JPS5980904A - Manufacture of bond magnet - Google Patents

Manufacture of bond magnet

Info

Publication number
JPS5980904A
JPS5980904A JP19227882A JP19227882A JPS5980904A JP S5980904 A JPS5980904 A JP S5980904A JP 19227882 A JP19227882 A JP 19227882A JP 19227882 A JP19227882 A JP 19227882A JP S5980904 A JPS5980904 A JP S5980904A
Authority
JP
Japan
Prior art keywords
molded body
magnetic field
manufacturing
bonded magnet
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19227882A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19227882A priority Critical patent/JPS5980904A/en
Publication of JPS5980904A publication Critical patent/JPS5980904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Abstract

PURPOSE:To obtain an isotropic bond magnet easily by a simple equipment by a method wherein an extruded body is given an isotropic property by a pulse magnetic field applied to its magnetized surface and, after being dried, treated by a thermal process and impregnated by organic macromolecule compound and, after being solidified or hardened, magnetized to the same direction as the isotropic property has been given. CONSTITUTION:Organic binder, fine particle additive and mixing medium are added according to the requirement to ferrite particles and mixed and kneaded. This mixture is supplied into a hopper 1 and mixed and kneaded and compressed by a kneader screw 2 and cut by a shredder 3 and extruded by an extruding screw 6 through a tapered barrel 7 and a die 8. The extruded body is cut to a prescribed length at an outlet of the die. Reduction ratio at the extrusion is expressed by the ratio So/S of the area So of the auger of the extruder and the area S of the outlet of the die. The suitable So/S ratio is 3-100 and especially a range of 20-70 is desirable. When the reduction ratio is too small, isotropicalization isn's progressed enough and when the reduction ratio is too large, cracking or breaking occurs at the time of extrusion. The extruded body thus obtained is dried and treated by a thermal process and then impregnated by macromolecule compound and solidified or hardened and magnetized.

Description

【発明の詳細な説明】 本発明は電子複写機、音響機器、回転機器等に用いられ
るフェライト磁石の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ferrite magnets used in electronic copying machines, audio equipment, rotating equipment, and the like.

スピーカ、小型直流モータ、磁石式回転機等に用いられ
るプラスチックマグネット、ゴムマグネットなどのボン
ド磁石の成形法としては、通常射出成形法、圧縮成形法
および押出成形法が用いられている。これら成形法の内
、特に磁気特性の高い異方性ボンド磁石を得る場合には
、磁界中で磁粉、バインダーおよび必要に応じて添加さ
れる表面改質材、滑剤等より構成される混線物を加熱圧
縮成形する磁場成形でおこなわれでいる。また、最近に
なって磁場中射出成形の検討も開始されており、円板状
の異方性プラスチックマグネットが作成されている。押
出し成形法は、小型モータ等に用いられる円筒状あるい
は板状のゴム磁石あるいはプラスチック磁石の製造に適
用されている。
BACKGROUND ART Injection molding, compression molding, and extrusion molding methods are generally used to mold bonded magnets such as plastic magnets and rubber magnets used in speakers, small DC motors, magnetic rotating machines, and the like. Among these forming methods, when obtaining anisotropic bonded magnets with particularly high magnetic properties, a contaminant consisting of magnetic powder, a binder, and optionally added surface modifiers, lubricants, etc. is used in a magnetic field. This is done by magnetic field molding using hot compression molding. In addition, studies have recently begun on injection molding in a magnetic field, and disk-shaped anisotropic plastic magnets have been produced. The extrusion molding method is applied to the production of cylindrical or plate-shaped rubber magnets or plastic magnets used in small motors and the like.

また、マグネットロール用の長尺円筒状フェライト磁石
を押出成形により成形することも特開昭49−7553
6号に示されている。
In addition, it is also possible to form long cylindrical ferrite magnets for magnet rolls by extrusion molding according to Japanese Patent Application Laid-open No. 49-7553.
It is shown in No.6.

