JP2008153406A - Rare earth bond magnet and its manufacturing method - Google Patents

Rare earth bond magnet and its manufacturing method Download PDF

Info

Publication number
JP2008153406A
JP2008153406A JP2006339260A JP2006339260A JP2008153406A JP 2008153406 A JP2008153406 A JP 2008153406A JP 2006339260 A JP2006339260 A JP 2006339260A JP 2006339260 A JP2006339260 A JP 2006339260A JP 2008153406 A JP2008153406 A JP 2008153406A
Authority
JP
Japan
Prior art keywords
rare earth
powder
magnet
thermoplastic resin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339260A
Other languages
Japanese (ja)
Inventor
Yasumitsu Hayashi
保光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP2006339260A priority Critical patent/JP2008153406A/en
Publication of JP2008153406A publication Critical patent/JP2008153406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which is performed by a simple processing without kneading, granulation and grading of magnetic powder and thermoplastic and manufactures a rare earth bond magnet having high magnetic performance where [BH]max reaches 11MGOe in manufacture of the rare earth bond magnet by compression molding, in which rare earth magnetic powder is bonded with thermoplastic. <P>SOLUTION: Powdered mixture in which powder of thermoplastic adheres to a surface of rare earth magnet powder is formed by using coupling agent. A warmed press die is filled with powder mixture, a magnet shape is given by warm compression molding and it is cooled in a pressurized state. Thus, the rare earth bond magnet is manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、希土類ボンド磁石の製造方法に関し、その方法により製造した希土類ボンド磁石にも関する。 The present invention relates to a method for manufacturing a rare earth bonded magnet, and also relates to a rare earth bonded magnet manufactured by the method.

希土類磁石粉末を樹脂で結合して磁石形状とした希土類ボンド磁石は、射出成形、圧縮成形、または押出成形の技術により製造されている。射出成形は、適宜のサイズに粉砕した希土類磁石粉末にカップリング剤を適用してから熱可塑性樹脂と合わせ、二軸混練機のような強力な混練装置で混練し、いったんペレット化したものを射出成形機に供給して、金型内に射出成形することによって実施する。複雑な形状の磁石を直接成形できるが、上記の製法による制約から、製品磁石に占める磁石粉末の割合を高くすることができず、製品の磁気特性としては、あまり高いものは望めない。 A rare earth bonded magnet in which a rare earth magnet powder is bonded with a resin to form a magnet is manufactured by an injection molding, compression molding, or extrusion technique. In injection molding, a coupling agent is applied to a rare earth magnet powder pulverized to an appropriate size, combined with a thermoplastic resin, kneaded with a powerful kneading device such as a twin-screw kneader, and once pelletized, injected. It is carried out by supplying to a molding machine and injection molding into a mold. Although it is possible to directly form a magnet having a complicated shape, the ratio of the magnet powder in the product magnet cannot be increased due to the limitations due to the manufacturing method described above, and it is not possible to expect a very high magnetic property of the product.

射出成形のいまひとつの問題は、成形品にゲート跡が不可避的に残ることである。ゲート跡は、面取り加工によって平滑に仕上げなければならないことがしばしばあるし、その部分は磁石粉末が露出していて錆びやすく、錆が剥落してさまざまな問題を引き起こす。それを防ぐには、成形品全体か、少なくともゲート部に、コーティングをする必要がある。押出成形は、異形断面をもった磁石製品を製造することが容易である点で、射出成形と共通であるが、共通の問題もあり、押出製品の切断面に対してはコーティングを施さなければならない。射出成形と同じような製法上の制約により、磁石粉末が占める割合は70容積%程度が限界であるため、磁気特性も低く、たとえば、最大磁気エネルギー積[BH]maxの値は6MGOe止まりである。 Another problem with injection molding is that gate marks inevitably remain on the molded product. The gate mark often has to be finished smoothly by chamfering, and the magnet powder is exposed and easily rusted, and the rust is peeled off and causes various problems. In order to prevent this, it is necessary to coat the entire molded product or at least the gate portion. Extrusion molding is common with injection molding in that it is easy to produce magnet products with irregular cross-sections, but there is a common problem, and the cut surface of the extrusion product must be coated. Don't be. Due to manufacturing restrictions similar to injection molding, the magnetic powder occupies a limit of about 70% by volume, so the magnetic properties are also low. For example, the maximum magnetic energy product [BH] max value is only 6 MGOe. .

