JPH05205959A - Method and device for manufacturing bow-type anisotropic magnet - Google Patents

Method and device for manufacturing bow-type anisotropic magnet

Info

Publication number
JPH05205959A
JPH05205959A JP18304591A JP18304591A JPH05205959A JP H05205959 A JPH05205959 A JP H05205959A JP 18304591 A JP18304591 A JP 18304591A JP 18304591 A JP18304591 A JP 18304591A JP H05205959 A JPH05205959 A JP H05205959A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnet
bow
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18304591A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
章 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA SUMITOKU DENSHI KK
Original Assignee
YOKOHAMA SUMITOKU DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA SUMITOKU DENSHI KK filed Critical YOKOHAMA SUMITOKU DENSHI KK
Priority to JP18304591A priority Critical patent/JPH05205959A/en
Publication of JPH05205959A publication Critical patent/JPH05205959A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enable a bow-shaped anisotropic magnet of high magnetic force to be easily mass-producted at a low cost by a method wherein a magnet is made to pass through a magnetic field wider than its cross section in area, anisotropically orientated, and cooled down while it passes so as to be enhanced in hardness and fixed in orientation. CONSTITUTION:Mixture of magnetic powder and binder is introduced into an extruder, kneaded and degased through a kneading/extruding mechanism, heated at a temperature of 50-90 deg.C, and successively and continuously extruded out from the discharge opening 1 of the extruder. The mixture introduced into a sizing die 3 is successively formed into a magnet of bow-shaped cross section conforming to the cross section of a forming hole 3a, and concurrently magnetic particles contained in the kneaded mixture are oriented in a prescribed direction by the action of a magnetic field generated by a magnetic field generator 6. In succession, the body of bow-shaped cross section through the sizing die 3 is successively introduced into a prolong 5 as it is successively subjected to the action of a magnetic field generated by the magnetic field generator 6, cooled down gradually to a normal temperature or below while it passes through the prolong 5, and successively discharged out from the prolong 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフェライト磁石や希土類
磁石等の磁性粉を原料とする永久磁石、特に弓形異方性
磁石の製造方法および製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method and a manufacturing apparatus for permanent magnets made of magnetic powder such as ferrite magnets and rare earth magnets, especially bow-shaped anisotropic magnets.

【0002】[0002]

【従来の技術】従来、フェライト磁石や希土類磁石など
の磁性粉を原料とする永久磁石を製造する場合、成形−
焼結−仕上の工程によっているのが殆どであり、又その
成形工程は圧縮成形法によるものが大部分である。例え
ばフェライト弓形異方性磁石においても、現在市販され
ているものの殆どは、圧縮成形法の乾式法と湿式法とに
よって製造されている。
2. Description of the Related Art Conventionally, when manufacturing a permanent magnet using a magnetic powder such as a ferrite magnet or a rare earth magnet as a raw material,
Mostly, it is based on the sintering-finishing process, and the molding process is mostly based on the compression molding method. For example, most of the ferrite bow-shaped anisotropic magnets currently on the market are manufactured by the dry method and the wet method of compression molding.

【0003】例えばフェライト磁石の単位結晶粒子m
は、図7に示すように六方晶系に属するマグネットプラ
ムバイト型で、その粒子径は約1μmで六角板状を呈
し、その結晶軸(C軸)の方向に強い自発磁化力を示
す。そこでフェライト磁石の異方化とは、酸化鉄とスト
ロンチウムまたはバリウムの酸化物との比が6:1とな
るように混合し、仮焼して結晶を成熟させた原料を、更
に単位結晶粒径まで充分に粉砕した上で磁界をかけてC
軸を磁界の方向に並ばせて圧縮固定化した後、焼結を行
うことをいうものである。ところが、成形において異方
化配向された成形体Wは、焼結においては図8のように
磁界Mの方向、すなわち六角板状粒子のC軸の方向には
20%収縮し、異方化に直角の方向には10〜12%の
収縮を示す。このことは焼結体内には多量の歪みが残存
することを示す。すなわち、現場的には単純な形状とい
えども、粉末の充填、磁界、圧縮の工程で金型内穴内の
粉末は、磁界の濃淡、磁力線の方向の乱れ等により、配
向の乱れ、成形体の部分的密度の偏在を免れ得ないの
で、上記収縮率の差は、焼結体内に大きく、かつ複雑な
歪みを残すこととなるわけである。そのため、例えば単
純な円板状の異方性磁石を製造する場合でも、中央は密
度が高く、周辺部は密度が低く、磁力線のリーク等もあ
って焼結体は内部歪により、ひび、割れ等を生じる。こ
れが図9に示すような弓形異方性磁石Mgのように不整
形状の磁石を圧縮成形する場合には、さらに多くの問題
を発生する。
For example, a unit crystal grain m of a ferrite magnet
7 is a magnet plumbite type that belongs to the hexagonal system, has a hexagonal plate shape with a particle diameter of about 1 μm, and exhibits a strong spontaneous magnetizing force in the direction of its crystal axis (C axis). Anisotropy of the ferrite magnet means that iron oxide and strontium or barium oxide are mixed at a ratio of 6: 1 and calcined to mature the raw material, and then the unit crystal grain size is increased. Up to C and apply a magnetic field
This means that the axis is aligned in the direction of the magnetic field, compression and fixation are performed, and then sintering is performed. However, the molded body W anisotropically oriented in molding shrinks 20% in the direction of the magnetic field M, that is, the direction of the C axis of the hexagonal plate-shaped particles in sintering, as shown in FIG. It shows 10-12% shrinkage in the direction of the right angle. This indicates that a large amount of strain remains in the sintered body. That is, even though the shape is simple in the field, the powder in the inner hole of the mold in the steps of powder filling, magnetic field, and compression, the orientation of the powder due to the density of the magnetic field, the disorder of the direction of the magnetic force lines, etc. Since the uneven distribution of the partial density is unavoidable, the difference in shrinkage ratio results in a large and complicated strain remaining in the sintered body. Therefore, for example, even in the case of manufacturing a simple disk-shaped anisotropic magnet, the density is high in the center and low in the periphery, and the sintered body is cracked or cracked due to internal strain due to leakage of magnetic field lines. And so on. This causes more problems when compression molding an irregular magnet such as the bow-shaped anisotropic magnet Mg shown in FIG.

【0004】図10は上記のような弓形異方性磁石Mg
を圧縮成形により製造する場合の従来の成形型の一例を
示すもので、図において、50は非磁性材製のダイ、5
1・52はそのダイ50の内穴50a内の上下に配置し
た強磁性材よりなる上下パンチ、53は磁界コイルであ
る。上記の成形型で磁性粉を圧縮成形するに当たって
は、先ず、ダイ内穴50a内に配置した下パンチ52の
上部に磁性粉を充填する。そのときの磁性粉の嵩密度は
1.0程度の極めて粗な状態にある。その状態で上パン
チ51を下降させ、その上パンチ下端がダイ上端に至る
と、磁界コイル53に通電され、ダイ内穴内に磁界が発
生する。その磁界により磁性粒子は、C軸が磁界の方
向、図では上下方向に向いた状態に配向される。それと
同時に、上パンチ51が更に下降し、図の鎖線位置まで
移動して磁性粉は上記の配向状態のまま密に圧縮され
る。そのときの圧力は1〜2t/cm程度であり、圧縮終
了時の磁性粉の嵩密度は3.0程度となる。次に上記の
圧縮操作が完了後、磁界は解除され、脱磁のため反転減
衰磁界が掛けられて成形体が脱磁される。その後、上下
パンチの圧力が解除されてダイ50が下降し、内穴50
a内から成形体を抜き出して焼結した後、所定の形状寸
法に研磨仕上げを施すものである。
FIG. 10 shows the above-mentioned bow-shaped anisotropic magnet Mg.
FIG. 1 shows an example of a conventional molding die in the case of manufacturing by compression molding. In the figure, 50 is a die made of a non-magnetic material,
1 and 52 are upper and lower punches made of a ferromagnetic material which are arranged above and below in the inner hole 50a of the die 50, and 53 is a magnetic field coil. When the magnetic powder is compression-molded by the above-mentioned molding die, first, the magnetic powder is filled in the upper part of the lower punch 52 arranged in the die inner hole 50a. At that time, the bulk density of the magnetic powder is about 1.0, which is in an extremely coarse state. When the upper punch 51 is lowered in this state, and the lower end of the upper punch reaches the upper end of the die, the magnetic field coil 53 is energized and a magnetic field is generated in the inner hole of the die. The magnetic field causes the magnetic particles to be oriented with the C-axis oriented in the direction of the magnetic field, that is, in the vertical direction in the figure. At the same time, the upper punch 51 further descends and moves to the position indicated by the chain line in the figure, and the magnetic powder is densely compressed in the above-mentioned oriented state. The pressure at that time is about 1 to 2 t / cm, and the bulk density of the magnetic powder at the end of compression is about 3.0. Next, after the above-mentioned compression operation is completed, the magnetic field is released, and a reverse damping magnetic field is applied for demagnetization to demagnetize the molded body. After that, the pressure of the upper and lower punches is released, the die 50 descends, and the inner hole 50
After the molded body is extracted from the inside of a and is sintered, it is polished to a predetermined shape and dimension.