上記の各種成形法のうら、押出成形法は成形能率が高く
、射出成形法の如く複雑な構造の金型が不要で、且つ連
続成形が可能であることから、生産性の大幅向上が可能
となるほか、押出し成形時に異方性がイ」与されるため
磁気特性の向上が期待できるが、異方性フェライトボン
ド磁石としての特性を満足するには不十分である。そこ
r押出成形することが一般に行なわれているほか、特公
昭47−34192号に示されているように、焼結磁石
用の場合であるが、磁場の印加に加えて特殊なノズルを
用いるなどの提案がなされている。このように押出成形
により異方性ボンド磁石を得るためには、磁場中成形が
一般的であるが、印加される外部磁場が押出成形時の抵
抗となる。異り性を強化する目的で、外部磁場を強化し
た場合、特にスクリュータイプの連続押出成形機では、
オーガの空転が生じ、しばしば成形が困難ないしは不可
能となる。
Among the various molding methods mentioned above, extrusion molding has high molding efficiency, does not require a mold with a complicated structure like injection molding, and can be continuously molded, making it possible to significantly improve productivity. In addition, since anisotropy is imparted during extrusion molding, improvement in magnetic properties can be expected, but this is insufficient to satisfy the properties of an anisotropic ferrite bonded magnet. In addition to extrusion molding, which is generally used for sintered magnets, as shown in Japanese Patent Publication No. 47-34192, special nozzles are used in addition to applying a magnetic field. proposals have been made. In order to obtain an anisotropic bonded magnet by extrusion molding in this way, molding in a magnetic field is generally used, but the applied external magnetic field becomes a resistance during extrusion molding. When the external magnetic field is strengthened for the purpose of strengthening the dissimilarity, especially in screw type continuous extrusion molding machines,
Auger slippage occurs, often making forming difficult or impossible.

また、磁a装置自体も大型化する。Furthermore, the magnetic a device itself becomes larger.

本発明の目的は、簡単な装置でしかも容易に押出成形に
より異方性ボンド磁石を得ることのできる製造方法を提
供することである。
An object of the present invention is to provide a manufacturing method that allows anisotropic bonded magnets to be easily obtained by extrusion using a simple device.

本発明のボンド磁石の製造方法は、マグネットプラムバ
イト方磁性粒子を主成分とし必要に応じて混合媒体、バ
インダーならびに微粒子添加物を加えてなる混和物を押
出成形し、得られた成形体を乾燥し、ついで焼結してな
るフェライト磁石の製造方法において、前記成形体の被
着磁面にパルス磁場を印加して異方性を付与させ、つい
で乾燥後、熱処理を施した後、有機高成分化合物を該成
形体に含浸後、固化ないしは硬化せしめたのち前記顕方
性伺与方向と同一方向に着機することを特徴としている
The method for manufacturing a bonded magnet of the present invention involves extrusion molding a mixture consisting mainly of magnet plumbite magnetic particles and optionally adding a mixing medium, a binder, and particulate additives, and drying the obtained molded product. In the method for producing a ferrite magnet by sintering, a pulsed magnetic field is applied to the magnetized surface of the molded body to impart anisotropy, and after drying and heat treatment, an organic high-component It is characterized in that after the compound is impregnated into the molded body and solidified or hardened, it is deposited in the same direction as the direction in which the appearance is imparted.

以下本発明の詳細を図面に基いて説明する。第1図は押
出成形機のうちスクリュータイプの押出成形機の概略断
面図を示している。まず原料としてマグネットプラムバ
イト型フェライト粒子を準備するが、該粒子の粒径が小
さいと成形性が低下し一方大きすぎるとマルチドメイン
を成形し、保磁力が急激に低下する。該粒子の粒径は約
0.7〜1.8μmの範囲が好ましい。またこのフェラ
イト粒子の他に成形性改善のためにメチルセルロースカ
ルボキシメチルセルロースなどの有機バインダーをフェ
ライト粒子に対し・て約2重量%以下加えてもよい。
The details of the present invention will be explained below based on the drawings. FIG. 1 shows a schematic sectional view of a screw type extrusion molding machine. First, magnetic plumbite type ferrite particles are prepared as a raw material, but if the particle size of the particles is small, the formability will decrease, while if the particle size is too large, multidomains will be formed and the coercive force will drop sharply. The particle size of the particles preferably ranges from about 0.7 to 1.8 μm. In addition to the ferrite particles, an organic binder such as methyl cellulose carboxymethyl cellulose may be added in an amount of about 2% by weight or less based on the ferrite particles to improve moldability.

