JPS5980902A - Manufacture of bond magnet - Google Patents

Manufacture of bond magnet

Info

Publication number
JPS5980902A
JPS5980902A JP19227682A JP19227682A JPS5980902A JP S5980902 A JPS5980902 A JP S5980902A JP 19227682 A JP19227682 A JP 19227682A JP 19227682 A JP19227682 A JP 19227682A JP S5980902 A JPS5980902 A JP S5980902A
Authority
JP
Japan
Prior art keywords
magnetic field
molded body
bonded magnet
hardening
extrusion molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19227682A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19227682A priority Critical patent/JPS5980902A/en
Publication of JPS5980902A publication Critical patent/JPS5980902A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Abstract

PURPOSE:To obtain an isotropic bond magnet easily by a simple equipment by a method wherein a magnetic field such as a pulse magnetic field or a static magnetic field is applied to a magnetized surface to give an isotropic property and after solidification or hardening, magnetization to the same direction as the isotropic property has been given is performed. CONSTITUTION:Magnetic particles and binder and coupling material or the like added when necessary are mixed and kneaded at the temperature not less than the softening point or the melting point of the binder and after being cooled, pulverized and peletized or granuled compound is obtained. The compound is supplied into a hopper 1 and mixed and kneaded and compressed by a kneader screw 2 and cut by a shredder 3 and extruded by an auger 6 through a tapered borrel 7 and a die 8. The extruded body is cut to a prescribed length at an outlet of the die. Reduction ratio at the extrusion is expressed by the ratio So/S of the area So of the auger and the area S of the outlet of the die. The suitable ratio is 3-100 and especially a range of 20-70 is desirable. When the reduction ratio is too small, it is difficult to obtain a uniform extruded body and when the reduction ratio is too large, cracking is easy to be produced when the extruded body is formed. The extruded body is treated by a process such as hardening by heating, hardening by radiation, solidification by cooling or application of a magnetic field and then magnetized.

Description

【発明の詳細な説明】 本発明は電子複写機、音響機器2回転機器等に用いられ
るフェライト磁石の製造方法に関(る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ferrite magnets used in electronic copying machines, two-rotation audio equipment, and the like.

スビー)J、小型直流モータ、磁石回転機等に用いられ
るプラスチックマグネット、ゴムマグネットなどのボン
ド磁石の成形法としては、通常射出成形法、圧縮成形法
および押出成形法が用いられている。これら成形法の内
、特に磁気特性の高い異方性ボンド磁石を得る場合には
、磁界中で改質祠、滑剤等より構成される混練物を加熱
圧縮成形する磁場成形がおこなわれている。また、最近
になって磁場中射出成形の検耐も開始されており、円板
状の異方性プラスチックマグネットが作成されている。
As methods for molding bonded magnets such as plastic magnets and rubber magnets used in small DC motors, magnet rotating machines, etc., injection molding, compression molding, and extrusion molding are usually used. Among these molding methods, in order to obtain an anisotropic bonded magnet with particularly high magnetic properties, magnetic field molding is performed, in which a kneaded material composed of a modifying grain, a lubricant, etc. is heated and compressed in a magnetic field. In addition, testing of injection molding in a magnetic field has recently begun, and disk-shaped anisotropic plastic magnets have been produced.

押出成形法は、小型モータ等に用いられる・円筒状ある
いは板状のゴム磁石およびプラスチック磁石の製造に適
用されている。また、マグネットロール用の長尺円筒状
フェライト磁石を押出成形により成形することも特開昭
49−75536号に示されている。
The extrusion molding method is applied to the production of cylindrical or plate-shaped rubber magnets and plastic magnets used in small motors and the like. Further, JP-A-49-75536 discloses that a long cylindrical ferrite magnet for a magnet roll is formed by extrusion molding.