【0005】上記のような圧縮成形に用いる上下パンチ
51・52の対向面の形状は、製品形状に近い弓形とな
るように、一方は凸弧面、他方は凹弧面に形成される。
また上記の凸弧面および凹弧面の両端部は図10のよう
に略水平な面に形状されることが多い。従って圧縮成形
する際にダイ内穴内に磁性粉を充填したときの磁性粉の
上面は一般に平で、下パンチ上面は弧面であるため、そ
の弧面の中央部と両側部とで磁性粉の充填厚さが異な
り、上パンチ凹形面で圧縮成形したときは成形体の密度
に偏在が生じる。なおかつ上記の圧縮成形は磁界をかけ
た状態で徐々に進行し、上下パンチに磁力は集束されて
いるので上下パンチが接近するに従って磁束密度は変化
し、中央で強く、側部が弱くかつ側部からは磁力線のリ
ークも発生する。結局、中央部は密度が高く、側部、凹
部は低くなる。また磁界のローカルな濃淡の発生により
粒子の配向方向も偏差が発生する。
The upper and lower punches 51, 52 used for the compression molding as described above are formed so that the opposing surfaces have a convex arc surface on one side and a concave arc surface on the other side so as to have an arc shape close to a product shape.
Both ends of the convex arc surface and the concave arc surface are often formed into substantially horizontal surfaces as shown in FIG. Therefore, the upper surface of the magnetic powder when the magnetic powder is filled in the inner hole of the die during compression molding is generally flat, and the upper surface of the lower punch is an arc surface. The filling thickness is different, and when compression molding is performed on the upper punch concave surface, the density of the molded body is unevenly distributed. Further, the above compression molding gradually progresses under a magnetic field, and the magnetic force is focused on the upper and lower punches, so that the magnetic flux density changes as the upper and lower punches approach, and the magnetic force is strong in the center, weak on the side and weak on the side. Also, leakage of magnetic field lines occurs. As a result, the central portion has a high density, and the side portions and the concave portions have a low density. Further, due to the local generation of the light and shade of the magnetic field, the orientation direction of the particles also deviates.

【0006】以上のように圧縮成形法により弓形磁石を
製造する場合には、成形体内の密度の濃淡、および配向
方向の偏差は避けられない。そのため焼結の際には、成
形体内で収縮率の偏差、収縮方向の偏差が発生して、
歪、ひび、割れ等が多発する。その対策に、マグネット
メーカは現場技術において大変な努力を傾注するが、未
だ決め手がないのが現状である。
As described above, when manufacturing the arcuate magnet by the compression molding method, the density shading in the molded body and the deviation of the orientation direction are unavoidable. Therefore, during sintering, shrinkage ratio deviation and shrinkage direction deviation occur in the molded body,
Frequent distortion, cracks, cracks, etc. To deal with this, magnet manufacturers put a lot of effort into the field technology, but the current situation is that there is no deciding factor.

【0007】一方、押出成形により永久磁石を製造する
ことも知られており、いわゆる樹脂磁石の製造法として
の押出成形法と、磁性粉を成形し焼結して磁石を製造す
る際の成形を押出成形により行うものとがある。前者は
押出成形した後に焼結することなく製品が得られるので
製作が容易であるが、磁力の大きな異方性磁石を得るこ
とはできない。また後者のように磁性粉を押出成形する
ものとして、円筒状のラジアル異方性磁石の製造に押出
成形を適用したものがある(例えば特開昭56−125
813号、同昭56−125814号公報参照)。
On the other hand, it is also known to manufacture a permanent magnet by extrusion molding, and there are an extrusion molding method as a so-called resin magnet manufacturing method and a molding for manufacturing a magnet by molding and sintering magnetic powder. Some are performed by extrusion molding. The former is easy to manufacture because a product can be obtained without sintering after extrusion molding, but an anisotropic magnet having a large magnetic force cannot be obtained. In addition, as the latter one in which magnetic powder is extruded, there is one in which extrusion molding is applied to the production of a cylindrical radial anisotropic magnet (for example, JP-A-56-125).
813 and 56-125814.

【0008】[0008]

【発明が解決しようとする課題】しかし上記従来の製法
には以下のような問題があり、又その製法を弓形の異方
性磁石の製造に適用しても必ずしも良好な結果は得られ
ない。実際に、弓形異方性磁石を押出成形で製造するこ
とはなされていない。その最大の理由は、前記の圧縮成
形法で製造したものに比べて磁力が劣るためである。そ
の原因は、圧縮成形法においては成形時に達成した粒子
の配向が、そのまま圧縮固定され脱磁されるのに対し、
押出成形法による場合は配向を固定化するのが難しいか
らである。
However, the above conventional manufacturing method has the following problems, and even if the manufacturing method is applied to manufacture of an arched anisotropic magnet, good results are not always obtained. In fact, bow-shaped anisotropic magnets have not been manufactured by extrusion. The biggest reason is that the magnetic force is inferior to that produced by the compression molding method. The cause is that in the compression molding method, the orientation of the particles achieved at the time of molding is compressed and fixed as it is and demagnetized.
This is because it is difficult to fix the orientation when using the extrusion molding method.

【0009】例えば、上記従来の円筒状のラジアル異方
性磁石の製造に押出成形を応用したものにおいては、押
出機の吐出口の材質を軟磁性材料とし、これに接続した
円筒状をなすダイの成形穴内に電磁コイル等により放射
状の磁界を形成して、磁性粉とバインダとの混練物を連
続的に押出し成形すると同時に粒子配向を行うものであ
るが、ダイ通過後における磁性粒子の配向状態を維持す
るための手段が講じられていないため配向が崩れる等の
欠点がある。すなわち上記従来のものは、ダイ通過後に
おいても磁性粉とバインダおよび水の割合は変らず、従
って磁性粉の運動は自由な状態にあるため、図11の
(a)および(b)に示すように磁石56や鉄ヨーク5
7等の磁界発生手段を備えたダイを通過する際に、磁界
内では粒子は配向していても、磁界を脱出する時点にお
いてはダイの磁場に引かれて後方に偏向してしまうおそ
れがあった。また成形品(ワーク)は、成形後も帯磁し
ているので、例えば図12の(a)のように配向してい
たものが、成形してから切断し乾燥して焼結するまでの
間に内部反磁界の作用で同図(b)のように配向が崩れ
てしまう等の不具合がある。
For example, in the case where extrusion molding is applied to the manufacture of the above-mentioned conventional cylindrical radial anisotropic magnet, the material of the discharge port of the extruder is a soft magnetic material, and a cylindrical die connected to this is used. A radial magnetic field is formed in the molding hole of the magnetic coil etc. to continuously extrude and knead the kneaded material of the magnetic powder and the binder, and at the same time, the particle orientation is performed, but the orientation state of the magnetic particles after passing through the die. However, there is a defect that the orientation is broken because no means for maintaining the above is taken. That is, in the above-mentioned conventional device, the ratio of the magnetic powder to the binder and the water does not change even after passing through the die, so that the magnetic powder is free to move, and therefore, as shown in (a) and (b) of FIG. Magnet 56 and iron yoke 5
When passing through a die equipped with a magnetic field generating means such as No. 7, even if the particles are oriented in the magnetic field, at the time of exiting the magnetic field, they may be attracted by the magnetic field of the die and deflect backward. It was Further, since the molded product (work) is magnetized even after molding, for example, the one oriented as shown in (a) of FIG. Due to the action of the internal demagnetizing field, there is a problem that the orientation is broken as shown in FIG.