通常のボンド磁石の製造法は、フエライ1〜粒子中に転
移、欠陥等が存在づると磁気特性を低下させるため、あ
らかじめ800℃ないし1100℃程度で焼鈍した粒子
を用いる必要がある。用いるバインダーとしては、ポリ
アミド樹脂、71ノ一ル樹脂エチレン酢酸ビニル共重合
樹脂、ポリプロビリン、ポリアミ1ミイミド、ポリスチ
レン、ポリフェニレンサルファイド、およびゴム系の高
分子として、クロロプレンブタジェン、クロロスルホン
化ポリエチレン、ニトリルゴム、アクリルゴム等の高成
分が公知として用いられている。すなわち、予め焼鈍さ
れたフェライト粒子と上記バインダーとを適当な温度の
もとて加熱混線をおこなって、コンパウドを作成し、次
いで加熱成形をおこなうことによりボンド磁石を得る方
性が通常である。異方性磁石を得る場合には、磁場中成
形をおこなう。
In the conventional manufacturing method of bonded magnets, it is necessary to use particles that have been annealed in advance at about 800 DEG C. to 1100 DEG C., since the presence of dislocations, defects, etc. in the Ferrite particles deteriorates the magnetic properties. The binders used include polyamide resin, 71-noryl resin, ethylene vinyl acetate copolymer resin, polypropylene, polyamide 1 imide, polystyrene, polyphenylene sulfide, and rubber-based polymers such as chloroprene butadiene, chlorosulfonated polyethylene, and nitrile. High-component materials such as rubber and acrylic rubber are known and used. That is, a bonded magnet is usually obtained by heating and mixing pre-annealed ferrite particles and the binder at an appropriate temperature to create a compound, and then heating and forming the compound. When obtaining an anisotropic magnet, molding is performed in a magnetic field.

本発明の方法では、フェライト磁粉はあらかじめ焼鈍を
施す必要はなく、上記0.7〜1.5μm程度の通常の
フェライト粉で十分である。成形時のバインダーは、上
記メチルセルロース等が用いられる。また水、アルコー
ルなどの混合媒体を加えてもよいが混合媒体の量が10
重量%以下では粘度が過大となるため押出し成形の際の
絞り効化による異り性化が促進されず、また成形密度が
局部的にバラツキ、成形、乾燥又は熱処理後のクラック
などが生じやJくなる。一方混合媒体の量が30重量で
は異方性化は促進されるものの、乾燥時におけるクラッ
クが生じたり、成形時における高密度化が阻害されるな
どの問題が生じる。よって混合の量はフェライト粒子に
対して10〜30重量%の範囲が好ましい。
In the method of the present invention, the ferrite magnetic powder does not need to be annealed in advance, and the above-mentioned normal ferrite powder of about 0.7 to 1.5 μm is sufficient. As a binder during molding, the above-mentioned methylcellulose or the like is used. Also, a mixed medium such as water or alcohol may be added, but the amount of mixed medium is 10
If the viscosity is less than % by weight, the viscosity will be too high, and the drawing effect during extrusion will not promote differentiating properties, and the forming density will locally vary, and cracks may occur after forming, drying, or heat treatment. It becomes. On the other hand, if the amount of the mixed medium is 30 weight, although anisotropy is promoted, problems such as cracks occurring during drying and densification during molding are inhibited occur. Therefore, the mixing amount is preferably in the range of 10 to 30% by weight based on the ferrite particles.

上記のフェライト粒子の必要に応じて有機バインダー、
微粒子添加物、混合媒体を加えて二一夕等により混練し
、この混和物を第1図に示すホッパー1に装入し、混線
スクリュー2により混線圧縮し、ついでシュレツター3
で切断し、この時真空室4にて真空ポンプ5により脱気
し、そして押出スクリュー6によってテーパーバレル7
および金型8を経て成形体が押出され、金型出口にて所
定の長さに切断される。この押出成形時の絞り率は、押
出成形機のオーガー面積をSOそし工金型出l]面槓を
Sと覆るSo /Sで表わされるが、このSo /Sは
3〜100の範囲が好ましくより好まシ、りは20〜7
0である。づなわち絞り率が少なづ−き゛ると異方性化
が十分に促進されず一方絞り率が大きづぎると成形時の
クラックや割れの発生を伴う。
Organic binder as required for the above ferrite particles,
Fine particle additives and a mixing medium are added and kneaded for two nights, etc., and this mixture is charged into the hopper 1 shown in FIG.
At this time, the vacuum chamber 4 is degassed by the vacuum pump 5, and the extrusion screw 6 is used to cut the tapered barrel 7.
The molded body is then extruded through the mold 8 and cut into a predetermined length at the mold exit. The drawing ratio during extrusion molding is expressed as So/S, where the auger area of the extrusion molding machine is SO and the surface of the mold is S, and So/S is preferably in the range of 3 to 100. More preferred is 20-7
It is 0. That is, if the reduction ratio becomes too small, anisotropy will not be sufficiently promoted, while if the reduction ratio becomes too large, cracks and cracks will occur during molding.