上記の各種成形法のうち、押出成形法は成形能率が高く
、射出成形法の如く複雑な構成の金型が不要で、月つ連
続成形が可能であることカ\ら、生産、性の大幅向上が
可能となるほか、押出成形時に異方性が付与されるため
磁気特性の向上が期待できるが、異方性フェライトボン
ド磁石としての特性を満足覆るには不十分である。そこ
で押出成形において異方性を強化づる方法としては、磁
場中で押出成形することが一般に行なわれている1、t
 7′1\、特公昭47−34192号に示されている
ように、焼結磁石用の場合であるが、磁場の印加に加え
て特殊なノズルを用いるなどの提案がなされている。こ
のように押出成形により異方性ボンド磁石を得るために
は、磁場中成形が一般的であるが、印加される外部磁場
が押出成形時の抵抗となる。異方性を強化づる目的で、
外部磁場を強化した場合、特にスクリュータイプの連続
押出成形機では、オーガの空転が生じ、しばしば成形が
困難になるか、あるいは不可能となる。また、磁場装置
自体も大型・化する。
Among the various molding methods mentioned above, the extrusion molding method has high molding efficiency, does not require a mold with a complicated structure like the injection molding method, and can be continuously molded every month, which greatly improves production and efficiency. In addition, anisotropy is imparted during extrusion molding, which can be expected to improve magnetic properties, but this is not sufficient to satisfactorily overcome the properties of an anisotropic ferrite bonded magnet. Therefore, as a method to strengthen the anisotropy in extrusion molding, extrusion molding in a magnetic field is generally used.
7'1\, Japanese Patent Publication No. 47-34192, for sintered magnets, proposals have been made to use a special nozzle in addition to applying a magnetic field. In order to obtain an anisotropic bonded magnet by extrusion molding in this way, molding in a magnetic field is generally used, but the applied external magnetic field becomes a resistance during extrusion molding. In order to strengthen the anisotropy,
When the external magnetic field is strengthened, particularly in screw-type continuous extruders, auger slippage occurs, often making molding difficult or impossible. Furthermore, the magnetic field device itself becomes larger and larger.

本発明の目的は、簡単な装置でしかも容易に押出成形に
より異方性ボンド磁石のを得ることの出来る製造方法を
提供づることである。
An object of the present invention is to provide a manufacturing method that allows anisotropic bonded magnets to be easily obtained by extrusion molding using a simple device.

本発明のボンド磁石の製造方法は、マグネットプラムバ
イト型磁性粒子を主成分とし、必要に応じバインダし、
表面改質材ならびに微粒子添加物を加えてなる混練物を
押出成型し、得られた成形体を熱処理又は輻射線処理等
による適当な方法を用いて固化又は硬化せしめてなるボ
ンド磁石の製造方法において、前記成形体の被着磁面に
パルス磁場又は静磁場等による磁場を印加し−C異方性
を付与させ、ついで固化ないしは硬化後、前記異方性付
与方向と同一方向に着磁することを特徴としている。
The method for manufacturing a bonded magnet of the present invention includes magnet plumbite type magnetic particles as a main component, a binder as necessary,
In a method for producing a bonded magnet, the method comprises extrusion molding a kneaded material containing a surface modifying material and a particulate additive, and solidifying or hardening the obtained molded product using an appropriate method such as heat treatment or radiation treatment. , Applying a magnetic field such as a pulsed magnetic field or a static magnetic field to the magnetized surface of the molded body to impart -C anisotropy, and then, after solidification or hardening, magnetizing in the same direction as the direction in which the anisotropy is imparted. It is characterized by

以下、本発明の詳細を図面に基いて説明覆る。Hereinafter, the details of the present invention will be explained based on the drawings.