一方、圧縮成形は、樹脂として熱硬化性のもの、代表的にはエポキシ樹脂を使用し、通常は、カップリング剤で処理し、乾燥させた磁石粉末と、液体の樹脂とを混合してコンパウンドを得、これを金型でプレスして成形品とし、取り出して赤外線加熱などにより加熱して樹脂を硬化させる、という工程に従って製造する。成形サイクルは若干長くなるが、成形品を金型内に置いたまま冷却して製品を得る製造方法もある。圧縮成形は、リングなど簡単な形状の製品しか製造できないが、製品磁石中に磁石粉末が占める割合を、95質量%程度まで高めることができるから、高い磁気特性、たとえば[BH]maxが11MGOeを超えるものを製造することができる。しかし、圧縮成形により製造したボンド磁石は、耐食性が悪くて、最終的には防食コーティングを施さなければならない。 On the other hand, in compression molding, a thermosetting resin, typically an epoxy resin, is used, and usually a compound obtained by mixing a magnetic powder treated with a coupling agent and dried with a liquid resin. This is manufactured according to the process of pressing it with a mold to obtain a molded product, taking it out and heating it by infrared heating or the like to cure the resin. Although the molding cycle is slightly longer, there is a manufacturing method in which a molded product is cooled while it is placed in a mold to obtain a product. Compression molding can only produce products with simple shapes such as rings, but since the proportion of magnet powder in the product magnet can be increased to about 95% by mass, high magnetic properties such as [BH] max of 11 MGOe are achieved. More can be produced. However, bond magnets manufactured by compression molding have poor corrosion resistance, and eventually have to be subjected to anticorrosion coating.

圧縮成形によるボンド磁石の製造において、結合樹脂として、従来の熱硬化性樹脂に代えて熱可塑性樹脂を使用するという提案がなされた(特許文献1)。この技術は、磁石粉末と熱可塑性樹脂との組成物を、熱可塑性樹脂が溶融状態となる第一の温度で加圧成形し、加圧状態のまま、熱可塑性樹脂の溶融温度を下回る第二の温度まで冷却し、その冷却を水冷によって行なうことを特徴とする。加圧成形に当たって、金型を加熱し、成形時の材料温度を熱可塑性樹脂が溶融状態となる温度にするという意味で、「温間成形」と呼んでいる。結合樹脂とする熱可塑性樹脂は、成形性にすぐれ、機械的強度が高い点でポリアミドが、耐熱性からは液晶ポリマーやポリフェニレンサルファイドが、また成形の容易さやコストの点ではポリオレフィンが、好ましいとされている。 In the production of bonded magnets by compression molding, a proposal has been made to use a thermoplastic resin as a binding resin instead of a conventional thermosetting resin (Patent Document 1). In this technique, the composition of the magnet powder and the thermoplastic resin is pressure-molded at a first temperature at which the thermoplastic resin is in a molten state, and the second temperature lower than the melting temperature of the thermoplastic resin in the pressurized state. It cools to the temperature of this, and the cooling is performed by water cooling. In the press molding, the mold is heated, and the material temperature at the time of molding is set to a temperature at which the thermoplastic resin is in a molten state, which is called “warm molding”. The thermoplastic resin used as the binder resin is preferably polyamide from the viewpoint of excellent moldability and high mechanical strength, liquid crystal polymer and polyphenylene sulfide from the viewpoint of heat resistance, and polyolefin from the viewpoint of ease of molding and cost. ing.