このようにして得られた成形体は乾燥、熱処理を経たの
ち、高分子化合物を含浸し、次いで固化ないしは硬化を
おこない、ざらに着磁を施しで最終製品どなる。予め焼
鈍を施したフェライト粒子を用いるかわりに、成形後に
焼鈍に相当する熱処理を施−4とのが本発明の第1の特
徴であり、本工程により、特に異方性ボンド磁石の場合
、粒子の2次配向を促進させ高特性を得ることができる
The molded body thus obtained is dried and heat treated, then impregnated with a polymer compound, solidified or hardened, and roughly magnetized to form the final product. The first feature of the present invention is that instead of using ferrite particles that have been annealed in advance, a heat treatment equivalent to annealing is performed after forming. It is possible to obtain high properties by promoting the secondary orientation of .

熱処理の温度は、粒度、組成等にもよるが700〜11
50℃好ましくは800〜1050℃が望ましい。
The temperature of the heat treatment is 700 to 11, depending on the particle size, composition, etc.
The temperature is preferably 50°C, preferably 800 to 1050°C.

また、本発明の第2の特徴である異方性化の方法につい
て種々検討した結果、押出成形体を乾燥する前に着磁装
置に装入し一回又は必要に応じ複数回の磁場を印加する
ことにより従来の押出成形による等方性ボンド磁石に比
較して約40%以上も高い磁力をイ1づることを見出し
た。
In addition, as a result of various studies on the method of anisotropy, which is the second feature of the present invention, we found that before drying the extruded product, it was placed in a magnetizing device and a magnetic field was applied once or multiple times as necessary. It has been found that by doing so, it is possible to achieve a magnetic force that is about 40% higher than that of conventional isotropic bonded magnets made by extrusion molding.

以下この磁場の印加を円筒状成形体に適用した場合につ
いて説明する。まず第2図に示すようにヨーク9を準備
し、ついでヨーク内に成形体10を挿入するが、成形体
10が乾燥づるのを防ぐためにその表面を紙、布、ビニ
ール、真鍮等の導電体11で被覆しておくことが好まし
い・。ついでヨーク9の図示しないコイルに通電して瞬
間的にパルス磁場を発生させる。このパルス磁場の印加
により成形体が変形しフェライト粒子の配向が行なわれ
、最終的には磁極に対応覆る部分が突出して多角形状と
なる。また、磁石はパルス磁場の代りに静磁場を用いて
もよい。このように磁場処理した後、乾燥、熱処理、含
浸固化、更に加工および着磁を施して円筒状永久磁石が
得られる。この場合乾燥後の円筒状成形体の断面の磁り
線の流れを観察づると、第3図に示すように異り性化し
ていることが明らかである。ずなわらこの円筒状成形体
の上に紙をのせ、その上に鉄粉を数句したところ第3図
に示−4ように鉄粉は磁力線に沿って配列した。
A case in which the application of this magnetic field is applied to a cylindrical molded body will be described below. First, the yoke 9 is prepared as shown in Fig. 2, and then the molded body 10 is inserted into the yoke.In order to prevent the molded body 10 from drying out, its surface is covered with a conductive material such as paper, cloth, vinyl, brass, etc. It is preferable to coat with 11. Next, a coil (not shown) of the yoke 9 is energized to instantaneously generate a pulsed magnetic field. The application of this pulsed magnetic field deforms the molded body and orients the ferrite grains, and eventually the portions corresponding to the magnetic poles protrude to form a polygonal shape. Furthermore, a static magnetic field may be used for the magnet instead of a pulsed magnetic field. After magnetic field treatment in this way, a cylindrical permanent magnet is obtained by drying, heat treatment, impregnation solidification, further processing and magnetization. In this case, when observing the flow of magnetic lines in the cross section of the cylindrical molded body after drying, it is clear that the magnetic lines have become different as shown in FIG. When paper was placed on top of this cylindrical molded body and several pieces of iron powder were placed on top of it, the iron powder was arranged along the lines of magnetic force as shown in Figure 3-4.