第1図は、押出し成形機の内、ス・クリユータイプの成
形機の概略断面図を示す。図中それぞれ2および6で示
づスクリューおよびオーガ部は外部がジャウッドになっ
ており、オイル加熱が可能である。まず、原料としてマ
グネットプラムバイト型粒子を準備するが、該粒子の粒
径が小さい場合、バインダーに対する粒子充填率が低下
し、一方大きりきると粒子はマルチドメインを成形する
ため保磁力r l−10が急激に低下する。該粒子の平
均粒径ば約0.7〜1.9μmの範囲が好ましい。また
、該粒子中に転移、欠陥等が存在Jると磁気特性を低下
させるため、800℃ないし1100℃程度C゛焼鈍し
た粒子を用いる必要がある。用いるバインダーとしては
、ポリアミド樹脂、フェノール樹脂:[チレン酢酸ビニ
ル共重合樹脂、ポリプロピレン、ポリアミドイミド、ポ
リスチレン、ポリフェニレン1ナルフアイドおよびゴム
系の高分子としで、クロロ゛プレンブタジェン、クロロ
スルホン化ポリエチレン、ニトリルゴム、アクリルゴム
等種々の高分子が公知として用いられている。また、磁
性粒子とバインダーとのぬれ性を改善する目的で有機ケ
イ素化合物(特開昭52−28696 ) 、有機チタ
ネー1〜化合物(特開昭5e−as3o4)などのカッ
プリング材を添加することにより、耐衝撃性、耐欠損性
を改良する口とができる。更に、磁性粒子間の摩擦を減
少することによって粒子の配向性すなわち異方性化を高
める目的で、トルエンスルボン酸アミド(特開昭54−
152198) 、ステアリン酸金属塩(特開昭55−
91803)などを添加する場合もある。磁粉を含む固
体粉末とバインダーとの比率は、バインダーの種類なら
びに粉体粒度にもよるが、粉末/バインダー−70〜9
0wt%程度が望ましい。バインダー量が30wt%以
上になると、異方性化は促進されるものの磁粉の絶対量
が少なく、結果とし゛C磁力は低下する。他方、バイン
ダー量が90wt%以上では、押出成形自体が困難とな
り、また、異方性化自体も粉末粒子間の抵抗が大となる
ため困難となる。上記磁性粒子およびバインダー、なら
びに必要に応じて添加したカップリング材等を、加圧加
熱ニーダ−(例えば森山製作所製D 3−7.5型等)
により、バインダーの軟化点ないしは融点以上で十分に
混線をおこない、冷却後粉砕して°ベレットないしは粒
状物としたコンパウンドを得る。該コンパウンドを第1
図のホッパー1に装入し、混線スクリュー2により混線
圧縮し、ついでシュレッター3で切断する。この時真空
室4にて真空ポンプ5により脱気し、押出用オーガ6に
よってテーパーバレル7および金型8を経て成形体が押
出され、金型出口にて所定の長さに切断される。この押
出成形時の絞り率は、押出成形機のオーガ面積をSO,
金型出口面積をSとすると3o /Sで表わされるが、
この比率が3〜100の範囲が好ましく、より好ましく
は20〜70である。すなわち絞り率が少な1ぎると均
一な成形体が得難く、一方絞り率が大きづぎると成形時
にクラックが発生し易くなる。かくして得られた成形体
は、バインダーの種類に応じで、加熱硬化1幅銅線硬化
、冷却回加あるいは加磁等の処置を経たのち着磁を施し
て最終製品となる。
FIG. 1 shows a schematic sectional view of a screw type extrusion molding machine. The screw and auger sections, respectively indicated by 2 and 6 in the figure, are made of Jawood on the outside and can be heated with oil. First, magnetic plumbite type particles are prepared as a raw material, but if the particle size of the particles is small, the particle filling rate with respect to the binder will decrease, while if the particle size becomes large, the particles will form a multi-domain, so the coercive force r l-10 decreases rapidly. The average particle size of the particles is preferably in the range of about 0.7 to 1.9 μm. Further, if dislocations, defects, etc. are present in the particles, the magnetic properties will deteriorate, so it is necessary to use particles annealed at about 800° C. to 1100° C. The binders used include polyamide resins, phenolic resins, tyrene-vinyl acetate copolymer resins, polypropylene, polyamideimide, polystyrene, polyphenylene-1-nulphide, and rubber-based polymers, chloroprene-butadiene, chlorosulfonated polyethylene, and nitrile. Various polymers such as rubber and acrylic rubber are known and used. Furthermore, in order to improve the wettability between the magnetic particles and the binder, coupling agents such as organosilicon compounds (JP-A-52-28696) and organic titanium compounds (JP-A-5E-AS3O4) can be added. , resulting in improved impact resistance and chipping resistance. Furthermore, toluene sulfonic acid amide (Japanese Patent Application Laid-Open No. 1989-1999) was added for the purpose of increasing particle orientation, that is, anisotropy, by reducing friction between magnetic particles.
152198), stearic acid metal salts (Japanese Patent Application Laid-Open No. 1983-1989-
91803) etc. may be added. The ratio of the solid powder containing magnetic powder to the binder varies depending on the type of binder and the particle size of the powder, but is powder/binder -70 to 9.
Approximately 0 wt% is desirable. When the amount of binder is 30 wt% or more, although anisotropy is promoted, the absolute amount of magnetic particles is small, and as a result, the C magnetic force is reduced. On the other hand, if the binder amount is 90 wt% or more, extrusion molding itself becomes difficult, and anisotropy itself becomes difficult because the resistance between powder particles becomes large. The above-mentioned magnetic particles and binder, as well as a coupling material added as necessary, etc., are placed in a pressure heating kneader (for example, Moriyama Seisakusho D 3-7.5 type, etc.).
By doing this, the mixture is sufficiently mixed at a temperature above the softening point or melting point of the binder, and after cooling, it is crushed to obtain a pellet or granular compound. the compound first
The material is charged into the hopper 1 shown in the figure, cross-compressed by the cross-wire screw 2, and then cut by the shredder 3. At this time, the vacuum chamber 4 is degassed by a vacuum pump 5, and the molded body is extruded by an extrusion auger 6 through a tapered barrel 7 and a mold 8, and cut into a predetermined length at the mold outlet. The drawing ratio during extrusion molding is determined by the auger area of the extrusion molding machine being SO,
If the mold exit area is S, it is expressed as 3o/S,
This ratio is preferably in the range of 3 to 100, more preferably 20 to 70. That is, if the drawing ratio is too small, it is difficult to obtain a uniform molded product, while if the drawing ratio is too large, cracks are likely to occur during molding. Depending on the type of binder, the molded product thus obtained is subjected to treatments such as heat curing, single-width copper wire hardening, cooling rotation, or magnetization, and then magnetized to become a final product.

