded magnet according to the present invention. The porosity of this bonded magnet was in the range of 5 to 22%. Next, symmetrical 8-pole polar anisotropic magnetization (magnetization magnetic field of about 5 kO
After performing e), the surface magnetic flux density was measured. As a result, good results substantially equivalent to those in FIG. 2 were obtained. (Comparative Example 10) The compound of Comparative Example 4 was used and the molding machine of Example 4 was used without a magnetic field and 8 ton / cm 2.
Dry compression molding at a molding pressure of 25 mm in outer diameter and 22 mm in inner diameter
Thus, a bonded magnet molded body having a thickness of 1.5 mm and a thickness of 1.5 mm was obtained. Next, after performing a heat curing treatment, symmetric 8-pole anisotropic magnetization was performed under the same conditions as in Example 4, and the results of measuring the surface magnetic flux density are shown in FIG. 2, the surface magnetic flux density of the polar anisotropic bonded magnet of this comparative example was a low value of about 1700 G.

【0022】実施例4、5に関連した検討から、本発明
によれば、内径3〜50mmという配向磁場強度が約3
〜10kOeに制限される条件下で作製された希土類・
鉄・窒素系ボンド磁石であって、対応する外径4〜51
mm、厚み50mm以下の寸法を有するラジアル異方性
リング形状、あるいは対称または非対称の4〜16極の
極異方性リング形状、あるいは前記寸法に対応するラジ
アル異方性のアークセグメント形状、あるいは前記寸法
に対応する極異方性のアークセグメント形状のものの表
面磁束密度を好ましくは2300G以上、より好ましく
は2600G以上、特に好ましくは3000G以上とす
ることも可能である。
According to the studies related to Examples 4 and 5, according to the present invention, the orientation magnetic field strength of 3 to 50 mm in inner diameter is about 3 mm.
Rare earths produced under conditions limited to 10 kOe
An iron / nitrogen-based bonded magnet having a corresponding outer diameter of 4 to 51
mm, a radially anisotropic ring shape having a dimension of 50 mm or less in thickness, or a symmetric or asymmetric polar anisotropic ring shape of 4 to 16 poles, or a radially anisotropic arc segment shape corresponding to the dimensions, or The surface magnetic flux density of a polar anisotropic arc segment having a size corresponding to the dimension may be preferably 2300 G or more, more preferably 2600 G or more, and particularly preferably 3000 G or more.

【0023】本発明のボンド磁石に占める熱硬化性樹脂
の比率は特に限定されないが、例えば、成形用コンパウ
ンドに占める液状熱硬化性樹脂の比率を0.5〜20w
t%とすることがよい。20wt%を越えると従来の射
出成形品に対する高いBr、高い(BH)maxの優位
性が消失する。0.5wt%未満では結着強度が大きく
低下する。
The ratio of the thermosetting resin in the bonded magnet of the present invention is not particularly limited. For example, the ratio of the liquid thermosetting resin in the molding compound is 0.5 to 20 watts.
It is good to be t%. If it exceeds 20 wt%, the superiority of high Br and high (BH) max over conventional injection molded products is lost. If it is less than 0.5% by weight, the binding strength is greatly reduced.

【0024】上記では、圧縮成形用途の実施例を記載し
たが、相対的に磁石粉末配合比率の低い射出成形用途で
も、本発明の優位性が実現できることが期待される。
In the above, the examples of the application for compression molding have been described. However, it is expected that the superiority of the present invention can be realized even for the application for injection molding having a relatively low mixing ratio of magnet powder.

【0025】本発明によれば、ThMn12型の結晶構
造相を磁石主相とし、原子%表示でNd5〜10
bal3〜13の基本組成を有するとともに、粉末粒
径分布が0.5〜30μmである磁石合金粉末(TはF
eまたはFeとCo)を用いて、従来に比べて高いB
r、高い(BH)maxを有する湿式磁場中圧縮成形法に
よる磁気異方性ボンド磁石を実現することも可能であ
る。Ndが5〜10原子%、Nが3〜13原子%を外れ
ると従来の射出成形品に対する高いBr、高い(BH)
maxの優位性を確保することが困難である。
According to the present invention, the crystal structure phase of ThMn 12 type is used as the main phase of the magnet, and Nd 5 to 10 T in atomic%.
bal N 3 to 13 and a magnetic alloy powder having a powder particle size distribution of 0.5 to 30 μm (T is F
e or Fe and Co) to obtain a higher B
r, it is also possible to realize a magnetic anisotropic bonded magnet by a compression molding method in a wet magnetic field having a high (BH) max. When Nd deviates from 5 to 10 atomic% and N deviates from 3 to 13 atomic%, a higher Br and a higher (BH) than the conventional injection molded product are obtained.
It is difficult to secure the superiority of max.