この熱可塑性樹脂を結合樹脂とするボンド磁石の製造に当たっては、実際上、圧縮成型に供給する組成物を得るために、磁石粉末と熱可塑性樹脂とを熱可塑性樹脂の熱変形温度以上の温度で混練し、造粒または整粒する工程が必要である。具体的には、ヘンシェルミキサー等の混合機を用いて磁石粉末と熱可塑性樹脂とを混合し、二軸押出混練機、ロール式混練機、ニーダー等の混練機で、熱可塑性樹脂の熱変形温度以上、好ましくは融点以上の温度で混練する。混練物は、押出式造粒機により造粒するか、またはボールミル、振動ミル、破砕機、ジェットミル、ピンミル等を用いて粉砕し、フルイ等で分級して、平均粒径を0.01〜2mm、好ましくは0.02〜2mm、より好ましくは0.05〜2mmに整粒する。
特許第3653852号
In manufacturing a bonded magnet using this thermoplastic resin as a binding resin, in practice, in order to obtain a composition to be supplied to compression molding, the magnet powder and the thermoplastic resin are heated at a temperature equal to or higher than the thermal deformation temperature of the thermoplastic resin. A step of kneading, granulating or sizing is necessary. Specifically, a magnetic powder and a thermoplastic resin are mixed using a mixer such as a Henschel mixer, and the heat distortion temperature of the thermoplastic resin is determined using a twin-screw extrusion kneader, a roll kneader, a kneader or the like. The kneading is preferably performed at a temperature equal to or higher than the melting point. The kneaded product is granulated by an extrusion granulator, or pulverized by using a ball mill, a vibration mill, a crusher, a jet mill, a pin mill, etc. The size is adjusted to 2 mm, preferably 0.02 to 2 mm, more preferably 0.05 to 2 mm.
Japanese Patent No. 36553852

上記の熱可塑性樹脂を結合樹脂とするボンド磁石は、空孔率が4%以下の圧縮成形品を得ることができるので、[BH]maxが11MGOeに達するボンド磁石を得ることができるという。しかし、磁石粉末と熱可塑性樹脂の混練、造粒または整粒の作業は工数がかかり、それが製品磁石のコストを高くすることは否定できない。 The bonded magnet using the thermoplastic resin as a binding resin can obtain a compression molded product having a porosity of 4% or less, and therefore, a bonded magnet having [BH] max of 11 MGOe can be obtained. However, the work of kneading, granulating or sizing the magnet powder and the thermoplastic resin takes time, and it cannot be denied that this increases the cost of the product magnet.

本発明の目的は、希土類磁石粉末を熱可塑性樹脂で結合したボンド磁石の製造において、既知の製造方法に必要であった磁石粉末と熱可塑性樹脂の混練および造粒または整粒の作業を必要としない、簡素な工程で圧縮成形を行なうことができ、既知の方法による磁石製品と同等またはそれ以上の磁気性能をもったボンド磁石を製造することが可能な製造方法を提供することにある。 An object of the present invention is to produce a bonded magnet in which rare earth magnet powder is bonded with a thermoplastic resin, and requires kneading and granulation or sizing of the magnet powder and the thermoplastic resin, which are necessary for a known production method. It is an object of the present invention to provide a manufacturing method capable of manufacturing a bonded magnet that can be compression-molded by a simple process and has a magnetic performance equivalent to or higher than that of a magnet product by a known method.

本発明の希土類ボンド磁石の製造方法は、希土類磁石粉末を熱可塑性樹脂で結合した希土類ボンド磁石を製造する方法において、カップリング剤により希土類磁石粉末の表面に熱可塑性樹脂の粉末が付着した粉末状混合物を形成し、この粉末状混合物を加温したプレス型に充填し、温間圧縮成形により磁石形状を与え、加圧状態のまま冷却することを特徴とする希土類ボンド磁石の製造方法である。 The method for producing a rare earth bonded magnet according to the present invention is a method for producing a rare earth bonded magnet in which rare earth magnet powder is bonded with a thermoplastic resin, in which a thermoplastic resin powder is adhered to the surface of the rare earth magnet powder by a coupling agent. A method for producing a rare earth bonded magnet is characterized in that a mixture is formed, the powdery mixture is filled into a heated press mold, a magnet shape is given by warm compression molding, and cooling is performed in a pressurized state.