上記のパルス磁場の印加において、ヨークの」イルには
例えば商用交流電源を入力として所定の自流電圧に昇圧
整流しコンデンサ一群に充電し→ノイリスタを経て放電
を行なう瞬間直流電源に接続づればよい。またパルス磁
場の大ぎざどしては約10KOe以上であれば通常の異
方性フェライト磁石を得るには十分である。またマグネ
ッ1−ロールに用いられる円筒状磁石では約20KOe
以上の磁場であれば十分である。
In applying the above-mentioned pulsed magnetic field, the yoke coil may be connected to an instantaneous DC power supply that inputs, for example, a commercial AC power supply, boosts and rectifies it to a predetermined free-current voltage, charges a group of capacitors, and then discharges it via a Neuristor. Further, if the pulse magnetic field is approximately 10 KOe or more, it is sufficient to obtain a normal anisotropic ferrite magnet. In addition, the cylindrical magnet used in the magnet 1-roll is approximately 20 KOe.
A magnetic field of the above is sufficient.

本発明者等は種々の実験を行なった結果、マグネットロ
ール用の外径20〜73mmの円筒状磁石に本発明を適
用したところ、B r 2000G以上が得られること
を確認した。またスピーカ用の厚さ15〜30m1+1
.幅100前後、長ざ500nun程度の板状磁石にお
いても、B r 2000G以上が得られることを確認
した。なお本発明は金型形状を変えることにより種々の
形状の磁石に適用でき、上記の他リング状あるいは円弧
状のものも製造し得ることはもちろんである。
As a result of various experiments, the present inventors confirmed that when the present invention was applied to a cylindrical magnet with an outer diameter of 20 to 73 mm for a magnet roll, a B r of 2000 G or more could be obtained. Also, the thickness for speakers is 15-30m1+1
.. It was confirmed that B r of 2000 G or more can be obtained even in a plate-shaped magnet with a width of about 100 mm and a length of about 500 nm. It should be noted that the present invention can be applied to magnets of various shapes by changing the shape of the mold, and it goes without saying that in addition to the above, ring-shaped or arc-shaped magnets can also be manufactured.

実施例1 平均粒i;11μmの3aフ工ライト粒子7K(+。Example 1 Average grain i: 11 μm 3a fluorite grains 7K (+.

CaOおよび3i 02をそれぞれ70g、カルボキシ
メチルセルロールを709および水1.5KOをバッジ
型ニーダ−により均一に混練し、本田鉄工製D E−1
50型押出成形機に挿入して成形しついで金型出口にて
切断を行なって外径30mn+、内径12m+++。
70 g each of CaO and 3i 02, 709 carboxymethyl cellulose, and 1.5 KO of water were uniformly kneaded in a badge-type kneader, and then mixed into DE-1 manufactured by Honda Iron Works.
It was inserted into a 50-type extrusion molding machine, molded, and then cut at the exit of the mold to have an outer diameter of 30 m+ and an inner diameter of 12 m+++.

長さ300mmの円筒状成形体を得た。この成形体の表
面をビニールで被覆しついて対称8極着磁用ヨークに挿
入して約20)(Qeのパルス磁場を印加した。次に成
形体の表面からビニールを剥し乾燥後、95.0〜10
50℃で熱処理を施したのち、地布機材工業@J製フェ
ノール樹脂)I R3000の真空含浸をおこなった。
A cylindrical molded body with a length of 300 mm was obtained. The surface of this molded body was covered with vinyl and inserted into a symmetrical 8-pole magnetizing yoke, and a pulsed magnetic field of approximately 20) (Qe) was applied.Next, the vinyl was peeled off from the surface of the molded body, and after drying, ~10
After heat treatment at 50° C., vacuum impregnation with phenolic resin I R3000 manufactured by Jifu Jizai Kogyo @J was performed.

第1表に磁気特性の結果を示す。熱処理温度が高くなる
にしたがい密度も若干高くなり、Br値および表面磁束
密度Ba値も共に向上する。
Table 1 shows the results of magnetic properties. As the heat treatment temperature increases, the density also increases slightly, and both the Br value and the surface magnetic flux density Ba value improve.

いずれにせよ、本発明の方法で得られるボンド磁石は、
低密度であるにもかかわらず、磁気特性は、等方性焼結
晶と同等以上である。
In any case, the bonded magnet obtained by the method of the present invention is
Despite the low density, the magnetic properties are equal to or better than those of isotropic sintered crystals.