【0026】[0026]

【発明の効果】以上記述の通り、本発明によれば、低い
配向磁場強度でも良好な配向性を示す希土類・鉄・窒素
系の磁気異方性ボンド磁石およびその製造方法を提供す
ることができる。
As described above, according to the present invention, it is possible to provide a rare earth / iron / nitrogen based magnetically anisotropic bonded magnet exhibiting good orientation even at a low orientation field strength and a method for producing the same. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイニング時の加圧力と空隙率、(BH)max
の相関の一例を示す図である。
FIG. 1 Pressure and porosity during coining, (BH) max
FIG. 4 is a diagram showing an example of the correlation of FIG.

【図2】本発明の磁気異方性ボンド磁石の表面磁束密度
波形の一例を示す図である。
FIG. 2 is a diagram showing an example of a surface magnetic flux density waveform of the magnetic anisotropic bonded magnet of the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 B22F 3/02 R 7/02 3/10 B 41/02 H01F 1/04 A (72)発明者 岡島 弘 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 Fターム(参考) 4K018 BB04 CA04 CA07 CA33 DA03 DA11 FA02 KA46 5E040 AA03 AA19 BB05 CA01 HB05 HB06 NN01 NN06 NN14 NN17 NN18 5E062 CD04 CE04 CG01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01F 1/053 B22F 3/02 R 7/02 3/10 B 41/02 H01F 1/04 A (72) Inventor Okajima Hiroshi 5200 Sankajiri, Kumagaya-shi, Saitama F-term in the Magnetic Materials Research Laboratories, Hitachi Metals, Ltd. 4K018 BB04 CA04 CA07 CA33 DA03 DA11 FA02 KA46 5E040 AA03 AA19 BB05 CA01 HB05 HB06 NN01 NN06 NN14 NN17 NN18 5E062 CD04 CE04CG01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁気異方性を示す希土類・鉄・窒素系磁
石材料粉末を液状熱硬化性樹脂とこの液状熱硬化性樹脂
の硬化開始温度よりも低い沸点を有する有機溶媒とから
なる混合液中に投入してスラリー化し、このスラリーを
用いて圧縮成形法により湿式磁場中成形し、得られた成
形体を前記有機溶媒の沸点以上でかつ前記液状熱硬化性
樹脂の硬化開始温度未満の温度に保持して脱溶媒後加熱
硬化し、必要に応じてコイニングあるいはサイジングを
行い成形体密度を高めることを特徴とする磁気異方性ボ
ンド磁石の製造方法。
1. A liquid mixture of a rare-earth / iron / nitrogen-based magnetic material powder exhibiting magnetic anisotropy and a liquid thermosetting resin and an organic solvent having a boiling point lower than the curing start temperature of the liquid thermosetting resin. Into a slurry, and the slurry is subjected to wet molding by a compression molding method in a wet magnetic field, and the obtained molded body is at a temperature equal to or higher than the boiling point of the organic solvent and lower than the curing start temperature of the liquid thermosetting resin. A method for producing a magnetically anisotropic bonded magnet, characterized by increasing the density of a compact by carrying out coining or sizing as necessary, after removing the solvent while maintaining the temperature of the solvent.
【請求項2】 室温において湿式磁場中成形する請求項
1に記載の磁気異方性ボンド磁石の製造方法。
2. The method for producing a magnetically anisotropic bonded magnet according to claim 1, wherein the magnet is molded in a wet magnetic field at room temperature.
【請求項3】 磁気異方性を示す希土類・鉄・窒素系磁
石材料粉末の組成が、Rα100−α−ββ、(R
はYを含む希土類元素の1種または2種以上でありSm
を必ず含む、TはFeまたはFeとCo)、α、βはそ
れぞれ原子百分率で、5≦α≦20、5≦β≦30であ
る請求項1または2に記載の磁気異方性ボンド磁石の製
造方法。
3. The composition of a rare earth / iron / nitrogen based magnetic material powder exhibiting magnetic anisotropy is R α T 100−α−β N β , (R
Is one or more of the rare earth elements containing Y, and Sm
Wherein T is Fe or Fe and Co), and α and β are each in atomic percentage and 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30. The magnetic anisotropic bonded magnet according to claim 1 or 2, wherein Production method.
【請求項4】 磁気異方性を示す希土類・鉄・窒素系磁
石材料粉末の粒径分布が0.5〜30μmである請求項
1乃至3のいずれかに記載の磁気異方性ボンド磁石の製
造方法。
4. The magnetic anisotropic bonded magnet according to claim 1, wherein the rare earth / iron / nitrogen based magnetic material powder exhibiting magnetic anisotropy has a particle size distribution of 0.5 to 30 μm. Production method.
【請求項5】 液状熱硬化性樹脂がエポキシ樹脂であ
り、かつ前記有機溶媒が沸点130℃未満のケトンであ
る請求項1乃至4のいずれかに記載の磁気異方性ボンド
磁石の製造方法。
5. The method for producing a magnetically anisotropic bonded magnet according to claim 1, wherein the liquid thermosetting resin is an epoxy resin, and the organic solvent is a ketone having a boiling point of less than 130 ° C.
【請求項6】 粒径分布が0.5〜30μmであり、か
つRα100−α −ββ、(RはYを含む希土類元
素の1種または2種以上でありSmを必ず含む、TはF
eまたはFeとCo)、α、βはそれぞれ原子百分率
で、5≦α≦20、5≦β≦30で示される組成を有す
る磁気異方性の希土類・鉄・窒素系磁石材料粉末と熱硬
化性樹脂とから実質的になる磁気異方性ボンド磁石であ
って、空隙率が5〜22%であり、かつ20℃において
10MGOe以上の最大エネルギー積((BH)max)を有
することを特徴とする磁気異方性ボンド磁石。
6. The particle size distribution is 0.5 to 30 μm, and R α T 100-α N β , wherein R is at least one kind of rare earth element including Y and always contains Sm , T is F
e or Fe and Co), α and β are each an atomic percentage and a magnetically anisotropic rare-earth / iron / nitrogen-based magnet material powder having a composition represented by 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30, and thermosetting. A magnetic anisotropic bonded magnet consisting essentially of a conductive resin, having a porosity of 5 to 22%, and having a maximum energy product ((BH) max) of 10 MGOe or more at 20 ° C. Magnetic anisotropic bonded magnet.
JP10345113A 1998-12-04 1998-12-04 Magnetic anisotropic bond magnet and its manufacture Pending JP2000173810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10345113A JP2000173810A (en) 1998-12-04 1998-12-04 Magnetic anisotropic bond magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10345113A JP2000173810A (en) 1998-12-04 1998-12-04 Magnetic anisotropic bond magnet and its manufacture