【0010】本発明は上記の問題点に鑑みて提案された
もので、磁力の強い弓形異方性磁石を、容易・安価に量
産することのできる製造方法および製造装置を提供する
ことを目的とする。
The present invention has been proposed in view of the above problems, and an object thereof is to provide a manufacturing method and a manufacturing apparatus capable of mass-producing bow-shaped anisotropic magnets having a strong magnetic force easily and at low cost. To do.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成としたものである。即ち、本
発明による弓形異方性磁石の製造方法は、主要工程とし
て、磁性粉とバインダとの混練物を横断面弓形に連続的
に押出成形する成形工程と、その成形工程で成形された
成形品を所定の長さに裁断して焼結する焼結工程とを有
し、上記成形工程において、磁性粉とバインダの混練物
を、所定の加温状態に維持して配向可能な流動状態で横
断面弓形に押出成形し、その押出成形の際に上記混練物
を、上記弓形断面よりも広い領域で発生させた磁界中を
通過させて異方化配向を施すと共に、磁界通過中に冷却
して硬度を上げることにより配向を固定化することを特
徴とする。上記のバインダとしては、例えばヒドロキシ
エチルセルローズとポリエチレンオキサイドのいずれか
一方または両方と水、およびポリエチレングリコールを
加えたものを用いる。その場合、混練物の加温温度は5
0℃〜90℃の範囲内とし、冷却は常温以下とすればよ
い。また本発明による弓形異方性磁石の製造装置は、加
熱手段を備え、磁性粉とバインダとの混練物を所定の加
温状態に維持して押し出す押出機の吐出口に、横断面弓
形の成形穴を有するサイジングダイと、冷却手段を備え
たプロロングとを連続的に設け、そのサイジングダイお
よびプロロングの少なくとも一部に上記成形穴よりも広
い領域でサイジングダイ内に磁界を発生させる磁界発生
手段を設けたことを特徴とする。
In order to achieve the above object, the present invention has the following constitution. That is, in the method for manufacturing an arched anisotropic magnet according to the present invention, as a main step, a molding step of continuously extruding a kneaded material of magnetic powder and a binder into a cross-section bow shape, and a molding step formed by the molding step. And a sintering step of cutting the product into a predetermined length and sintering, and in the molding step, a kneaded product of the magnetic powder and the binder is maintained in a predetermined heating state and oriented in a flowable state. Extruded into an arcuate cross section, and during the extrusion, the kneaded product is passed through a magnetic field generated in a region wider than the arcuate cross section to impart anisotropic orientation and cooled during passage of the magnetic field. The feature is that the orientation is fixed by increasing the hardness. As the above-mentioned binder, for example, one or both of hydroxyethyl cellulose and polyethylene oxide, water, and polyethylene glycol are used. In that case, the heating temperature of the kneaded product is 5
The temperature may be within the range of 0 ° C to 90 ° C, and the cooling may be performed at room temperature or lower. Further, the bow-shaped anisotropic magnet manufacturing apparatus according to the present invention is provided with a heating means, and the kneaded material of the magnetic powder and the binder is extruded while maintaining the kneaded product in a predetermined warmed state, and is formed into a cross-section bowed shape. A sizing die having a hole and a prolong provided with a cooling means are continuously provided, and a magnetic field is generated in at least a part of the sizing die and the prolong to generate a magnetic field in the sizing die in a region wider than the forming hole. Means are provided.

【0012】[0012]

【作用】上記の本発明による弓形異方性磁石の製造方法
によれば、磁性粉とバインダの混練物を、所定の加温状
態に維持して配向可能な流動状態で横断面弓形に押出成
形することにより、横断面弓形の成形品が連続的に形成
されるもので、その際に上記混練物を、上記弓形断面よ
りも広い領域で発生させた磁界中を通過させて異方化配
向を施すことにより、上記弓形断面の周方向両端部まで
良好かつ平均的に配向処理がなされると共に、その磁界
通過中に冷却し硬度を上げて配向を固定化することによ
り、上記のように配向がなされた状態のままで配向を固
定化することが可能となる。また、本発明による弓形異
方性磁石の製造装置は、加熱手段を備え、磁性粉とバイ
ンダとの混練物を所定の加温状態に維持して押し出す押
出機の吐出口に、横断面弓形の成形穴を有するサイジン
グダイと、冷却手段を備えたプロロングとを連続的に設
け、そのサイジングダイおよびプロロングの少なくとも
一部に上記成形穴よりも広い領域でサイジングダイ内に
磁界を発生させる磁界発生手段を設けたことにより、磁
性粉とバインダの混練物を押出成形の際に上記弓形断面
よりも広い領域で発生させた磁界中を通過させて異方化
配向を施すと共に、磁界通過中に冷却し、ワークの硬度
を上げると共に配向を固定化することが可能となる。
According to the above-described method for manufacturing the bow-shaped anisotropic magnet of the present invention, the kneaded material of the magnetic powder and the binder is extruded into a bow-shaped cross section in a fluid state in which the kneaded material can be oriented while maintaining a predetermined heating state. By doing so, a molded product having an arcuate cross-section is continuously formed. At that time, the kneaded product is passed through a magnetic field generated in a region wider than the arcuate cross-section to form an anisotropic orientation. By performing the treatment, both the circumferential ends of the arcuate cross section are favorably and averagely oriented, and the orientation is fixed by cooling while increasing the hardness during passage of the magnetic field to fix the orientation. It becomes possible to fix the orientation in the same state as it was. Further, the manufacturing apparatus of the bow-shaped anisotropic magnet according to the present invention is provided with a heating means, and the kneaded product of the magnetic powder and the binder is extruded while maintaining the kneaded product in a predetermined warmed state, and the cross-section has a bow-shaped cross section. A sizing die having a forming hole and a prolong provided with a cooling means are continuously provided, and a magnetic field for generating a magnetic field in the sizing die in a region wider than the forming hole in at least a part of the sizing die and the prolong. By providing the generating means, the kneaded material of the magnetic powder and the binder is subjected to anisotropic orientation by passing through the magnetic field generated in a region wider than the above-mentioned arcuate section at the time of extrusion molding, and while passing through the magnetic field. By cooling, the hardness of the work can be increased and the orientation can be fixed.