上記の押出成形によるボンド磁石の製造方法について、
種々検討した結果、レオロジイの状態にある押出成形体
を着磁装置に装入し1回又は必要に応じ複数回のパルス
磁場を印加することにより、従来の押出成形による等方
性ボンド磁石に比較して約40%以上も高い磁力を有す
ることを見出した。
Regarding the method of manufacturing bonded magnets by extrusion molding described above,
As a result of various studies, we found that compared to isotropic bonded magnets made by conventional extrusion molding, by loading the extruded body in a rheological state into a magnetizing device and applying a pulsed magnetic field once or multiple times as necessary. It was found that the magnetic force was about 40% higher.

以下このパルス磁場の印加を円筒状成形体に適用した場
合について説明するが、静磁揚を用いた場合においても
、また板状、リング状などの形状の成形体に適用した場
合においても同様の効果を得ることができる。まず、第
2図に示すようにヨーク9を準備し、ついでヨーク内に
成形体1oを装入するが、着磁後に成形体がそれ自身の
磁力によってヨークに吸着するのを防止する!こめ、そ
の表面をゴム、ビニール、布 等の絶縁体又はA(1゜
オースデノーイト系ステンレススチール、眞鍮等の導電
体11で被覆することが好ましい。なお、例えばナイロ
ン12をバインダーとして用いたような場合には、その
融点は177℃と高温である。成形体が高温の場合には
、被覆物は対熱性、保温性に保れたグラスフン?バーと
が、アスベスト等を用いることが望ましく、一方ヨーク
は水冷する配慮が必要である。次いで、ヨーク9の図示
しないコ不ルに通電して瞬間的にパルス磁場を発生させ
る。このパルス磁場の印加によりレオロジックな成形体
は変形すると共にフェライト粒子の配向が生じる。
Below, we will explain the case where the application of this pulsed magnetic field is applied to a cylindrical compact, but the same applies when applying static magnetic lift or when applying to a compact in the shape of a plate, ring, etc. effect can be obtained. First, the yoke 9 is prepared as shown in FIG. 2, and then the molded body 1o is inserted into the yoke, but after magnetization, the molded body is prevented from being attracted to the yoke by its own magnetic force! Then, it is preferable to cover the surface with an insulating material such as rubber, vinyl, or cloth, or a conductive material 11 such as A (1° ausdenoid stainless steel, brass, etc.). If the molded product is at a high temperature, it is preferable to use glass foam or bar that maintains heat resistance and heat retention as the covering material, but it is preferable to use asbestos, etc. It is necessary to consider cooling the yoke with water.Next, a pulsed magnetic field is instantaneously generated by energizing the coil (not shown) of the yoke 9.By applying this pulsed magnetic field, the rheological molded body is deformed and the ferrite particles are orientation occurs.

最終的には、成形体の外周形状は磁極に対応づる部分が
突出した多角形状となる。配向後に熱可塑性バインダー
では冷却することにより、加熱又は幅銅線硬化型バイン
ダーでは、加熱又は輻射線照射により、それぞれそ所望
のボンド磁石が得られる。
Finally, the outer peripheral shape of the molded body becomes a polygonal shape with protruding portions corresponding to the magnetic poles. After orientation, the desired bonded magnet can be obtained by cooling with a thermoplastic binder, or by heating or irradiating with a width copper wire hardening type binder, respectively.