第1表最下段は、本発明の方法で得られた異方性成形体
に通常の焼結を施した結値である。ボンド磁石に比較し
て磁気特性は当然高くなるが、密度も高くなる。焼結晶
の場合特性はBa値で2000G程度の可能性はあるが
、配向性があまりにも進行すると、熱応力により冷却時
にクラックやワレ発生1“る。長尺円筒磁石については
、回転トルクを少くするため軽量化が要求されており、
本発明の1000℃熱処理材などは、複写機用マグロー
ルとして最適の特性を有している。
The bottom row of Table 1 shows the final values obtained by subjecting the anisotropic compact obtained by the method of the present invention to normal sintering. Naturally, the magnetic properties are higher than that of bonded magnets, but the density is also higher. In the case of sintered crystals, the Ba value may be about 2000G, but if the orientation progresses too much, cracks and cracks will occur during cooling due to thermal stress.For long cylindrical magnets, reduce the rotational torque. Therefore, weight reduction is required,
The 1000° C. heat-treated material of the present invention has optimal characteristics as a mag roll for copying machines.

比較例1 あらかじめ、1000℃で焼鈍を施した平均粒径1.3
μmの3aフ工ライト粒子を用いて、実施例1と同様の
処理をおこなった。成形体を再熱処理した結果、100
0℃以下では成形体は容易にくずれてしまった。105
0℃における磁気特性は、実施例1における950℃熱
処理品と同様であった。すなわち、本発明の製造法に通
常のボンド磁石用磁粉を適用することは勿論可能である
が、熱処理温度が100℃程度高くなり、エネルギー的
に得策ではない。
Comparative Example 1 Average particle size 1.3 annealed at 1000°C in advance
The same treatment as in Example 1 was carried out using μm 3a frit particles. As a result of reheating the molded body, 100
At temperatures below 0°C, the molded product easily collapsed. 105
The magnetic properties at 0°C were similar to those of the 950°C heat-treated product in Example 1. That is, although it is of course possible to apply ordinary magnetic powder for bonded magnets to the manufacturing method of the present invention, the heat treatment temperature becomes about 100° C. higher, which is not a good idea in terms of energy.

実施例2 平均粒径1μlの3rフ工ライト粒子7Kg。Example 2 7 kg of 3r fluorite particles with an average particle size of 1 μl.

Ba Q62g 、 Ca OおよびSt 02をそれ
ぞれ70Q、メチルセルロースを709および水1.5
k Qを実施例1と同様に混線し、さらに実施例1の押
出成形機の金型のみを変えて押出成形しついで金型出口
にて切断した板状成形体を得た。このフェライト磁石の
表面を紙で被覆して着磁ヨークに挿入して約10K O
eのパルス磁場を印加した。次に成形体の表面から紙を
剥し、乾燥、1050℃での熱処理後、ロックタイ1〜
S M S−1008を真空含浸した。
62 g of Ba Q, 70 Q each of Ca O and St 02, 709 Q of methylcellulose and 1.5 g of water.
kQ was mixed in the same manner as in Example 1, and further, only the mold of the extrusion molding machine of Example 1 was changed to extrude molding, and then cut at the exit of the mold to obtain a plate-shaped molded product. Cover the surface of this ferrite magnet with paper and insert it into the magnetizing yoke to generate approximately 10K
A pulsed magnetic field of e was applied. Next, the paper was peeled off from the surface of the molded body, and after drying and heat treatment at 1050℃, lock ties 1~
SMS-1008 was vacuum impregnated.

外周加工ならび着磁を行なって厚さ20mm、幅100
mm、長さ500mmの板状フェライト磁石を得た。こ
の磁石のBrは2800G x Hc = 3500G
であり、従来の高性能プラツクあるいはゴムマグ(Br
  2600G max程度)に比較して、13rが2
00G高く大幅な磁気特性の向上が見られた。
The outer periphery is processed and magnetized to a thickness of 20 mm and a width of 100 mm.
A plate-shaped ferrite magnet with a length of 500 mm and a length of 500 mm was obtained. The Br of this magnet is 2800G x Hc = 3500G
, conventional high-performance plastic or rubber mug (Br
2600G max), 13r is 2
00G and a significant improvement in magnetic properties was observed.

以上に記述の如く本発明によれば次のような効果が得ら
れる。
As described above, according to the present invention, the following effects can be obtained.

(1) 磁場中成形などに比較して簡単な装置を用いて
しかも比較的低磁場で高性能の異方性フェライト磁石が
得られる。
(1) A high-performance anisotropic ferrite magnet can be obtained using a simpler device than forming in a magnetic field and in a relatively low magnetic field.