本発明により、希土類磁石粉末を熱可塑性樹脂で結合した希土類ボンド磁石を製造するに当たって、磁石粉末と熱可塑性樹脂の混練および造粒または整粒の作業が不要となったから、この種ボンド磁石の製造工程がきわめて簡素になり、製造コストを押し上げる要因が除去された。また本発明の方法は、カップリング剤の使用により製造工程における磁石粉末と熱可塑性樹脂とのなじみが向上するために空孔率がいっそう低くなり、磁石粉末の占有容積率がより高く、かつ、磁石粉末の酸化が低減された磁石製品を得ることができる。射出成形との比較においては、いうまでもなくより高い成形圧力を適用することができ、空孔率が低減できる。したがって本発明の製造方法は、既知の方法による磁石製品と同等またはそれ以上の磁気性能をもったボンド磁石を、低減されたコストをもって提供することを可能にした。 According to the present invention, in manufacturing a rare earth bonded magnet in which rare earth magnet powder is bonded with a thermoplastic resin, the work of kneading and granulating or sizing the magnet powder and the thermoplastic resin is no longer necessary. The process has become very simple and the factors that have pushed up manufacturing costs have been eliminated. Further, the method of the present invention improves the familiarity between the magnet powder and the thermoplastic resin in the production process by using a coupling agent, so that the porosity is further lowered, the occupied volume ratio of the magnet powder is higher, and A magnet product with reduced oxidation of the magnet powder can be obtained. In comparison with injection molding, it goes without saying that a higher molding pressure can be applied and the porosity can be reduced. Therefore, the manufacturing method of the present invention has made it possible to provide a bonded magnet having a magnetic performance equal to or higher than that of a magnet product by a known method at a reduced cost.

希土類磁石粉末としては、Nd−Fe−B系またはSm−Fe−N系の磁石合金の溶湯を超急冷法により粉末にして製造したものが好適である。粉末の形状は扁平なフレーク状がよく、そのサイズは、厚さ1〜50μm、長径10〜500μm、短径2〜100μm、平均粒径としては25〜300μmの範囲のものが適切である。 As the rare earth magnet powder, a powder obtained by powdering a molten alloy of an Nd—Fe—B or Sm—Fe—N magnet alloy by a super rapid cooling method is preferable. The shape of the powder is preferably a flat flake shape, and the size is suitably 1 to 50 μm in thickness, 10 to 500 μm in major axis, 2 to 100 μm in minor axis, and 25 to 300 μm in average particle size.

カップリング剤は、希土類ボンド磁石の製造に当たって使用されている、シラン系、チタネート系またはジルコネート系のカップリング剤が、そのまま、または水もしくは適宜の溶剤で希釈した状態で、使用できる。その使用量は、磁石粉末に対して質量で0.1〜1%が適切である。不足すると磁石粉末に対して樹脂粉末をなじませるという、カップリング剤の作用が十分に得られないし、過大になると製品磁石の中で磁石粉末が占める割合を低くして、高い磁気特性を得ようという意図に反する。 As the coupling agent, a silane, titanate, or zirconate coupling agent used in the production of rare earth bonded magnets can be used as it is or diluted with water or an appropriate solvent. The amount used is suitably 0.1 to 1% by mass with respect to the magnet powder. If the amount is insufficient, the effect of the coupling agent to allow the resin powder to blend with the magnet powder is not sufficiently obtained. If the amount is too large, the ratio of the magnet powder in the product magnet will be reduced to obtain high magnetic properties. Contrary to the intention.