本発明の方法で得られた円筒状磁石成形体断面の磁力線
の流れを観察すると第3図に示すように異方性化し−C
いることが明らかである。すなわち、この円筒状成形体
の上に紙を乗せその上に鉄粉を散布したどころ、第3図
に示すように鉄粉は磁力線に沿って配列している。上記
のパルス磁場の印加において、ヨークのコイルには例え
ば商用交流電源を入力として所定の直流電圧に昇圧整流
し、コンデンサ一群に充電しサイジスタを経て放電をお
こなう瞬間直流電源に接続すればよい。また、パルス磁
場の大きさとしては、約10K Oe以上であれば通常
の異方性フェライト磁石を得るには十分である。また、
マグネットロールに用いる円筒状磁石では、バインダー
の種類にもよるが約20にOe前後の磁場で十分である
When observing the flow of magnetic lines of force in the cross section of the cylindrical magnet molded body obtained by the method of the present invention, it becomes anisotropic as shown in Figure 3.
It is clear that there are That is, when paper was placed on top of this cylindrical molded body and iron powder was scattered thereon, the iron powder was arranged along the lines of magnetic force as shown in FIG. In applying the above-mentioned pulsed magnetic field, the coil of the yoke may be connected to an instantaneous DC power source that inputs, for example, a commercial AC power source, boosts and rectifies it to a predetermined DC voltage, charges a group of capacitors, and discharges it via a sistor. Further, as for the magnitude of the pulsed magnetic field, if it is about 10 K Oe or more, it is sufficient to obtain a normal anisotropic ferrite magnet. Also,
For a cylindrical magnet used in a magnet roll, a magnetic field of around 20 Oe is sufficient, although it depends on the type of binder.

不発す[−者苓−」よ種々の実験を行なった結果、マグ
ネットロール用の外形φ20〜φ73mmの円筒状ボン
ド磁石に本発明を適用したところ、B r2000 G
以上が得られることを確認した。また、厚さ3〜30m
l111幅30〜100mm、長ざioo 〜500m
m程度の板状ボンド磁石においても3 r 2000Q
以上が得られることを確認した。なお、本発明は金型形
状を変更づることにより種々の形状の磁石に適用でき、
上記の他に棒状あるいは円筒状のボンド磁石も製造でき
ることは勿論である。
As a result of various experiments, the present invention was applied to a cylindrical bonded magnet with an external diameter of 20 to 73 mm for magnet rolls, and the result was Br2000 G.
We confirmed that the above can be obtained. Also, the thickness is 3~30m
l111 width 30-100mm, length ioo ~500m
3 r 2000Q even for a plate-shaped bonded magnet of about m
We confirmed that the above can be obtained. The present invention can be applied to magnets of various shapes by changing the shape of the mold.
In addition to the above, rod-shaped or cylindrical bonded magnets can of course be manufactured.

実施例1 平均粒径1.3μmの焼鈍した3rフ工ライト粒子87
部、東レナイロン6 (グレードCM1017) 12
.5部、トルエンスルボン酸アミド(特開昭55−91
803)  0.5部(部は重聞部)からなる組成物を
調整し、加圧ニーダ−を用いて溶融混線後3〜5mmの
大ぎさに粉砕して成形用ペレットを得た。前記コンパウ
ンドを用いて、第1図に示す押出成形機を用い、オーガ
部温度を270℃に保持し、φ30−φ10− cL3
00mm  の円筒状成形体を得た。次いで、200℃
程度にまで冷却した該成形体を、内径φ31のアスベス
1−製円筒内に挿入し、230〜240℃程度に昇温し
たのち、第3図に示す対称8極着磁ヨークに挿入して約
20KQeのパルス磁場を印加した。冷却同化後前記ア
スベストカブゼルから該成形体を取り出し、異方性ボン
ド磁石Aを得た。第1表に磁気測定の結果を示す。なお
、前記アスベストカプセル 可及的速やかに配向をおこなう限り、はぼ同等の磁気特
性を得ることができる。
Example 1 Annealed 3r fluorite particles 87 with an average particle size of 1.3 μm
Part, Toray Nylon 6 (Grade CM1017) 12
.. 5 parts, toluenesulfonic acid amide (JP-A-55-91
803) A composition consisting of 0.5 parts (parts are important parts) was prepared, melted and mixed using a pressure kneader, and then ground to a size of 3 to 5 mm to obtain pellets for molding. Using the above compound, using the extrusion molding machine shown in FIG.
A cylindrical molded body with a diameter of 0.00 mm was obtained. Then 200℃
The molded body cooled to a certain temperature was inserted into an asbeth 1-cylinder with an inner diameter of φ31, and the temperature was raised to about 230 to 240°C, and then inserted into a symmetrical 8-pole magnetized yoke as shown in Fig. 3. A pulsed magnetic field of 20 KQe was applied. After cooling and assimilation, the molded body was taken out from the asbestos capsule to obtain an anisotropic bonded magnet A. Table 1 shows the results of magnetic measurements. Incidentally, as long as the asbestos capsule is oriented as quickly as possible, almost the same magnetic properties can be obtained.