(2) 異方性付与のためパルス磁場の印加は通常の着
磁ヨークを流用できるので特別な設備を設ける必要がな
い。
(2) A normal magnetizing yoke can be used to apply a pulsed magnetic field to impart anisotropy, so there is no need to provide special equipment.

(3) 追出成形体を用いるので金型を変えるのみで円
筒状、板状9円弧状等各種形状のフェライト磁石が得ら
れる。
(3) Since an extruded molded body is used, ferrite magnets of various shapes such as cylindrical, plate, and 9-arc shapes can be obtained by simply changing the mold.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する押出成形機の一例を示す断面
図、第2図は本発明におけるパルス磁場の印加を説明づ
゛るための断面図、第3図は本発明により得られた円筒
状フェライト磁石の磁力線の流れを示す図である。 1:ホッパー、     2:混練スクリュー、3:押
出スクリュー、  8:金型、 9:ヨーク、     10:成形体、11:絶縁体。 第 l 図 、べ一 第2@ /1 第3図
Fig. 1 is a cross-sectional view showing an example of an extrusion molding machine used in the present invention, Fig. 2 is a cross-sectional view to explain the application of a pulsed magnetic field in the present invention, and Fig. 3 is a cross-sectional view showing an example of an extrusion molding machine used in the present invention. FIG. 3 is a diagram showing the flow of magnetic lines of force in a cylindrical ferrite magnet. 1: Hopper, 2: Kneading screw, 3: Extrusion screw, 8: Mold, 9: Yoke, 10: Molded body, 11: Insulator. Figure 1, Figure 2 @ / 1 Figure 3

Claims (1)

【特許請求の範囲】 1 マグネットプラムバイト型磁性粒子を主成分とし、
必要に応じ混合媒体、バインダーならびに微粒子添加物
を加えてなる混和物を押出し成形し、得られた成形体を
乾燥し、ついで熱処理を施した後、高分子化合物を該成
形体に含浸固化ないしは硬化して得られるボンド磁石の
製造方法において、前記成形体の被看磁面に磁場を印加
して異方性を付与させた後、乾燥および熱処理をおこな
い、次いで高分子化合物を該成形体に含浸せしめること
を特徴とするボンド磁石の製造方法。 2 押出し成形によチ円筒状ないしはリング状成形体を
形成し、該成形体の外周面を絶縁体若しくは導電体で被
覆した後着磁装置内に挿入し、ついで軸と直角方向又は
平行方向に前記成形体に磁場を印加することを特徴とす
る特許請求の範囲第1項記載のボンド磁石の製造方法。 3 成形体に印加する磁場として約5KO8以上の磁場
とすることを特徴とする特許請求の範囲第2項記載のボ
ンド磁石の製造方法。 4 外形20〜80m111の成形体に約20KOe以
上のパルス磁場を瞬間的に一回もしくは複数回印加して
1最終製品のB「を2000G以上とすることを特徴と
する特許請求の範囲第1項記載のボンド磁石の製造方法
。 5 板状成形体の表面を絶縁体又は導電体で被覆した後
該成形体に約10KOe以上のパルス磁場を印加して、
最終製品の3rを2000G以上とり−ることを特徴と
する特許請求の範囲第1項記載のボンド磁石の製造方法
。 6 押出し成形により外径20mm以上の円弧状成形体
を形成し、該成形体の外周面を絶縁体若しくは導電体で
被覆した後約10K Oe以上のパルス磁場を印加して
なることを特徴とづるボンド磁石の製造方法。 7 成形体に磁場を印加乾燥後、熱処理を施づことを特
徴とする特許請求の範囲第1項記載のボンド磁石の製造
方法。 8 該成形体を熱処理後、高分子化合物をこれに含浸U
しめ、次いで同化又は硬化せしめる゛ことを特徴とする
特許請求の範囲第1項記載のボンド磁石の製造方法。
[Claims] 1 Mainly composed of magnet plumbite type magnetic particles,
A mixture prepared by adding a mixing medium, a binder, and particulate additives as necessary is extruded, the resulting molded body is dried, and then heat treated, and then a polymer compound is impregnated into the molded body for solidification or curing. In the manufacturing method of a bonded magnet obtained by A method for manufacturing a bonded magnet, characterized by: 2. A cylindrical or ring-shaped molded body is formed by extrusion molding, the outer peripheral surface of the molded body is coated with an insulating material or a conductive material, and then inserted into a magnetizing device, and then in a direction perpendicular to or parallel to the axis. The method for manufacturing a bonded magnet according to claim 1, characterized in that a magnetic field is applied to the molded body. 3. The method for manufacturing a bonded magnet according to claim 2, characterized in that the magnetic field applied to the molded body is a magnetic field of about 5KO8 or more. 4. Claim 1, characterized in that a pulsed magnetic field of about 20 KOe or more is instantaneously applied once or multiple times to a molded body with an outer diameter of 20 to 80 m111 to make the B' of 1 final product 2000 G or more. The method for manufacturing a bonded magnet described in 5. After coating the surface of a plate-shaped molded body with an insulator or a conductor, applying a pulsed magnetic field of about 10 KOe or more to the molded body,
2. The method of manufacturing a bonded magnet according to claim 1, wherein the final product has a 3r of 2000G or more. 6. It is characterized by forming an arc-shaped molded body with an outer diameter of 20 mm or more by extrusion molding, coating the outer peripheral surface of the molded body with an insulator or a conductor, and then applying a pulsed magnetic field of about 10 K Oe or more. Method for manufacturing bonded magnets. 7. The method for manufacturing a bonded magnet according to claim 1, which comprises applying a magnetic field to the molded body, drying it, and then subjecting it to heat treatment. 8 After heat treating the molded body, impregnate it with a polymer compound.
A method for manufacturing a bonded magnet according to claim 1, characterized in that the bonded magnet is hardened and then assimilated or hardened.
JP19227882A 1982-11-01 1982-11-01 Manufacture of bond magnet Pending JPS5980904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19227882A JPS5980904A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19227882A JPS5980904A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Publications (1)