【0013】[0013]

【実施例】以下、本発明による弓形異方性磁石の製造方
法および製造装置を図に示す実施例に基づいて具体的に
説明する。図1は本発明による弓形異方性磁石の製造装
置の一実施例を示す要部の縦断側面図、図2は要部の拡
大横断正面図である。図において、1は押出機の吐出口
であり、該押出機の混練・押出機構等は図に省略した
が、磁性粉とバインダとを混練し脱気して押出すことが
できれば従来公知の各種構成のものが適用可能である。
その吐出口1には、非磁性材製の導入部材2を介して非
磁性かつ耐磨耗性材料よりなるサイジングダイ3が連結
され、そのサイジングダイ3の内部に上記吐出口からの
混練物を所定の弓形形状に成形する横断面弓形(円弧
状)の成形穴3aが形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and an apparatus for manufacturing an arched anisotropic magnet according to the present invention will be specifically described below based on the embodiments shown in the drawings. FIG. 1 is a vertical sectional side view of a main part showing an embodiment of a bow-shaped anisotropic magnet manufacturing apparatus according to the present invention, and FIG. 2 is an enlarged cross-sectional front view of the main part. In the figure, 1 is a discharge port of the extruder, and the kneading / extruding mechanism and the like of the extruder are omitted in the figure. However, if the magnetic powder and the binder can be kneaded, deaerated, and extruded, various conventionally known ones can be used. The configuration is applicable.
A sizing die 3 made of a non-magnetic and abrasion resistant material is connected to the discharge port 1 through a non-magnetic material introducing member 2, and the kneaded material from the discharge port is placed inside the sizing die 3. A forming hole 3a having an arcuate cross section (arcuate shape) for forming a predetermined arcuate shape is formed.

【0014】上記吐出口1および導入部材2の内部に
は、上記成形穴3a内に混練物を導く導入通路1a・2
aが形成され、その外周には混練物の保温用加熱コイル
4が設けられている。1b・2bは吐出口1と導入部材
2の連結用フランジである。また上記サイジングダイ3
の延長線上には、そのサイジングダイ3と同様の材質あ
るいは熱伝導度の良好な非磁性の材料よりなるプロロン
グ5がもうけられている。そのプロロング5の横断面形
状はサイジングダイ3と略同一に形成され、その内穴5
aはサイジングダイ3の成形穴3aと等しいか又は極僅
かに大きく形成することによって混練物の摩擦抵抗を軽
減するようにしている。
Introducing passages 1a and 2 for introducing the kneaded material into the molding hole 3a are provided inside the discharge port 1 and the introducing member 2.
a is formed, and the heating coil 4 for keeping the temperature of the kneaded material is provided on the outer periphery thereof. Reference numerals 1b and 2b are flanges for connecting the discharge port 1 and the introduction member 2. Also the above sizing die 3
A prolong 5 made of a material similar to that of the sizing die 3 or a non-magnetic material having a good thermal conductivity is provided on the extension line of. The cross-sectional shape of the prolong 5 is formed to be substantially the same as that of the sizing die 3, and the inner hole 5
"a" is formed to be equal to or slightly larger than the molding hole 3a of the sizing die 3 so as to reduce the frictional resistance of the kneaded material.

【0015】さらに上記サイジングダイ3およびプロロ
ング5の外周には、サイジングダイ3の全周と更にプロ
ロング5の一部を覆うようにして磁界発生手段6が設け
られている。その磁界発生手段6としては、永久磁石も
しくは電磁コイル等いずれでもよいが、好ましくは希土
類鉄磁石等の永久磁石を用いるのが経済的である。実施
例においては、図2に示すようにサイジングダイ3およ
びプロロング5の上下両側に希土類鉄磁石6a・6bを
密着させて配置したもので、その両磁石6a・6bの対
向面はサイジングダイ3の若干の厚みを介して成形穴3
aに対面し、両磁石6a・6bの対向面側が互いに異極
となるようにして、図中矢印で示すように放射方向の磁
界が発生するようにしている。また図示例においては上
記両磁石6a・6bの対向面がサイジングダイ3の弓形
成形穴3aの周方向長さよりも大きくなるようにして、
少なくとも成形穴3aの周方向長さ内にあっては、磁界
の強さ及び方向が均一に発生するようにしている。
Further, magnetic field generating means 6 is provided on the outer circumferences of the sizing die 3 and the prolong 5 so as to cover the entire circumference of the sizing die 3 and a part of the prolong 5. The magnetic field generating means 6 may be either a permanent magnet or an electromagnetic coil, but it is economical to use a permanent magnet such as a rare earth iron magnet. In the embodiment, as shown in FIG. 2, the rare earth iron magnets 6a and 6b are arranged in close contact with each other on the upper and lower sides of the sizing die 3 and the prolong 5, and the facing surfaces of the magnets 6a and 6b are the sizing die 3 and the sizing die 3 respectively. Forming hole 3 through the slight thickness of
The magnets 6a and 6b are opposed to each other so that their opposing surfaces have different polarities so that a magnetic field in the radial direction is generated as indicated by an arrow in the figure. In the illustrated example, the opposing surfaces of the magnets 6a and 6b are set to be larger than the circumferential length of the bow-forming hole 3a of the sizing die 3,
At least within the circumferential length of the molding hole 3a, the strength and direction of the magnetic field are uniformly generated.

【0016】また上記磁界発生手段6の側方のプロロン
グ外周には、冷却手段7が密着させて設けられ、その冷
却手段7は図の場合は冷却部材7aの内部に通水孔7b
を形成し、その孔7b内に冷却水を流通させて冷却する
構成である。その冷却部材7aおよび前記プロロング5
は熱伝導率の高い材料を用いるのが好ましく、また前記
磁界発生手段としての磁石6a・6bも熱伝導率の高い
材料を用いると、その磁石も上記冷却手段で冷却されて
成形品の冷却効率を増大させることができる。本実施例
においては、熱伝導率が7.7kcal/m・h・℃の
希土類鉄磁石を使用した。
A cooling means 7 is provided in close contact with the outer periphery of the prolongation on the side of the magnetic field generating means 6, and the cooling means 7 is provided with a water passage hole 7b inside the cooling member 7a in the case of the figure.
Is formed, and cooling water is circulated in the hole 7b to cool the hole. The cooling member 7a and the prolong 5
Is preferably made of a material having a high thermal conductivity, and when the magnets 6a and 6b as the magnetic field generating means are also made of a material having a high thermal conductivity, the magnets are also cooled by the cooling means to cool the molded product. Can be increased. In this example, a rare earth iron magnet having a thermal conductivity of 7.7 kcal / m · h · ° C was used.

【0017】次に、上記図1および図2の製造装置を用
いて弓形異方性磁石を製造する場合を例にして本発明に
よる製造方法を具体的に説明する。先ず、ほぼ単位結晶
粒径まで充分に粉砕したフェライト磁石等の磁性粉に、
バインダを混合する。そのバインダとしては、例えばヒ
ドロキシエチルセルローズとポリエチレンオキサイドの
いずれか一方または両方と水、およびポリエチレングリ
コールを加えたものを用いる。その場合の配合割合は、
磁性粉が100重量部に対してヒドロキシエチルセルロ
ーズとポリエチレンオキサイドのいずれか一方または両
方を合わせて0.1〜6.0重量部、水を5〜25重量
部、ポリエチレングリコールを0.1〜20重量部程度
とする。
Next, the manufacturing method according to the present invention will be specifically described by taking as an example the case of manufacturing an arched anisotropic magnet using the manufacturing apparatus shown in FIGS. First, add magnetic powder such as ferrite magnets that have been sufficiently crushed to approximately the unit crystal grain size,
Mix the binder. As the binder, for example, one or both of hydroxyethyl cellulose and polyethylene oxide, water, and polyethylene glycol are used. In that case, the mixing ratio is
0.1 to 6.0 parts by weight of either or both of hydroxyethyl cellulose and polyethylene oxide, 100 to 5 parts by weight of magnetic powder, 5 to 25 parts by weight of water, and 0.1 to 20 parts of polyethylene glycol. It is about parts by weight.