第1表中Bは、パルス磁場を印加しない場合のボンド磁
石の特性である。また、Cはラバープレス法で得られた
等方性の一体焼結磁石の特性であり、寸法はいずれも同
等である。第1表から明らかなごとく、本発明法によれ
ば、通常のボンド磁石は勿論のこと、低密度であるにも
かかわらず、等方性焼結磁石よりも磁気特性に優れた長
尺円筒状のボンド磁石を得ることができる。
B in Table 1 is the characteristic of the bonded magnet when no pulsed magnetic field is applied. Further, C is a characteristic of an isotropic integrally sintered magnet obtained by the rubber press method, and the dimensions are the same in all cases. As is clear from Table 1, according to the method of the present invention, long cylindrical magnets with superior magnetic properties than ordinary bonded magnets, as well as isotropic sintered magnets, despite their low density bonded magnets can be obtained.

実施例2 平均粒径1.5μmの焼鈍した3rフ工ライト粒子86
部、旭有機制工業@製フェノールレジンR M4000
D 8部、水6部を常温で混練して得られた」ンパウノ
ドを、常温において実施例1と同様にして成形および配
向をおこなった。ただし、成形体は0.3mmtのビニ
ールにより外表面を包んだ後、第3図に示すヨーク内に
挿入した。得られた異方性成形体は、室温で乾燥後、1
70℃で熱硬化をおこなった。得られた磁気特性は3r
 =2600G.  IH O = 3500Q eに
まで到達しており、異方性化の困難な円筒状磁石として
は極め一C高性能であることがわかる。また、同様のコ
ンパウンドを用いて、30W−10T− 300Ω(m
m)の板状成形体を押出成形した後、成形体の上下面を
0.31のビニールで被覆したのち、該成形体をギャッ
プ13n++uの平行磁場用ヨーク内に挿入し、20K
Oeのノ(パルス磁場を2回印加することによって配向
をJ3こなつlこ。次いで乾燥後、円筒状磁石と同条件
で硬化をおこなつIこ。得られた磁気特性はSr =2
700G Iト1c==36300 eであった。
Example 2 Annealed 3r fluorite particles 86 with an average particle size of 1.5 μm
Phenol resin RM4000 manufactured by Asahi Organic Industrial Co., Ltd.
A molded powder obtained by kneading 8 parts of D and 6 parts of water at room temperature was molded and oriented in the same manner as in Example 1 at room temperature. However, the molded body was inserted into the yoke shown in FIG. 3 after wrapping the outer surface with vinyl having a thickness of 0.3 mm. The obtained anisotropic molded body was dried at room temperature and then
Heat curing was performed at 70°C. The obtained magnetic properties are 3r
=2600G. It has reached IH O = 3500Qe, which shows that it has extremely high performance of 1C for a cylindrical magnet that is difficult to anisotropy. Also, using the same compound, 30W-10T-300Ω (m
After extrusion molding the plate-shaped molded product in m), the upper and lower surfaces of the molded product were covered with 0.31 vinyl, and then the molded product was inserted into a parallel magnetic field yoke with a gap of 13n++u, and heated at 20K.
The orientation of Oe is adjusted by applying a pulsed magnetic field twice. Then, after drying, hardening is performed under the same conditions as the cylindrical magnet. The magnetic properties obtained are Sr = 2
It was 700G Ito1c==36300e.

以上の記述の如く、本発明によれば、次のような効果が
得られる。
As described above, according to the present invention, the following effects can be obtained.