熱可塑性樹脂の粉末としては、粉末の状態で得られれば、任意の熱可塑性合成樹脂を使用することができる。しかし、なかでも、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、ポリビニリデンフルオライド(PVDF)または液晶ポリマーが、製品磁石に高い耐熱性と機械的強度を与える点で有用である。本発明の製造方法においては、熱可塑性樹脂は粒径1〜50μmの微粉末の状態で用いることが肝要である。このような微粉末であることにより、熱可塑性樹脂粉末は、粉末磁石の表面に、カップリング剤を介して1層ないし数層の層を形成して密接に付着しており、少量の結合樹脂でできるだけ多量の磁石粉末を結合するという意図が達成できる。上記のような熱可塑性樹脂の微粉末を得るには、単なる機械的な粉砕手段では通常は不十分であって、冷凍粉砕によることが推奨される。 As the thermoplastic resin powder, any thermoplastic synthetic resin can be used as long as it is obtained in a powder state. However, among them, polyamide (PA), polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF) or liquid crystal polymer is useful in that it gives high heat resistance and mechanical strength to the product magnet. In the production method of the present invention, it is important to use the thermoplastic resin in the form of a fine powder having a particle diameter of 1 to 50 μm. Due to such a fine powder, the thermoplastic resin powder is closely attached to the surface of the powder magnet by forming one or several layers through a coupling agent, and a small amount of binding resin. The intention of binding as much magnet powder as possible can be achieved. In order to obtain the fine powder of the thermoplastic resin as described above, a simple mechanical pulverization means is usually insufficient, and it is recommended to use freeze pulverization.

本発明の製造方法は、磁石粉末と熱可塑性樹脂粉末との混合物を圧縮成形するに当たり、
プレス型の温度を高めてプレスする温間成形として実施する。このとき、金型の温度は、熱可塑性樹脂の溶融温度に対して、−10〜+20℃の範囲に選んで実施することが好ましい。樹脂の溶融温度より著しく低いと、温間成形の効果が十分に得られないし、一方であまり高いと、金型の冷却に時間がかかり、生産性が低くなる。プレス金型の昇温および降温は、任意の手段で実現できるが、電熱と冷却水との併用が実際的である。
The production method of the present invention is to compress and mold a mixture of magnet powder and thermoplastic resin powder.
It is carried out as warm forming in which the temperature of the press die is raised and pressed. At this time, the temperature of the mold is preferably selected in the range of −10 to + 20 ° C. with respect to the melting temperature of the thermoplastic resin. If the melting temperature of the resin is significantly lower than the melting temperature of the resin, the effect of warm molding cannot be sufficiently obtained. The press die can be raised and lowered by any means, but the combined use of electric heating and cooling water is practical.

温間圧縮成形時の圧力は、高い方がより低い空孔率、したがってより高い磁石粉末の容積率を実現する上で有利であるが、設備的な限界もあるから、両者の妥協を図って決定すべきである。通常は温間圧縮成形時の加圧力を10〜20t/cm2の範囲とし、それに続く冷却時の圧力を、成形時の圧力と同等またはそれ以上に保持して実施することが好ましい。 The higher the pressure during warm compression molding, the lower the porosity, and thus the higher the volume ratio of the magnet powder, which is advantageous. Should be decided. Usually, it is preferable that the pressure during warm compression molding is in the range of 10 to 20 t / cm 2 , and the subsequent cooling pressure is kept equal to or higher than the pressure during molding.

本発明の製造方法により、希土類磁石粉末とその表面に適用されたカップリング剤、および希土類磁石粉末を結合する熱可塑性樹脂からなる希土類ボンド磁石が製造できる。この製品磁石は、磁石粉末の含有量が80質量%以上であり、空孔率が1%以下であるから、[BH]maxが、熱硬化性樹脂を用いた圧縮成形ボンド磁石並の11MGOeを容易に超えるボンド磁石である。 By the production method of the present invention, a rare earth bonded magnet made of a rare earth magnet powder, a coupling agent applied to the surface thereof, and a thermoplastic resin that binds the rare earth magnet powder can be produced. Since this product magnet has a magnet powder content of 80% by mass or more and a porosity of 1% or less, [BH] max is 11 MGOe which is the same as a compression-molded bond magnet using a thermosetting resin. It is a bond magnet that easily exceeds.