【0018】その磁性粉とバインダとの混合物を押出機
内に投入し、その押出機内の図に省略した混練・押出機
構により、充分に混練し、かつ脱気して50℃〜90℃
の範囲内、例えば70℃に加熱して押出機の吐出口1か
ら混練物を順次連続的に押し出す。すると、混練物は導
入部材2を介してサイジングダイ3内に導かれる。その
際、混練物は磁性粒子のモビリティをよくするために保
温用加熱コイル4によって上記の例えば70℃に維持さ
れて流動状態に保たれる。
The mixture of the magnetic powder and the binder is put into an extruder, and is sufficiently kneaded and deaerated by a kneading / extruding mechanism (not shown in the figure) in the extruder to 50 ° C. to 90 ° C.
Within a range of, for example, 70 ° C., and the kneaded product is continuously and continuously extruded from the discharge port 1 of the extruder. Then, the kneaded material is introduced into the sizing die 3 via the introducing member 2. At this time, the kneaded product is kept in a fluid state by being maintained at the above-mentioned 70 ° C. by the heating coil 4 for keeping heat in order to improve the mobility of the magnetic particles.

【0019】上記のサイジングダイ3内に導入された混
練物は、その成形穴3aの横断面形状に従って順次横断
面弓形に成形されると同時に、磁界発生手段6による磁
界の作用で混練物内の磁性粒子が所定の方向に配向され
る。すなわち実施例においては磁性粒子のC軸が上記弓
形断面の半径方向に向くように配向される。また磁界発
生手段6による磁界は、上記弓形断面の周方向に広く形
成されているので、成形体の周方向両端部に至るまで良
好に配向処理がなされる。
The kneaded material introduced into the above-mentioned sizing die 3 is successively shaped into an arcuate cross-section in accordance with the cross-sectional shape of the shaping hole 3a, and at the same time the magnetic field generated by the magnetic field generating means 6 causes the kneaded material to remain in the kneaded material. The magnetic particles are oriented in a predetermined direction. That is, in the embodiment, the C-axis of the magnetic particles is oriented in the radial direction of the arcuate section. Further, since the magnetic field generated by the magnetic field generating means 6 is widely formed in the circumferential direction of the above-mentioned arcuate cross section, the orientation treatment is satisfactorily performed up to both circumferential end portions of the molded body.

【0020】次いで、上記サイジングダイ3で横断面弓
形に成形された成形体(ワーク)は、引き続き上記磁界
発生手段6による磁界の作用を受けながら、プロロング
5内に順次導かれ、そのプロロング5内を通過する過程
で次第に冷却されて常温程度、例えば25℃程度まで冷
却されてプロロング5から順次排出される。従って、成
形体は急速に硬度を増して磁性粒子は上記の配向状態を
保持したままで固定化されるものである。
Next, the formed body (workpiece) formed by the sizing die 3 to have an arcuate cross section is successively guided into the prolong 5 while being subjected to the action of the magnetic field by the magnetic field generating means 6, and the prolong 5 is produced. In the process of passing through the inside of 5, it is gradually cooled to about room temperature, for example, about 25 ° C., and is sequentially discharged from the prolong 5. Therefore, the hardness of the molded body increases rapidly, and the magnetic particles are fixed while maintaining the above-mentioned orientation state.

【0021】なお、このときの混練物および成形品の温
度変化と、粒子の配向、配向固定、形状固定との関係を
図3に示す。同図右側に混練物の性状を示したが、60
℃付近以上90℃以下の温度帯で粘度を落とし混練物の
流動性を向上させて配向を完了した後、ほぼ60℃〜4
0℃において粘性を増大させ、かつ硬度を加えつつ進行
し、金型磁界を通過し終わるまでに40℃以下になるよ
うに冷却硬化を行う。結局、成形体は略常温まで冷却さ
れ、固化または半固化の状態でプロロング5を離れるこ
とになる。この段階で成形品はほぼ固化しているので、
粒子配向は乱れることなくプロロング5から成形品が排
出されるものである。
FIG. 3 shows the relationship between the temperature change of the kneaded product and the molded product at this time and the orientation of the particles, the orientation fixing, and the shape fixing. The properties of the kneaded product are shown on the right side of the figure.
After the viscosity is lowered in the temperature range of about 90 ° C. to 90 ° C. to improve the fluidity of the kneaded product and the orientation is completed, the temperature is about 60 ° C. to 4 °
At 0 ° C., the viscosity is increased, the hardness is increased, the progress is made, and the cooling and hardening is performed so as to be 40 ° C. or less before passing through the mold magnetic field. Eventually, the molded body is cooled to approximately room temperature and leaves the prolong 5 in a solidified or semi-solidified state. Since the molded product is almost solidified at this stage,
The molded product is discharged from Prolong 5 without disturbing the particle orientation.

【0022】次に、その成形品は常温における真空脱水
操作等を行って脱水、すなわち成形品の完全硬化(完全
固体化)を行い、交番減衰磁界等をかけて強制脱磁およ
び所定長さの切断を行って焼結工程のための処理を終わ
る。ついで焼結工程を経て製品を得るものである。
Next, the molded product is dehydrated by performing vacuum dehydration operation at room temperature, that is, the molded product is completely cured (completely solidified), and an alternating damping magnetic field is applied to force demagnetization and a predetermined length. The cutting is performed to complete the process for the sintering process. Then, a product is obtained through a sintering process.

【0023】以上のように高温融解バインダを用い、そ
のバインダと磁性粉とを充分に混練し、かつその混練物
は粒子が配向運動するに充分に柔らかく、また磁界が充
分な強さを持てば粒子配向度は高くかつ平均的であり、
しかも成形品内に密度の偏差も発生せず良好な弓形異方
性磁石が得られる。特に実施例では、55℃〜60℃と
いう低い融解点を持つバインダーを採用しているので、
混練物は僅かの加温で軟度を増し、成形品は僅かの冷却
で固化してしまう特徴があり、磁界をやや長くとり磁界
前半で配向を完了し、直ちに冷却して成形品を固化し配
向を固定することができるもので、前記従来の押出成形
の不具合および圧縮成形の欠点を解消することができ
る。また実施例のように磁界発生手段として希土類鉄磁
石を使用した場合には、両極の距離6mmにおいてダイ
成形穴内に6000G〜6640G程度の磁束密度が得
られ、従来の圧縮成形の場合の磁束密度4000G〜5
000Gよりはるかに高くすることが可能となる。
As described above, when the high-temperature melting binder is used, the binder and the magnetic powder are sufficiently kneaded, and the kneaded product is sufficiently soft for the particles to orient and the magnetic field has sufficient strength. The degree of grain orientation is high and average,
Moreover, a good bow-shaped anisotropic magnet can be obtained without any density deviation in the molded product. In particular, in Examples, since a binder having a low melting point of 55 ° C to 60 ° C is adopted,
The kneaded product increases in softness with a slight heating, and the molded product has the characteristic of solidifying with a slight cooling.The magnetic field is taken a little longer, orientation is completed in the first half of the magnetic field, and the molded product is solidified by cooling immediately. Since the orientation can be fixed, the problems of the conventional extrusion molding and the defects of the compression molding can be eliminated. When a rare earth iron magnet is used as the magnetic field generating means as in the embodiment, a magnetic flux density of about 6000 G to 6640 G is obtained in the die forming hole at a distance of 6 mm between both poles, and a magnetic flux density of 4000 G in the case of the conventional compression forming. ~ 5
It can be much higher than 000G.