(1)射出成形法、]ンプレツション法に比々交して、
簡単な金型装置を用いて、しかも比較8’J簡単な着磁
ヨークによって高性能の異方性ボンド!i石を得ること
ができる。
(1) Injection molding method, which is comparatively different from compression method,
High-performance anisotropic bond using a simple mold device and a comparatively simple 8'J magnetizing yoke! You can get i stones.

(2)異方性付与のための、パルス磁場の印力04ま、
通常の着磁ヨークを流用できるため特別な2備を設ける
必要はない。また電源も市販の汎用品で十分である。
(2) Impression force of pulsed magnetic field 04 for imparting anisotropy,
Since a normal magnetizing yoke can be used, there is no need to provide two special devices. Moreover, a commercially available general-purpose power supply is sufficient.

(3)押出し成形を用いるので金型形状を変えるのみで
円筒状板状、円弧状等各種形状のボン1:磁石が得られ
る。また樹脂も、熱可塑性,熱硬イヒ1生のいずれも使
用することができる。まIこ、後工程で加硫を施ずこと
により、ゴム磁石も作成できる。
(3) Since extrusion molding is used, the Bon 1: magnet can be obtained in various shapes such as a cylindrical plate shape and an arc shape by simply changing the shape of the mold. Furthermore, both thermoplastic and thermosetting resins can be used. Also, rubber magnets can also be made by not performing vulcanization in the post-process.

【図面の簡単な説明】 第1図は、本発明に使用する押出成形機の1例を示づ断
面図、第2図は本発明におけるパルス磁場の印加を説明
するための断面図、第3図は本発明により得られた円筒
形長尺ボンド磁石の磁力線の流れと示す図である。 1:ホッパー      2:混線スクリュー3:押出
スクリュー(オーガ)8:金型9:ヨーク      
10:成形体 11:絶縁体又は導電体 第 1 図 に − 9− 第2@ /1 第3図
[Brief Description of the Drawings] Fig. 1 is a sectional view showing one example of an extrusion molding machine used in the present invention, Fig. 2 is a sectional view for explaining the application of a pulsed magnetic field in the present invention, and Fig. 3 is a sectional view showing an example of an extrusion molding machine used in the present invention. The figure is a diagram showing the flow of magnetic lines of force in a cylindrical long bonded magnet obtained according to the present invention. 1: Hopper 2: Mixing screw 3: Extrusion screw (auger) 8: Mold 9: Yoke
10: Molded body 11: Insulator or conductor Fig. 1 - 9 - Fig. 2 @ /1 Fig. 3

Claims (1)