希土類磁石粉末として、MQI社の製造販売にかかるMQI−B2粉を用いた。これは、Nd−Fe−B系の磁石合金の急冷薄帯を破砕し、いったん熱処理して磁気特性を高めたものを再度粉砕して、平均粒径250μm(厚さ1〜50μm、長径10〜500μm、短径2〜100μm)のフレークとしたものである。結合樹脂となる熱可塑性樹脂としてはPPS(東レ社製「M3910」、溶融温度282℃、比重1.35)を選び、冷凍粉砕を行なって、粒度10μm以下の微粉末としたものを使用した。カップリング剤としては、シランカップリング剤19gをエタノール500gおよびオン交換水6gの混合溶媒で希釈した溶液を用意した。 As the rare earth magnet powder, MQI-B2 powder according to the manufacture and sale of MQI was used. This is done by crushing a quenched ribbon of an Nd—Fe—B based magnet alloy, pulverizing a material that has been heat-treated once to improve its magnetic properties, and having an average particle size of 250 μm (thickness 1-50 μm, major axis 10 500 μm, minor axis 2 to 100 μm). PPS (“M3910” manufactured by Toray Industries Inc., melting temperature 282 ° C., specific gravity 1.35) was selected as the thermoplastic resin to be the binder resin, and freeze-pulverized to obtain a fine powder having a particle size of 10 μm or less. As a coupling agent, a solution prepared by diluting 19 g of a silane coupling agent with a mixed solvent of 500 g of ethanol and 6 g of on-exchanged water was prepared.

上記のMQI−B2粉19,188gとPPS微粉末754gとを万能混合機に入れ、回転数100rpmで10分間、撹拌混合した。つづいて、上で用意したカップリング剤溶液を混合物に加え、やはり回転数100rpmで10分間、撹拌混合を重ねた。スラリー状態となった混合物に、滑材としてステアリン酸リチウム280gを添加し、130℃に加熱しながら、回転数100rpmで30分間撹拌することにより、乾燥させて粉末状の混合物を得た。 19,188 g of the above MQI-B2 powder and 754 g of PPS fine powder were put in a universal mixer and stirred and mixed at a rotation speed of 100 rpm for 10 minutes. Subsequently, the coupling agent solution prepared above was added to the mixture, and stirring and mixing were repeated for 10 minutes at a rotational speed of 100 rpm. To the mixture in a slurry state, 280 g of lithium stearate was added as a lubricant, and the mixture was stirred for 30 minutes at a rotation speed of 100 rpm while being heated to 130 ° C. to obtain a powdery mixture.

電熱による加熱手段と冷却水の流路とを備えた内径10mmのダイスと、それに出入する上下のパンチとからなるプレス金型に、上記の粉末状態の混合物3gを投入し、パンチで面圧12kgf/cm2の圧力を加えた状態に保持し、ダイス温度を300℃に昇温した。目標の温度への到達を確認したのち10秒間保持し、ダイスを冷却して温度280℃とした。温度の降下を確認してから、成型品をダイスから抜き出して、機械加工により高さ7mmの試験片に仕上げた。 3 g of the mixture in the above powder state is put into a press die composed of a die having an inner diameter of 10 mm equipped with a heating means by electric heating and a flow path of cooling water, and upper and lower punches entering and exiting the die, and a surface pressure of 12 kgf by the punch. The pressure of / cm 2 was maintained and the die temperature was raised to 300 ° C. After confirming that the target temperature was reached, the temperature was maintained for 10 seconds, and the die was cooled to a temperature of 280 ° C. After confirming the temperature drop, the molded product was extracted from the die and finished into a test piece having a height of 7 mm by machining.