【0024】また前述のように弓形異方性の製造に押出
成形法が採用されていない最大の原因は、圧縮成形法に
比べて磁力の劣る点であったが、焼結後の製品の密度
は、従来の圧縮成形法では4.9〜5.0程度であるの
に対し、本発明においては4.8〜4.85程度と僅少
の差のところまで達成できることが判った。しかも本発
明による押出成形法で配向の固定化を図ることにより、
従来の圧縮成形法と同等もしくはそれ以上の磁力を有す
る弓形異方性磁石を、圧縮成形法よりも容易に製造でき
るものである。
Further, as described above, the biggest reason why the extrusion molding method is not adopted for manufacturing the bow-shaped anisotropy is that the magnetic force is inferior to that of the compression molding method. It was found that while the conventional compression molding method has a value of about 4.9 to 5.0, the present invention can achieve a small difference of about 4.8 to 4.85. Moreover, by fixing the orientation by the extrusion molding method according to the present invention,
An arcuate anisotropic magnet having a magnetic force equal to or higher than that of the conventional compression molding method can be manufactured more easily than the compression molding method.

【0025】なお上記実施例は前記図2のように磁界発
生手段6としての磁石6a・6bの対向面を、周方向略
全長にわたって等間隔になるようにしたが、図4に示す
ように周方向中央部の間隔が両端部の間隔よりも漸次大
きくなるようにしてもよい。そのようにすると、例えば
モータ用磁石として使用した場合にノッキングを減少さ
せることができる。すなわち、例えばラジアル配向させ
た弓型異方性磁石Mgを図5に示すようにモータ用磁石
として使用した場合、磁性粒子のC軸はロータRの中心
を指して配列しており、磁石Mgの内周の至近に接して
プローブを置いて360°回転させて磁束密度を測定す
ると図6の実線aのような曲線を描く。このような台形
状のカーブを示し、かつ両端において反対極性の明瞭に
出るときには、ロータが回転する際に遅速のむらが生じ
てノッキングを起こし滑らかでスムーズな回転にならな
い。これは音響機器や電子計算機等のモータとして用い
る場合には致命的な欠点となる。それを解消するには図
6の破線bのような磁束分布にすればよいことが知られ
ている。そこで、前記図4のように極磁石6a・6bの
対向面側の間隔を周方向中央部が両端部よりも漸次大き
くなるようにすれば、磁力線Mは図のように弧の内極か
ら外極へ行くに従って漸次両側に広がるように湾曲し、
それに沿って磁性粒子のC軸が配向することとなる。そ
の結果、ミクロ的にみれば製造された弓形磁石の内弧の
中央部に向かってC軸が傾斜して向くことになり、従っ
て円弧内側の中央に磁力が集中するようになり、前記図
5に示すようなモータ用磁石として使用した場合の磁束
密度は図6の破線bのようになって前記のノッキングを
減少させることが可能となるものである。なお、前記図
4は図で上側の永久磁石6aの下面の形状を変えたが、
下側の永久磁石6bの上面の形状を変えてもよく、ある
いは両方変えてもよい。要するに弓形の成形穴3a内を
通る磁力線の傾斜を両極の弧の半径を変えることによ
り、簡単にコントロールできるわけで、ユーザの要望に
も容易に対応できることになる。
In the above embodiment, the facing surfaces of the magnets 6a and 6b as the magnetic field generating means 6 are arranged at equal intervals over substantially the entire length in the circumferential direction as shown in FIG. 2, but as shown in FIG. The interval at the center in the direction may be gradually larger than the interval at both ends. By doing so, knocking can be reduced when used as a magnet for a motor, for example. That is, for example, when the radially oriented bow-shaped anisotropic magnet Mg is used as a motor magnet as shown in FIG. 5, the C axes of the magnetic particles are arranged so as to point to the center of the rotor R, and When the magnetic flux density is measured by placing the probe in close contact with the inner circumference and rotating it by 360 °, a curve like a solid line a in FIG. 6 is drawn. When such a trapezoidal curve is shown and the opposite polarities clearly appear at both ends, unevenness of slow speed occurs when the rotor rotates, knocking occurs, and smooth and smooth rotation cannot be achieved. This is a fatal drawback when used as a motor for audio equipment and electronic computers. It is known that the magnetic flux distribution as shown by the broken line b in FIG. Therefore, as shown in FIG. 4, when the distance between the facing surfaces of the pole magnets 6a and 6b is gradually made larger in the circumferential center than at both ends, the magnetic force lines M are separated from the inner pole of the arc as shown in the figure. Bend to gradually expand to both sides as you go to the pole,
The C axis of the magnetic particles will be oriented along it. As a result, when viewed microscopically, the C-axis is inclined and directed toward the center of the inner arc of the manufactured arc-shaped magnet, so that the magnetic force is concentrated on the center of the inside of the arc. The magnetic flux density when used as a motor magnet as shown in FIG. 6 is as shown by the broken line b in FIG. 6, and it is possible to reduce the knocking. Although the shape of the lower surface of the upper permanent magnet 6a in FIG. 4 is changed,
The shape of the upper surface of the lower permanent magnet 6b may be changed, or both may be changed. In short, the inclination of the magnetic force line passing through the arcuate shaped hole 3a can be easily controlled by changing the radii of the arcs of both poles, and the user's request can be easily met.

【0026】〔実験例〕ストロンチウムフェライトの粉
末を40kg、ポリエチレングリコール粉末を3kg、
ヒドロキシエチルセルローズを0.2kgを予め準備し
た。ストロンチウムフェライト粉は平均粒径1.0μ、
ポリエチレングリコールは平均分子量20000でかつ
粉状のもの、ヒドロキシエチルセルローズは粉状のもの
を先ずミキサーに依り充分に混合する。次に水5.5k
gをこれに加え混練機に投入して、混練かつ脱気をし
た。次に真空脱気、加温シリンダを有する押出成形機に
投入し、押出成形を行った。なお、その押出成形機吐出
部の磁界サイジングダイ成形穴の寸法を内径17.5m
m×外径22mm×弦幅21.2mmとして、サイジン
グダイを挟んで、Br12.2KG、bHe11.4K
Oeの希土類鉄磁石を使用して両極を形成した。サイジ
ングダイ成形穴の中心部付近において磁束密度6440
Gを得た、その長さは120mmとした。また、押出機
内の混練物の温度は70℃とし、冷却は20℃の水を使
用した。成形品は長尺にして、半固体状のものを得た。
これを略300mmの長さに切り、真空乾燥機に入れ
た。その真空乾燥機は5.5kWの水封式真空ポンプに
て、真空度500mmHg、約2時間をかけた。
[Experimental Example] 40 kg of strontium ferrite powder, 3 kg of polyethylene glycol powder,
0.2 kg of hydroxyethyl cellulose was prepared in advance. Strontium ferrite powder has an average particle size of 1.0μ,
First, polyethylene glycol having an average molecular weight of 20,000 and being in powder form and hydroxyethyl cellulose being in powder form are first thoroughly mixed with a mixer. Next 5.5k of water
g was added to this, and the mixture was put into a kneading machine for kneading and deaeration. Next, the mixture was put into an extrusion molding machine having a vacuum deaeration and heating cylinder to perform extrusion molding. In addition, the dimension of the magnetic field sizing die forming hole in the discharge part of the extruder is set to be 17.5 m
m × outer diameter 22 mm × chord width 21.2 mm, sandwiching a sizing die, Br12.2KG, bHe11.4K
Both poles were formed using a rare earth iron magnet of Oe. Magnetic flux density 6440 near the center of the sizing die forming hole
G was obtained and its length was 120 mm. The temperature of the kneaded material in the extruder was 70 ° C., and the cooling was water at 20 ° C. The molded product was elongated to obtain a semi-solid product.
This was cut into a length of about 300 mm and placed in a vacuum dryer. The vacuum dryer was a 5.5 kW water-sealed vacuum pump, and the degree of vacuum was 500 mmHg, and it took about 2 hours.