Publication Number Publication Date
JPS5980904A true JPS5980904A (en) 1984-05-10

Family

ID=16288614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19227882A Pending JPS5980904A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Country Status (1)

Country Link
JP (1) JPS5980904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207297A1 (en) * 2012-02-14 2013-08-15 Weyerhaeuser Nr Company Process for Making Composite Polymer
US9109117B2 (en) 2012-02-14 2015-08-18 Weyerhaeuser Nr Company Process for making composite polymer
US9328231B2 (en) 2012-02-14 2016-05-03 Weyerhaeuser Nr Company Composite polymer
US9604388B2 (en) 2012-02-14 2017-03-28 International Paper Company Process for making composite polymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207297A1 (en) * 2012-02-14 2013-08-15 Weyerhaeuser Nr Company Process for Making Composite Polymer
US9109117B2 (en) 2012-02-14 2015-08-18 Weyerhaeuser Nr Company Process for making composite polymer
US9114550B2 (en) * 2012-02-14 2015-08-25 Weyerhaeuser Nr Company Process for making composite polymer
US9328231B2 (en) 2012-02-14 2016-05-03 Weyerhaeuser Nr Company Composite polymer
US9604388B2 (en) 2012-02-14 2017-03-28 International Paper Company Process for making composite polymer

Similar Documents

Publication Publication Date Title
Shokrollahi et al. Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites
CN108147803B (en) Preparation method of dry-process molded strontium ferrite magnet
US4818305A (en) Process for the production of elongated articles, especially magnets, from hard powdered materials
WO2005015581A1 (en) Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
US4457851A (en) Ferrite magnet and method of producing same
JPS5980904A (en) Manufacture of bond magnet
US4057606A (en) Method of producing anisotropic ferrite magnet
US6063322A (en) Method for manufacturing shaped bodies from hard ferrites
JPH1174140A (en) Manufacture of dust core
JPS62282418A (en) Manufacture of composite magnet
JPH056323B2 (en)
JP2003257764A (en) Manufacturing method for rare earth permanent magnet
JP3012492B2 (en) Manufacturing method of anisotropic magnet by dry forming method
JP2001250709A (en) Magnetic powder for dust core
JP7387067B1 (en) Rubber magnets and refrigerator door gaskets
JPS60216523A (en) Manufacture of anisotropic resin magnet sheet
JPS5980903A (en) Manufacture of bond magnet
JPS5980902A (en) Manufacture of bond magnet
US4444670A (en) Method of manufacturing magnetic, plastic-bonded molded bodies
JP2545600B2 (en) Magnet roll
JP3304927B2 (en) Method for producing ceramic slurry, ceramic green sheet, and multilayer ceramic electronic component
JPH05205959A (en) Method and device for manufacturing bow-type anisotropic magnet
JP3812926B2 (en) Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet
JPH02180004A (en) Manufacture of anisotropic oxide magnetic powder an of plastic magnet
JPS60217602A (en) Manufacture of resin-bonded permanent magnet