【特許請求の範囲】 1 マグネットプラムバイト型磁性粒子を主成分とし、
必要に応じ表面改質材、バインダーならびに微粒子添加
物を加えてなる混線物を押出し成形し、得られた成形体
を熱処理又は輻射線処理等による適宜なる方法により同
化又は硬化せしめてなるボンド磁石の製造方法において
、前記成形体の被着磁面にパルス等による磁場を印加し
て異方性を付与させ、次に固化又は硬化後、前記異方性
方向と同一方向に着磁することを特徴とするボンド磁石
の製造方法。 2 押出し成形により得られた円筒状もしくはリング状
成形体を絶縁体若しくは導電体で被覆した後、あるいは
該絶縁体若しくは導電体の素材より成形される収納容器
中に収納したのち、軸と直角方向又は平行方向に前記成
形体に磁場を印加することを特徴とする特許請求の範囲
第1項記載のボンド磁石の製造方法。 3 成形体に印加する磁場として約5KOe以上の磁場
とづることを特徴とする特許請求の範囲第2項記載のボ
ンド磁石の製造方法。 4 板状成形体の表面を絶縁体又は導電体で被覆ないし
は該絶縁体又は導電体の素材よりなる容器中に収納した
のち、該成形体に約10KOe以上のパルス磁場を1回
もしくは複数回印加して、最終製品の3r値を200O
G以上とすることを特徴とする特許請求範囲第1項記載
のボンド磁石の製造り法。 5 外径路10mmの円筒状若しくはリング状成形体に
約IQK Oe以上のパルス磁場を瞬間的に1回若しく
は複数回印加して、最終製品の表面地東密度BOを10
0OG以上とすることを特徴とする特許請求の範囲第1
項記載のボンド磁石の製造方法。 6 押出成形法により、外径略10mm以上の円弧状成
形体を成形し、該成形体の少くとも上下面を絶縁体で被
覆した後、約10KOe以上のパルス磁場を印加してな
ることを特徴とするボンド磁りの製漬方法。
[Claims] 1 Mainly composed of magnet plumbite type magnetic particles,
A bonded magnet is produced by extrusion molding a hybrid material to which a surface modifying material, a binder, and particulate additives are added as necessary, and assimilating or hardening the resulting molded product by an appropriate method such as heat treatment or radiation treatment. The manufacturing method is characterized in that a magnetic field such as a pulse is applied to the magnetized surface of the molded body to impart anisotropy, and then, after solidification or hardening, the molded body is magnetized in the same direction as the anisotropic direction. A method for manufacturing a bonded magnet. 2. After covering a cylindrical or ring-shaped molded product obtained by extrusion molding with an insulator or conductor, or after storing it in a storage container molded from the material of the insulator or conductor, in a direction perpendicular to the axis. The method for manufacturing a bonded magnet according to claim 1, characterized in that a magnetic field is applied to the molded body in a parallel direction. 3. The method for manufacturing a bonded magnet according to claim 2, characterized in that the magnetic field applied to the molded body is a magnetic field of about 5 KOe or more. 4 After covering the surface of the plate-shaped molded body with an insulator or conductor or storing it in a container made of the material of the insulator or conductor, a pulsed magnetic field of about 10 KOe or more is applied to the molded body once or multiple times. and the 3r value of the final product is 200O.
A method for manufacturing a bonded magnet according to claim 1, characterized in that the bonded magnet is G or more. 5. A pulsed magnetic field of approximately IQK Oe or more is momentarily applied once or multiple times to a cylindrical or ring-shaped molded body with an outer diameter of 10 mm, so that the surface density BO of the final product is 10
Claim 1 characterized in that it is 0OG or more.
A method for producing a bonded magnet as described in . 6. It is characterized by forming an arc-shaped molded body with an outer diameter of approximately 10 mm or more by extrusion molding, coating at least the upper and lower surfaces of the molded body with an insulator, and then applying a pulsed magnetic field of about 10 KOe or more. A method for making bond magnets.
JP19227682A 1982-11-01 1982-11-01 Manufacture of bond magnet Pending JPS5980902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19227682A JPS5980902A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19227682A JPS5980902A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Publications (1)

Publication Number Publication Date
JPS5980902A true JPS5980902A (en) 1984-05-10

Family

ID=16288579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19227682A Pending JPS5980902A (en) 1982-11-01 1982-11-01 Manufacture of bond magnet

Country Status (1)

Country Link
JP (1) JPS5980902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169102A (en) * 1984-09-13 1986-04-09 Shin Kobe Electric Mach Co Ltd Manufacture of resin magnet molding material
US5464670A (en) * 1990-04-13 1995-11-07 Seiko Epson Corporation Resin bound magnet and its production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169102A (en) * 1984-09-13 1986-04-09 Shin Kobe Electric Mach Co Ltd Manufacture of resin magnet molding material
US5464670A (en) * 1990-04-13 1995-11-07 Seiko Epson Corporation Resin bound magnet and its production process

Similar Documents

Publication Publication Date Title
EP0772211B1 (en) Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
KR100435610B1 (en) METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET
WO1997035331A1 (en) Process for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet
US6387293B1 (en) Composition for rare earth bonded magnet use, rare earth bonded magnet and method for manufacturing rare earth bonded magnet
AU617620B2 (en) Composition for producing bonded magnet
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP2004241417A (en) Plastic magnet precursor, its manufacturing method, and plastic magnet
JPS5980902A (en) Manufacture of bond magnet
JPS5923445B2 (en) permanent magnet
JP3658868B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPS5980903A (en) Manufacture of bond magnet
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPS5980904A (en) Manufacture of bond magnet
JP4069714B2 (en) Anisotropic injection-molded magnet manufacturing method and injection-molded magnet obtained thereby
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH02110904A (en) Resin-bonded nd-fe-b magnet
JP3812926B2 (en) Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP4006653B2 (en) Cylindrical resin magnet
JPS60216523A (en) Manufacture of anisotropic resin magnet sheet
JPS6037112A (en) Manufacture of anisotropic composite magnet
JPH1167568A (en) Manufacture of bonded magnet
JPH02158107A (en) Resin ferrite
JP2008153406A (en) Rare earth bond magnet and its manufacturing method
JPH1167567A (en) Manufacture for bond magnet