Publications (1)

Publication Number Publication Date
JP2000173810A true JP2000173810A (en) 2000-06-23

Family

ID=18374376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10345113A Pending JP2000173810A (en) 1998-12-04 1998-12-04 Magnetic anisotropic bond magnet and its manufacture

Country Status (1)

Country Link
JP (1) JP2000173810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
CN111383834A (en) * 2018-12-28 2020-07-07 日亚化学工业株式会社 Method for manufacturing bonded magnet and bonded magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
WO2008065903A1 (en) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
CN111383834A (en) * 2018-12-28 2020-07-07 日亚化学工业株式会社 Method for manufacturing bonded magnet and bonded magnet
CN111383834B (en) * 2018-12-28 2023-11-14 日亚化学工业株式会社 Method for manufacturing bonded magnet and bonded magnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH04241402A (en) Permanent magnet
KR102632582B1 (en) Manufacturing method of sintered magnet
JP2001076925A (en) Permanent magnet having flat plate multipolar anisotropy and actuator
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2708578B2 (en) Bonded magnet
JPH05144621A (en) Rare earth element-bonded magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
KR100262674B1 (en) Method of manufacturing nd-fe-b type bonded magnets
JP3032385B2 (en) Fe-BR bonded magnet
JPS62261102A (en) Bonded magnet for starter motor
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPS6136361B2 (en)
JPH10163015A (en) Magnet alloy powder, its manufacture and magnet using the same
JPH05129119A (en) Manufacture of granulated powder of rare earth magnet and resin bond magnet
JPH0992515A (en) Anisotropic bonded magnet
JPH02260615A (en) Quasi-anisotropic permanent magnet and manufacture thereof
JP2005019714A (en) Method of manufacturing anisotropical bond magnet
JPS6245684B2 (en)
JPH0620816A (en) R-t-m-n bonded magnet and manufacture thereof
JPH0513208A (en) Manufacture of rare-earth bonded magnet