【0027】以上により成形品中の水分は4%弱とな
り、成形品は硬い固体となった。次にこれをパルス脱磁
機により、ピーク出力1500Aから交番減衰により脱
磁し次に22mmに切断し、1220℃、10時間にて
焼結した。焼結終了後、研摩加工により外半径11mm
×内半径8.1mm×弦幅16.0mm×長さ13mm
の弓形の磁石を得た。着磁機は450μF、1500V
の出力により弓形磁石の内側がN極となるものと、内側
がS極となるものとを作った。
As a result, the water content in the molded product became a little less than 4%, and the molded product became a hard solid. Next, this was demagnetized by a pulse demagnetizer from a peak output of 1500 A by alternating attenuation, then cut to 22 mm, and sintered at 1220 ° C. for 10 hours. After sintering, the outer radius is 11 mm by polishing
× Inner radius 8.1 mm × Chord width 16.0 mm × Length 13 mm
I got a bow-shaped magnet. Magnetizer is 450μF, 1500V
By the output of the above, an arc magnet having an N pole inside and an magnet having an S pole inside are formed.

【0028】〔比較例1〕次に上記の比較例としてスト
ロンチウムフェライトの粉末40kgをとり、バイン
ダ、水ならびに前処理を上記実施例と同様にして押出成
形を行った。ただし成形に当っては冷却処理はしなかっ
た。その結果、温度が高く、軟度が高い成形品が得られ
た。それを空中放置し、冷えて硬化したところで、脱水
処理して切断し、実施例と全く同条件で焼結ならびに研
磨仕上を施して実施例と同寸法の弓形磁石を得た。着磁
も実施例と同条件とした。
Comparative Example 1 Next, as the above-mentioned comparative example, 40 kg of strontium ferrite powder was taken, and extrusion molding was carried out in the same manner as in the above-mentioned example for the binder, water and pretreatment. However, no cooling treatment was applied to the molding. As a result, a molded product having a high temperature and a high degree of softness was obtained. When it was left in the air, cooled and hardened, it was dehydrated, cut, and subjected to sintering and polishing finish under exactly the same conditions as in Example to obtain an arc-shaped magnet having the same dimensions as in Example. The magnetization was also performed under the same conditions as in the example.

【0029】〔比較例2〕更に他の比較例として通常の
圧縮成形法により同寸法の等方性弓形磁石を作り、前記
実施例と同様の着磁を行った。
[Comparative Example 2] As yet another comparative example, an isotropic arc-shaped magnet having the same size was produced by a usual compression molding method, and magnetized in the same manner as in the above-mentioned example.

【0030】以上の実施例および比較例1、2で得られ
た磁石を、厚さ1mm、内径22.05mmの円筒の内
側にそれぞれN極、S極をもつ弓形磁石を対向させてセ
ットし、そのトータルフラックスを測定したところ、各
例それぞれ下記表1に示す磁力を得た。なお下記表中の
比率は比較例2の等方性の場合を100としたときの比
率を表す。 上記の表からも明らかなように、本発明による実施例
は、比較例2の等方性よりも99%、従来の押出成形法
すなわち冷却固化を実施しない押出成形法よりも27%
の向上となった。
The magnets obtained in the above Examples and Comparative Examples 1 and 2 were set inside a cylinder having a thickness of 1 mm and an inner diameter of 22.05 mm with arcuate magnets having N and S poles facing each other. When the total flux was measured, the magnetic force shown in Table 1 below was obtained for each example. The ratios in the table below are ratios when the isotropic case of Comparative Example 2 is 100. As is clear from the above table, the examples according to the present invention are 99% more than isotropic in Comparative Example 2 and 27% more than the conventional extrusion molding method, that is, the extrusion molding method in which cooling and solidification is not performed.
Has improved.

【0031】[0031]

【発明の効果】以上説明したように、本発明による弓形
異方性磁石の製造方法は、磁性粉とバインダの混練物
を、所定の加温状態に維持して配向可能な流動状態で横
断面弓形に押出成形し、その押出成形の際に上記混練物
を、上記弓形断面よりも広い領域で発生させた磁界中を
通過させて異方化配向を施すと共に、磁界通過中に冷却
して硬度を上げることにより配向を固定化するようにし
たので、上記弓形断面の周方向両端部まで良好に配向が
なされると共に、その配向処理する際の磁界通過中に冷
却し硬度を上げて配向を固定化することにより、上記の
ように良好に配向がなされた状態のままで配向を固定化
することができる。従って前記従来の押出成形法のよう
に成形品が充分に硬化していない状態で磁界を出ること
により成形品中の磁性粒子が後方に引かれて配向が乱れ
たり、内部の反発磁力で配向が乱れるのを防止すること
が可能となり、従来の圧縮成形法よりもシンプルな金型
と、機構とによって成形できることとなった。また本発
明による製造装置によれば、磁性粉とバインダとの混練
物を所定の加温状態に維持して押し出す押出機の吐出口
に、横断面弓形の成形穴を有するサイジングダイと、冷
却手段を備えたプロロングとを連続的に設け、そのサイ
ジングダイおよびプロロングの少なくとも一部に上記成
形穴よりも広い領域でサイジングダイ内に磁界を発生さ
せる磁界発生手段を設けるだけの極めて簡単な構成によ
って、磁力の強い弓形異方性磁石を容易・安価に量産で
きるものである。
As described above, according to the method for manufacturing the bow-shaped anisotropic magnet of the present invention, the kneaded material of the magnetic powder and the binder is maintained in a predetermined heating state and can be oriented in a cross-section in a flowable state. Extruded into a bow shape, the kneaded product at the time of the extrusion molding is passed through a magnetic field generated in a region wider than the cross section of the bow to give an anisotropic orientation, and is cooled and hardened while passing through the magnetic field. Since the orientation is fixed by raising the temperature, the orientation is satisfactorily extended to both ends in the circumferential direction of the above-mentioned arcuate section, and the orientation is fixed by cooling while passing through a magnetic field to increase the hardness. As a result, the orientation can be fixed in the state in which the orientation is excellent as described above. Therefore, as in the conventional extrusion molding method, the magnetic particles in the molded product are drawn backward to disturb the orientation, or the orientation is disturbed by the internal repulsive magnetic force when the magnetic field is emitted in a state where the molded article is not sufficiently cured. It is possible to prevent the disorder, and it is possible to mold with a simpler mold and mechanism than the conventional compression molding method. Further, according to the manufacturing apparatus of the present invention, a sizing die having a cross-sectionally arcuate forming hole at a discharge port of an extruder for extruding while maintaining a kneaded material of magnetic powder and a binder in a predetermined heating state, and a cooling means. And a prolong provided continuously, and at least a part of the sizing die and the prolong are provided with a magnetic field generating means for generating a magnetic field in the sizing die in a region wider than the molding hole, which is an extremely simple structure. This makes it possible to mass-produce bow-shaped anisotropic magnets with strong magnetic force easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による弓形異方性磁石の製造装置の一実
施例を示す縦断側面図。
FIG. 1 is a vertical sectional side view showing an embodiment of a bow-shaped anisotropic magnet manufacturing apparatus according to the present invention.

【図2】上記実施例における製造装置の要部の横断正面
図。
FIG. 2 is a cross-sectional front view of the main part of the manufacturing apparatus in the above embodiment.

【図3】押出し過程での混練物の温度と配向状態等との
関係を示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between the temperature of the kneaded material and the orientation state during the extrusion process.

【図4】本発明による弓形異方性磁石の製造装置の変形
例を示す要部の横断正面図。
FIG. 4 is a cross-sectional front view of essential parts showing a modified example of the manufacturing apparatus for the arched anisotropic magnet according to the present invention.

【図5】弓形磁石をモータ用磁石として用いる場合の配
置構成を示す説明図。
FIG. 5 is an explanatory diagram showing an arrangement configuration when an arcuate magnet is used as a motor magnet.

【図6】弓形磁石をモータ用磁石として用いた場合の磁
束密度分布を示す説明図。
FIG. 6 is an explanatory diagram showing a magnetic flux density distribution when an arc magnet is used as a motor magnet.