この直径10mm×高さ7mmの円盤状試験片を、直径30mm×高さ100mmの空芯コイル内において、着磁電圧1700V、コンデンサ容量1600μF(起磁力25kOe)の条件で着磁し、その磁石の磁気特性を、「BHトレーサー」(理研電子社製)を用いて測定した。測定結果を、磁石の密度とともに、下の表に示す。(参考までに、従来の射出形成技術により製造された磁石の代表的なデータを、表にあわせて掲げた。)
測定項目(単位) 測定結果 従来品のデータ
Br(kG) 7.21 5.7〜6.5
bHc(kOe) 5.92 4.0〜4.8
iHc(kOe) 9.58 6.5〜8.0
[BH]max(MGOe) 11.2 6.5〜8.0
密度(g/cm3) 5.98 5.0〜5.5
This disk-shaped test piece having a diameter of 10 mm and a height of 7 mm is magnetized in an air core coil having a diameter of 30 mm and a height of 100 mm under the conditions of a magnetization voltage of 1700 V and a capacitor capacity of 1600 μF (magnetomotive force of 25 kOe). The magnetic properties were measured using “BH Tracer” (manufactured by Riken Denshi Co., Ltd.). The measurement results are shown in the table below together with the magnet density. (For reference, typical data of magnets manufactured by conventional injection molding technology are listed in the table.)
Measurement item (unit) Measurement result Conventional product data
Br (kG) 7.21 5.7-6.5
bHc (kOe) 5.92 4.0-4.8
iHc (kOe) 9.58 6.5-8.0
[BH] max (MGOe) 11.2 6.5-8.0
Density (g / cm 3 ) 5.98 5.0 to 5.5

上記の試験片を120℃に1000時間保持してその間の熱減磁率を測定し、熱減磁曲線を描いて耐熱性をしらべた。測定結果をプロットして、図1に示すグラフを得た。射出成形によるボンド磁石と、従来技術に従う圧縮成形によるボンド磁石との熱減磁率曲線を、図1にあわせて示した。本発明によるボンド磁石が、最良の耐熱性を示している。 The test piece was held at 120 ° C. for 1000 hours, the thermal demagnetization rate was measured during that time, and the heat resistance was examined by drawing a thermal demagnetization curve. The measurement results were plotted to obtain the graph shown in FIG. The thermal demagnetization curve of the bonded magnet by injection molding and the bonded magnet by compression molding according to the prior art is also shown in FIG. The bonded magnet according to the present invention exhibits the best heat resistance.

本発明の実施例において製造したボンド磁石の熱減磁曲線。The thermal demagnetization curve of the bond magnet manufactured in the Example of this invention.

Claims (8)