【図7】フェライト磁石の単位結晶粒子の斜視図。FIG. 7 is a perspective view of unit crystal particles of a ferrite magnet.

【図8】圧縮成形法により磁石を製造する場合の収縮率
を示す説明図。
FIG. 8 is an explanatory diagram showing a shrinkage ratio when a magnet is manufactured by a compression molding method.

【図9】弓形異方性磁石の斜視図。FIG. 9 is a perspective view of an arched anisotropic magnet.

【図10】従来の圧縮成形法による弓形異方性磁石の製
造方法の説明図。
FIG. 10 is an explanatory view of a method for manufacturing a bow-shaped anisotropic magnet by a conventional compression molding method.

【図11】(a)・(b)は押出成形時の配向の乱れを
示す説明図。
11 (a) and (b) are explanatory views showing disorder of orientation during extrusion molding.

【図12】(a)・(b)は磁界中の配向状態と着磁後
の配向の乱れを示す説明図。
12A and 12B are explanatory views showing the alignment state in a magnetic field and the alignment disorder after magnetization.

【符号の説明】[Explanation of symbols]

1 押出機突出口 2 導入部材 3 サイジングダイ 3a 成形穴 5 プロロング 6 磁界発生手段 7 冷却手段 1 Extruder Projection Port 2 Introducing Member 3 Sizing Die 3a Forming Hole 5 Prolong 6 Magnetic Field Generating Means 7 Cooling Means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主要工程として、磁性粉とバインダとの
混練物を横断面弓形に連続的に押出成形する成形工程
と、その成形工程で成形された成形品を所定の長さに裁
断して焼結する焼結工程とを有し、 上記成形工程において、磁性粉とバインダの混練物を、
所定の加温状態に維持して配向可能な流動状態で横断面
弓形に押出成形し、その押出成形の際に上記混練物を、
上記弓形断面よりも広い領域で発生させた磁界中を通過
させて異方化配向を施すと共に、磁界通過中に冷却して
硬度を上げることにより配向を固定化することを特徴と
する弓形異方性磁石の製造方法。
1. A molding step of continuously extruding a kneaded material of magnetic powder and a binder in a cross-section bow shape as a main step, and cutting the molded article molded in the molding step to a predetermined length. Sintering step of sintering, in the molding step, a kneaded product of the magnetic powder and the binder,
Extruded into an arcuate cross-section in a flowable state that can be orientated while maintaining a predetermined heating state, and during the extrusion molding, the kneaded product is
An arched anisotropic shape characterized in that it is anisotropically oriented by passing through a magnetic field generated in a region wider than the above-mentioned cross section, and is fixed by cooling to increase hardness during passage of the magnetic field. Method for manufacturing a transparent magnet.
【請求項2】 上記のバインダはヒドロキシエチルセル
ローズとポリエチレンオキサイドのいずれか一方または
両方と水、およびポリエチレングリコールを加えたもの
を使用することを特徴とする請求項(1)記載の異方性
磁石の製造方法。
2. The anisotropic magnet according to claim 1, wherein the binder is made by adding one or both of hydroxyethyl cellulose and polyethylene oxide, water, and polyethylene glycol. Manufacturing method.
【請求項3】 上記混練物の加温温度は50℃〜90℃
の範囲内とし、冷却は常温以下とする請求項(2)記載
の異方性磁石の製造方法。
3. The heating temperature of the kneaded product is 50 ° C. to 90 ° C.
The method for producing an anisotropic magnet according to claim (2), wherein the temperature is within the range of and the cooling is performed at room temperature or lower.
【請求項4】 加熱手段を備え、磁性粉とバインダとの
混練物を所定の加温状態に維持して押し出す押出機の吐
出口に、横断面弓形の成形穴を有するサイジングダイ
と、冷却手段を備えたプロロングとを連続的に設け、そ
のサイジングダイおよびプロロングの少なくとも一部に
上記成形穴よりも広い領域でサイジングダイ内に磁界を
発生させる磁界発生手段を設けたことを特徴とする弓形
異方性磁石の製造装置。
4. A sizing die having heating means, a sizing die having a cross-sectionally arcuate forming hole at a discharge port of an extruder for extruding a kneaded material of magnetic powder and a binder while maintaining a predetermined heating state, and a cooling means. And a prolong provided continuously, and at least a part of the sizing die and the prolong are provided with magnetic field generating means for generating a magnetic field in the sizing die in a region wider than the molding hole. Equipment for manufacturing bow-shaped anisotropic magnets.
JP18304591A 1991-06-27 1991-06-27 Method and device for manufacturing bow-type anisotropic magnet Withdrawn JPH05205959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18304591A JPH05205959A (en) 1991-06-27 1991-06-27 Method and device for manufacturing bow-type anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18304591A JPH05205959A (en) 1991-06-27 1991-06-27 Method and device for manufacturing bow-type anisotropic magnet

Publications (1)

Publication Number Publication Date
JPH05205959A true JPH05205959A (en) 1993-08-13

Family

ID=16128782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18304591A Withdrawn JPH05205959A (en) 1991-06-27 1991-06-27 Method and device for manufacturing bow-type anisotropic magnet

Country Status (1)

Country Link
JP (1) JPH05205959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304173A (en) * 2003-03-17 2004-10-28 Neomax Co Ltd Generation magnetic field equipment, and magnetic field orientation equipment using the same
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus
WO2019238981A3 (en) * 2019-08-20 2020-04-02 Siemens Gamesa Renewable Energy A/S Mould and method for manufacturing flux focusing permanent magnets comprising spread magnetic flux lines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304173A (en) * 2003-03-17 2004-10-28 Neomax Co Ltd Generation magnetic field equipment, and magnetic field orientation equipment using the same
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus
WO2019238981A3 (en) * 2019-08-20 2020-04-02 Siemens Gamesa Renewable Energy A/S Mould and method for manufacturing flux focusing permanent magnets comprising spread magnetic flux lines

Similar Documents

Publication Publication Date Title
WO2008145002A1 (en) Method of moulding radial ring magnet and device thereof
US5733580A (en) Dies for extrusion moulding
JPH05205959A (en) Method and device for manufacturing bow-type anisotropic magnet
CN109369169A (en) A method of reducing dry-pressing formed strontium ferrite outer radial multi-pole magnet-ring cracking
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2003164082A (en) Ferrite magnet, rotating machine and production method of ferrite magnet
JPH03171609A (en) Manufacture of anisotropic magnet and device therefor
JPH05101956A (en) Manufacture of anisotropic magnet of cylindrical shape
JPH09148166A (en) Manufacture of resin-bonded magnet
JPH06236807A (en) Resin-bonded magnet and its manufacture
JP3012492B2 (en) Manufacturing method of anisotropic magnet by dry forming method
JPS5980904A (en) Manufacture of bond magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
CN1230839C (en) Method for producing through extrusion anisotropic magnet with high energy product
JPH02251111A (en) Manufacture of resin bonded type rare earth magnet
JPS60216523A (en) Manufacture of anisotropic resin magnet sheet
KR100511165B1 (en) Manufacturing process for multi-polarization ferrite magnet
JPS60208817A (en) Manufacture of anisotropic resin magnet
CN114023551A (en) Anisotropic rubber composite rare earth permanent magnet orientation forming process
KR100247689B1 (en) Permanent ferrite magnet manufacturing method by controlling the shrinkage of the particle's outer diameter
Zheng et al. Hot Forward-Extruded Nanocrystalline Anisotropic Nd-Fe-B Magnetic Sheets with High Magnetic Properties
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPS60115422A (en) Manufacture of magnetic roll
JPH02222108A (en) Magnet roll
JPH10106874A (en) Manufacturing method of anisotropic magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903