希土類磁石粉末を熱可塑性樹脂で結合した希土類ボンド磁石を製造する方法において、カップリング剤により希土類磁石粉末の表面に熱可塑性樹脂の粉末が付着した粉末状混合物を形成し、この粉末状混合物を加温したプレス型に充填し、温間圧縮成形により磁石形状を与え、加圧状態のまま冷却することを特徴とする希土類ボンド磁石の製造方法。 In a method of manufacturing a rare earth bonded magnet in which rare earth magnet powder is bonded with a thermoplastic resin, a powdery mixture in which the thermoplastic resin powder adheres to the surface of the rare earth magnet powder is formed by a coupling agent, and this powdery mixture is added. A method for producing a rare earth bonded magnet, which comprises filling a heated press die, giving a magnet shape by warm compression molding, and cooling in a pressurized state. 粉末状混合物の形成を、希土類磁石粉末と熱可塑性樹脂の粉末とを混合し、さらにカップリング剤を添加して撹拌してスラリー状の混合物を得、このスラリー状混合物に滑材を添加して撹拌し、加熱乾燥して希土類磁石粉末の表面に熱可塑性樹脂粉末が付着した粉末状混合物とすることにより行なう請求項1の製造方法。 The powder mixture is formed by mixing rare earth magnet powder and thermoplastic resin powder, adding a coupling agent and stirring to obtain a slurry mixture, and adding a lubricant to the slurry mixture. The manufacturing method of Claim 1 performed by stirring and heat-drying and setting it as the powdery mixture which adhered the thermoplastic resin powder to the surface of the rare earth magnet powder. カップリング剤として、希土類ボンド磁石の製造に当たって使用する、シラン系、チタネート系またはジルコネート系のカップリング剤をえらび、希土類磁石粉末に対して質量%で0.1〜1%使用して実施する請求項1または2の製造方法。 As a coupling agent, a silane, titanate or zirconate coupling agent used in the production of rare earth bonded magnets is selected and used in an amount of 0.1 to 1% by mass based on the rare earth magnet powder. Item 3. The method according to Item 1 or 2. 熱可塑性樹脂の粉末として、ポリアミド、ポリフェニレンサルファイド、ポリビニリデンフルオライドまたは液晶ポリマーの、粒径1〜50μmの粉末を使用して実施する請求項1ないし3のいずれかの製造方法。 The production method according to any one of claims 1 to 3, wherein the thermoplastic resin powder is a polyamide, polyphenylene sulfide, polyvinylidene fluoride or liquid crystal polymer powder having a particle diameter of 1 to 50 µm. プレス型の加温を、熱可塑性樹脂の溶融温度に対して、−10〜+20℃の範囲に選んで実施する請求項1ないし4のいずれかの製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the heating of the press die is performed in a range of -10 to + 20 ° C with respect to the melting temperature of the thermoplastic resin. 温間圧縮成形時の圧力を10〜20t/cm2の範囲とし、冷却時の圧力を温間圧縮成形時の圧力と同等またはそれ以上に保持して実施する請求項1ないし5のいずれかの製造方法。 The pressure at the time of warm compression molding is set in the range of 10 to 20 t / cm 2 , and the pressure at the time of cooling is maintained to be equal to or higher than the pressure at the time of warm compression molding. Production method. 請求項1ないし6のいずれかに記載の製造方法により製造された希土類ボンド磁石。 A rare earth bonded magnet manufactured by the manufacturing method according to claim 1. 磁石粉末の含有量が80質量%以上であり、空孔率が1%以下である請求項7の希土類ボンド磁石。 The rare earth bonded magnet according to claim 7, wherein the content of the magnet powder is 80% by mass or more and the porosity is 1% or less.
JP2006339260A 2006-12-15 2006-12-15 Rare earth bond magnet and its manufacturing method Pending JP2008153406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339260A JP2008153406A (en) 2006-12-15 2006-12-15 Rare earth bond magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339260A JP2008153406A (en) 2006-12-15 2006-12-15 Rare earth bond magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008153406A true JP2008153406A (en) 2008-07-03

Family

ID=39655277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339260A Pending JP2008153406A (en) 2006-12-15 2006-12-15 Rare earth bond magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008153406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089813A (en) * 2011-10-19 2013-05-13 National Institute Of Advanced Industrial & Technology Rare earth nitride-based isotropic sintered magnet and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089813A (en) * 2011-10-19 2013-05-13 National Institute Of Advanced Industrial & Technology Rare earth nitride-based isotropic sintered magnet and production method therefor

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
CN106312077B (en) Preparation method of submicron anisotropic samarium-iron-nitrogen magnetic powder and hybrid bonded magnet thereof
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP6439974B2 (en) Bond magnet and method of manufacturing bond magnet
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP2008153406A (en) Rare earth bond magnet and its manufacturing method
JPH1174140A (en) Manufacture of dust core
JP5948805B2 (en) Anisotropic bonded magnet and compound for anisotropic bonded magnet
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
JP4069714B2 (en) Anisotropic injection-molded magnet manufacturing method and injection-molded magnet obtained thereby
CN103280311A (en) Method for preparing anisotropic bonded permanent magnet
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JP2000021664A (en) Production of dust core
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
WO2021200517A1 (en) Compressed bonded magnet, manufacturing method therefor, and field coil
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
Ohmori Bonded Rare Earth Permanent Magnets
JPH0922828A (en) Manufacture of bond type permanent magnet
JP4887617B2 (en) Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor