JP4127077B2 - Rare earth bonded magnet manufacturing method - Google Patents

Rare earth bonded magnet manufacturing method Download PDF

Info

Publication number
JP4127077B2
JP4127077B2 JP2003054561A JP2003054561A JP4127077B2 JP 4127077 B2 JP4127077 B2 JP 4127077B2 JP 2003054561 A JP2003054561 A JP 2003054561A JP 2003054561 A JP2003054561 A JP 2003054561A JP 4127077 B2 JP4127077 B2 JP 4127077B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet powder
magnet
powder
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003054561A
Other languages
Japanese (ja)
Other versions
JP2004266093A (en
Inventor
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003054561A priority Critical patent/JP4127077B2/en
Priority to EP04701105A priority patent/EP1583111B1/en
Priority to PCT/JP2004/000116 priority patent/WO2004064086A1/en
Priority to US10/541,454 priority patent/US20060099404A1/en
Publication of JP2004266093A publication Critical patent/JP2004266093A/en
Application granted granted Critical
Publication of JP4127077B2 publication Critical patent/JP4127077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面や内部における空孔部の発生が軽減された、耐食性に優れるとともに高い磁気特性を示す希土類系ボンド磁石の簡便な製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系磁石粉末に代表されるR−Fe−B系磁石粉末などの希土類系磁石粉末を、樹脂バインダとして熱硬化性樹脂や熱可塑性樹脂などを用いて所定形状に成形することで製造される希土類系ボンド磁石は、樹脂バインダを含有しているために希土類系焼結磁石に比較すれば磁気特性が低くなるものの、フェライト磁石などに比べればなお十分に高い磁気特性を有しており、また、複雑形状や薄肉形状の磁石やラジアル異方性磁石を容易に得ることができるといった希土類系焼結磁石にはない特徴を持っている。従って、希土類系ボンド磁石は、特にスピンドルモータやステッピングモータなどの小型モータに多く用いられ、近年、その需要が増加している。
希土類系ボンド磁石の代表的な製造方法として、希土類系磁石粉末とエポキシ樹脂などの熱硬化性樹脂を混練して混練物とし、この混練物を圧縮成形して所定形状に成形してから加熱硬化する方法がある。しかしながら、このような方法で製造されたボンド磁石には、磁石粉末の粒子と粒子の間に樹脂バインダが十分に充填されないことに起因する空孔(空隙)部が磁石の表面や内部に存在するので、わずかな酸やアルカリや水分などによっても、これらが空孔部に浸入することにより磁石の表面から腐食が進行して錆が発生するという問題がある。この問題の解決手段としては、混練物における磁石粉末に対する熱硬化性樹脂の配合割合を増やす方法が考えられるが、熱硬化性樹脂の配合割合を増やした場合には、混練物の流動性が悪くなるので製造上の問題が発生したり、磁石粉末の密度が低下することで磁気特性が低くなったりするので、混練物における磁石粉末に対する熱硬化性樹脂の配合割合には上限があることから(通常3重量%程度)、この方法は有効な解決手段にはならない。
このため、希土類系ボンド磁石に存在する空孔部の処理方法について種々の方法が提案されていることは周知の通りであるが、例えば、下記の特許文献1に記載されている方法のように、既に存在する空孔部を封孔する方法では、磁石の表面における空孔部の処理には効果を発揮するものの、磁石の内部の空孔部は十分に処理できないという問題がある。
【0003】
以上の点に鑑みれば、希土類系ボンド磁石の表面や内部に発生する空孔部に対しては、既に存在する空孔部をいかに封孔するかという視点よりも、空孔部が発生しないようにいかにボンド磁石を製造するかという視点に立って解決手段を検討する方が適切であると考えられる。例えば、下記の特許文献2に記載されている、核となる磁石粉末の表面に固体樹脂の被膜を形成し、さらにその表面に液体樹脂の被膜を介して核となる磁石粉末よりも小さい磁石粉末を付着させた造粒粉末を用いたボンド磁石の製造方法は、この視点に立ったものであり、圧縮成形時における成形体の高密度化を促進して空孔部の発生を軽減するものである。しかしながら、この方法は注目に値するものであるが、幾つもの製造工程を経なければならないといった問題がある。
【0004】
また、希土類系ボンド磁石に耐食性を付与する方法として、下記の特許文献3において、希土類系磁石粉末に耐食性を付与する目的でその表面に、リン酸塩の被覆処理を施し、リン酸塩被膜で表面被覆された磁石粉末を用いて所定形状に成形するボンド磁石の製造方法が提案されている。しかしながら、磁石粉末の表面に形成されるリン酸塩被膜は、リン酸塩被膜処理液成分と磁石粉末成分とが磁石粉末表面において化学反応することにより形成されるものであるため、その反応過程において、処理液中に磁石粉末の構成成分であるRやFeが溶出してしまうことで磁石粉末の表面付近(表面から深さ0.1μm程度)が変質して磁石粉末の磁気特性が劣化するという問題がある。
【0005】
【特許文献1】
特開2001−11504号公報
【特許文献2】
特開平5−129119号公報
【特許文献3】
特開昭64−11304号公報
【0006】
【発明が解決しようとする課題】
そこで本発明は、表面や内部における空孔部の発生が軽減された、耐食性に優れるとともに高い磁気特性を示す希土類系ボンド磁石の簡便な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の技術背景に基づいてなされた本発明の希土類系ボンド磁石の製造方法は、請求項1記載の通り、希土類系磁石粉末と、平均粒径が0.01μm〜0.5μmの有機顔料および有機分散媒を含む処理液を混合した後、この処理液が表面に付着した希土類系磁石粉末を減圧濾過を行って濾取してから乾燥することで、前記有機顔料を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を得、この希土類系磁石粉末と樹脂バインダを混練して得られる混練物を用いて少なくとも圧縮成形を含む工程にて所定形状に成形し、得られた成形体を140℃〜200℃にて加熱硬化することを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、有機顔料がインダンスレン系顔料またはフタロシアニン系顔料であることを特徴とする。
また、請求項3記載の製造方法は、請求項1または2記載の製造方法において、希土類系磁石粉末の平均粒径(長径)が200μm以下であることを特徴とする。
また、請求項4記載の製造方法は、請求項3記載の製造方法において、希土類系磁石粉末がHDDR磁石粉末であることを特徴とする。
また、請求項5記載の製造方法は、請求項1乃至4のいずれかに記載の製造方法において、圧縮成形を0.1GPa〜1GPaの圧力で加圧して行うことを特徴とする。
また、本発明の希土類系ボンド磁石は、請求項6記載の通り、請求項1乃至5のいずれかに記載の製造方法によって製造されてなることを特徴とする。
【0008】
【発明の実施の形態】
本発明の希土類系ボンド磁石の製造方法は、希土類系磁石粉末と、平均粒径が0.01μm〜0.5μmの微粒子(有機顔料)および有機分散媒を含む処理液を混合した後、この処理液が表面に付着した希土類系磁石粉末を減圧濾過を行って濾取してから乾燥することで、前記微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を得、この希土類系磁石粉末と樹脂バインダを混練して得られる混練物を用いて少なくとも圧縮成形を含む工程にて所定形状に成形し、得られた成形体を140℃〜200℃にて加熱硬化することを特徴とするものである。
本発明の希土類系ボンド磁石の製造方法は、所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を用いて希土類系ボンド磁石を製造する方法であり、この方法によれば、圧縮成形時に磁石粉末の粒子と粒子の間に、磁石粉末の表面に形成された被着層を構成する微粒子が充填されることで、ボンド磁石の表面や内部における空孔部の発生を軽減することができる。また、磁石粉末の表面に形成された被着層は、リン酸塩被膜のように、磁石粉末成分が関与する化学反応に基づいて形成されたものではなく、微粒子が分子間力で磁石粉末の表面に吸着して形成されたものであるので、その形成過程において、処理液中に磁石粉末の構成成分であるRやFeが溶出してしまうことで磁石粉末の表面付近が変質して磁石粉末の磁気特性が劣化するといった問題などがないので、磁石粉末に対して優れた耐食性を付与するものである。従って、所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を用いて行う本発明の希土類系ボンド磁石の製造方法によれば、表面や内部における空孔部の発生が軽減された、耐食性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を簡便に製造することができる。
【0009】
本発明の希土類系ボンド磁石の製造方法においては、まず、希土類系磁石粉末と、平均粒径が0.01μm〜0.5μmの微粒子および有機分散媒を含む処理液を混合した後、この処理液が表面に付着した希土類系磁石粉末を乾燥することで、前記微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を得る。
【0010】
平均粒径が0.01μm〜0.5μmの微粒子および有機分散媒を含む処理液の調製方法としては、例えば、アンモニアなどでpHを6.5〜9.0に調整した弱アルカリ性水に、有機分散媒を添加するとともに所定の微粒子を分散させる方法が挙げられる。処理液のpHを6.5〜9.0に調整するのは、処理液による希土類系磁石粉末の腐食を防止するためである。処理液の粘度は、良好な取扱性を確保するといった観点から、2cP〜20cPが望ましい。なお、処理液は、エチルアルコールやイソプロピルアルコールなどの有機溶媒を用いて調製してもよい。
【0011】
平均粒径が0.01μm〜0.5μmの微粒子としては、この大きさの顔料の他、金属や金属酸化物やガラスなどの微粒子が挙げられるが、本願発明においては有機顔料を採用する。微粒子の平均粒径を0.01μm〜0.5μmと規定するのは、主に処理液中における微粒子の均一分散性を確保する観点からであり、平均粒径が0.01μm未満であると、その製造が困難であるととも処理液中で凝集しやすくなって取扱性に劣る一方、平均粒径が0.5μmを超えると、処理液中における比重が大きくなってしまって沈降してしまったりする恐れがあるからである。
【0012】
顔料としては、無機顔料と有機顔料のいずれの顔料も用いることができるが、本願発明においては有機顔料を採用する。無機顔料としては、カーボンブラックの他、二酸化チタン、酸化鉄、酸化クロム、酸化亜鉛、アルミナ、硫化亜鉛、タルク、マイカ、炭酸カルシウムなどが挙げられる。有機顔料としては、インダンスレン系顔料の他、アゾ系、フタロシアニン系、キナクリドン系、アントラキノン系、ジオキサンジン系、インジゴ系、チオインジゴ系、ペリノン系、ペリレン系、イソインドレン系、アゾメチンアゾ系、ジケトピロロピロール系の顔料などが挙げられる。
顔料として無機顔料を用いた場合、希土類系磁石粉末の表面に形成された無機顔料を主たる構成成分とする被着層は、酸素や水蒸気などの非透過性に優れることから、磁石粉末にとりわけ優れた耐食性を付与することができる点において都合がよい。好適な無機顔料としては、カーボンブラックが挙げられる。
顔料として有機顔料を用いた場合、有機顔料を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末は、樹脂バインダと混練することで得る混練物に適度の粘弾性と優れた流動性を付与するとともに、被着層を構成する有機顔料が圧縮成形時に受ける応力を吸収して緩和するので磁石粉末の破砕が起こって新生破面が生成するといったことが起きにくくなる点において都合がよい。また、有機顔料の種類によっては、ボンド磁石に高抵抗性を付与することができることが期待される。中でも、インダンスレン系顔料やフタロシアニン系顔料は、磁石粉末に対する吸着性に加え、耐食性や耐熱性に優れるので、これらは好適な有機顔料であるといえる。
【0013】
有機分散媒は、処理液中での微粒子の凝集や沈降を抑制することで均一な処理液を調製し、希土類系磁石粉末の表面全体に微粒子を均一に吸着させる目的で使用するものである。有機分散媒としては、アニオン性分散媒(脂肪族系多価カルボン酸、ポリエーテルポリエステルカルボン酸塩、高分子ポリエステル酸ポリアミン塩、高分子量ポリカルボン酸長鎖アミン塩など)、非イオン性分散媒(ポリオキシエチレンアルキルエーテルやソルビタンエステルなどのカルボン酸塩やスルフォン酸塩やアンモニウム塩など)、高分子分散媒(水溶性エポキシのカルボン酸塩やスルフォン酸塩やアンモニウム塩など、スチレン−アクリル酸共重合物、ニカワなど)が、上記の目的の観点から、また、微粒子(特に顔料)との親和性やコストの観点などから好適に用いられる。
【0014】
処理液中における微粒子の含有量は、5重量%〜33重量%が望ましい。含有量が5重量%未満であると、十分量の微粒子から構成される被着層が希土類系磁石粉末の表面に形成されず、所定の効果を奏することができなくなる恐れがある一方、含有量が33重量%を超えると、処理液中で微粒子が凝集や沈降してしまい、その分散性が悪化する恐れがあるからである。なお、処理液中における微粒子の含有量は、より望ましくは10重量%〜30重量%である。
処理液中への有機分散媒の添加量は、9重量%〜24重量%が望ましい。添加量が9重量%未満であると、微粒子の分散性が低下する恐れがある一方、24重量%を超えると、処理液の粘性が高くなりすぎて取扱性に劣る恐れがあるからである。
【0015】
所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末は、希土類系磁石粉末と、例えば、以上のようにして調製された処理液を混合した後、この処理液が表面に付着した希土類系磁石粉末を乾燥することで得る。具体的な方法としては、処理液に磁石粉末を浸漬して混合攪拌した後、処理液が表面に付着した磁石粉末を濾取してからこれを乾燥する方法が挙げられる。処理液に磁石粉末を浸漬して混合攪拌する時間は、磁石粉末の処理量などにも依存するが、概ね1分〜20分である。処理液が表面に付着した磁石粉末を濾取する際、減圧濾過を行えば、磁石粉末の表面に微粒子をより強固に吸着せしめることができる。処理液が表面に付着した希土類系磁石粉末の乾燥は、磁気特性の劣化を招くことなく耐食性を付与するためには、自然乾燥または不活性ガス(窒素ガスやアルゴンガスなど)雰囲気中や真空中80℃〜120℃加熱乾燥が望ましい。加熱乾燥を採用する場合の乾燥時間は、磁石粉末の処理量などにも依存するが、概ね20分〜2時間である。濾取した処理液が表面に付着した磁石粉末が凝集塊となっている場合には予め解砕してから乾燥することが望ましい。なお、磁石粉末と処理液の混合による処理液が表面に付着した磁石粉末の取得は、磁石粉末に処理液を噴霧することで行ってもよい。
【0016】
このようにして得られた所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末は、磁石粉末の表面全体に微粒子が均一に吸着して被着層が形成されており、優れた耐食性を有する。従って、その後の工程においても磁石粉末が腐食するといったことがない。また、樹脂バインダと混練して混練物を得る際に、被着層が混練物を得る際に用いる有機溶媒に溶解するといったことがない。さらに、被着層の存在によって磁石粉末の流動性が増すので、その後の工程において磁石粉末の流動性不良による破砕が起って新生破面が生成するといったことが起きにくくなる。
【0017】
所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末と樹脂バインダを混練して混練物を得る工程は、常法、即ち、この磁石粉末と有機溶媒に溶解した樹脂バインダを均一混合した後、有機溶媒を蒸発させることで行えばよい。樹脂バインダとしては、エポキシ樹脂、フェノール樹脂、メラミン樹脂などの熱硬化性樹脂、ポリアミド(ナイロン66やナイロン6やナイロン12など)、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエステル、ポリフェニレンサルファイドなどの熱可塑性樹脂、ゴムやエストラマ、これらの変性体や共重合体や混合物(例えば、熱硬化性樹脂(エポキシ樹脂など)に熱可塑性樹脂の粉末を分散させたもの:F.Yamashita, Applications of Rare-Earth Magnets to the Small motor industry, pp.100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by G.C. Hadjipanayis and M.J.Bonder, Rinton Pressを参照)などを用いることができる。混練物における磁石粉末に対する樹脂バインダの配合割合は、3重量%を上限とすることが望ましい。混練物を得る際には、カップリング剤や潤滑剤や硬化剤などの添加剤を通常用いられる添加量にて添加してもよい。なお、このようにして得られた混練物は希土類系ボンド磁石用コンパウンドとして粉末顆粒などの形状に造粒してもよい。
【0018】
所定の大きさの微粒子を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末と樹脂バインダを混練して得られる混練物を少なくとも圧縮成形を含む工程にて所定形状に成形する。ここで、「少なくとも圧縮成形を含む工程」とは、一般的に行われる圧縮成形方法の他、圧縮成形と圧延成形を組み合わせた成形方法(例えば、前出のF.Yamashita, Applications of Rare-Earth Magnets to the Small motor industry, pp.100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by G.C. Hadjipanayis and M.J.Bonder, Rinton Pressを参照)などを用いた工程を意味する。
【0019】
混練物を圧縮成形することにより、磁石粉末の表面に形成された被着層を構成する微粒子が磁石粉末の粒子と粒子の間に押しやられて充填されることで、ボンド磁石の表面や内部における空孔部の発生を軽減することができる。混練物の圧縮成形は、0.1GPa〜1GPaの圧力で加圧して行うことが望ましく、0.3GPa〜0.6GPaの圧力で加圧して行うことがより望ましい。圧力が0.1GPa未満であると、圧力が小さすぎてボンド磁石の高密度化を十分に図ることができないことに起因して空孔部の発生を効果的に軽減することができない恐れがある一方、圧力が1GPaを越えると、圧力が大きすぎて磁石粉末の破砕が起って新生破面が生成したりする恐れがあるからである。成形温度は、樹脂バインダの種類にも依存するが、通常、室温(20℃)〜120℃である。磁石粉末の粒子相互間や磁石粉末の粒子と樹脂バインダとの間の摩擦を低減させて高密度なボンド磁石とするため、また、磁石粉末の表面に形成された被着層を構成する微粒子の流動性を高めて微粒子が磁石粉末の粒子と粒子の間に円滑に押しやられて充填されやすくするためには、成形温度は80℃〜100℃とすることが望ましい。
【0020】
樹脂バインダとして熱硬化性樹脂を用いた場合、最後に、得られた成形体を加熱硬化することで希土類系ボンド磁石とする。成形体の加熱硬化は常法に従って行えばよく、例えば、不活性ガス(窒素ガスやアルゴンガスなど)雰囲気中や真空中140℃〜200℃にて1時間〜5時間の条件で行えばよい。
【0021】
希土類系磁石粉末の表面に形成された所定の大きさの微粒子を主たる構成成分とする被着層は、リン酸塩被膜のように、磁石粉末成分が関与する化学反応に基づいて形成されたものではなく、微粒子が分子間力で磁石粉末の表面に吸着して形成されたものである。従って、平均粒径(長径)が小さい(例えば200μm以下)磁石粉末、具体例を挙げると、平均粒径が80μm〜100μm程度の、希土類系磁石合金を水素中で加熱して水素を吸蔵させた後、脱水素処理し、次いで冷却することによって得られる磁気的異方性のHDDR(Hydrogenation-Disproportionation-Desorption-Recombination)磁石粉末(特公平6−82575号公報参照)などにも、磁気特性の劣化を引き起すことなく優れた耐食性を付与することができる。なお、希土類系磁石粉末は、予め、自体公知の方法によって耐食性や絶縁性などの機能を付与するための表面処理が施されたものであってもよい。
【0022】
本発明により製造される希土類系ボンド磁石にさらなる耐食性を付与することなどを目的として、その表面に樹脂塗装被膜や電気めっき被膜などの各種被膜を単層形成や積層形成してもよいことはいうまでもない。
【0023】
【実施例】
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、高周波溶解によって組成:Nd12.8原子%,Dy1.0原子%,B6.3原子%,Co14.8原子%,Ga0.5原子%,Zr0.09原子%,残部Feの鋳隗を作製し、アルゴンガス雰囲気中で1100℃×24時間焼鈍したものを酸素濃度0.5%以下のアルゴンガス雰囲気中で粉砕して平均粒径100μmの粉砕粉としてからこれを0.15MPaの水素ガス加圧雰囲気中で870℃×3時間の水素化熱処理を行い、その後、減圧(1kPa)アルゴンガス流気中で850℃×1時間の脱水素処理を行ってから冷却して製造したHDDR磁石粉末(平均結晶粒径0.4μm)を用いて行った。
【0024】
実施例A:
工程1:
顔料として無機顔料であるカーボンブラック(平均粒径0.08μm)を17重量%と有機分散媒として水溶性エポキシのカルボン酸塩を15重量%含み、アンモニアでpHを7.2に調整して水性処理液(粘度10cP)を調製した。
50mlの処理液にHDDR磁石粉末50gを室温で3分間浸漬して混合攪拌した後、処理済磁石粉末を水流アスピレータを用いて30秒間減圧濾過を行って濾取し、その後、真空中100℃で1時間加熱乾燥した。得られた凝集塊を乳鉢で解砕することで、カーボンブラックを主たる構成成分とする被着層を表面に有してなる黒色の耐食性HDDR磁石粉末を製造した。
このようにして製造された耐食性HDDR磁石粉末1gに対し、大気中150℃で100時間加熱する加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
【0025】
工程2:
エポキシ樹脂とフェノール系硬化剤を重量比率で100:3の割合でメチルエチルケトンに溶解して樹脂液を調製した。工程1で製造した耐食性HDDR磁石粉末と樹脂液を、耐食性HDDR磁石粉末と樹脂液の合計重量に対する樹脂液の重量の比率が3%となるように均一混合した後、メチルエチルケトンを常温で蒸発させて粉末顆粒状の希土類系ボンド磁石用コンパウンドを得た。得られた希土類系ボンド磁石用コンパウンドを、圧縮成形(100℃温間磁場中成形、Hex=0.96MA/m、0.6GPa)し、得られた成形体を150℃のアルゴンガス雰囲気中で1時間加熱してエポキシ樹脂を硬化させて、寸法が縦12.0mm×横7.6mm×高さ7.4mmで密度が5.9g/cm3のボンド磁石を製造した。
こうして製造されたボンド磁石に対し、大気中150℃で100時間加熱する加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。また、ボンド磁石に対して着磁を行った後、大気中100℃で500時間加熱する加熱試験と大気中150℃で100時間加熱する加熱試験を行い、それぞれの加熱試験について、試験前に対する試験後における磁束劣化率(不可逆減磁率)を測定した。さらに、大気中150℃で100時間加熱する加熱試験を行ったボンド磁石については再着磁を行い、加熱試験前に対する再着磁後における磁束劣化率(永久減磁率)を測定した。これらの結果を図1と図2と表2に示す。
【0026】
実施例B:
工程1:
顔料として有機顔料であるインダンスレン(平均粒径0.06μm)を17重量%と有機分散媒として水溶性エポキシのカルボン酸塩を15重量%含み、アンモニアでpHを7.2に調整して水性処理液(粘度15cP)を調製した。
この処理液を用いて実施例Aの工程1と同様にしてインダンスレンを主たる構成成分とする被着層を表面に有してなる藍色の耐食性HDDR磁石粉末を製造した。こうして製造された耐食性HDDR磁石粉末に対し、実施例Aの工程1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
【0027】
工程2:
工程1で製造した耐食性HDDR磁石粉末を用いて実施例Aの工程2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの工程2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
【0028】
比較例:
何らの表面処理も行っていないHDDR磁石粉末に対し、実施例Aの工程1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。また、何らの表面処理も行っていないHDDR磁石粉末を用いて実施例Aの工程2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの工程2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
【0029】
【表1】

Figure 0004127077
【0030】
【表2】
Figure 0004127077
【0031】
表1から明らかなように、実施例Aと実施例Bにおいて製造された耐食性HDDR磁石粉末は、何らの表面処理も行っていないHDDR磁石粉末よりも酸化による重量増加率が遥かに少なく、これらの磁石粉末は耐食性に優れることがわかった。
また、図1と図2と表2から明らかなように、実施例Aと実施例Bにおけるボンド磁石は、比較例におけるボンド磁石よりも酸化による重量増加率も磁束劣化率も少なかった。
【0032】
評価A:ボンド磁石の表面に存在する空孔部の個数
実施例Aと実施例Bと比較例における3種類のボンド磁石について、縦12.0mm×高さ7.4mmの面を高さ方向に7エリアに均等区分し、圧縮方向である上方から下方に向かってナンバリングを行い、各エリアの表面を電子顕微鏡にて観察した。各エリアに存在する直径20μm以上の空孔部の個数をカウントし、1mm2あたりの個数を算出した。結果を図3に示す。図3から明らかなように、実施例Aと実施例Bにおけるボンド磁石は、比較例におけるボンド磁石よりも空孔部の個数が遥かに少なかった。
【0033】
評価B:ボンド磁石の水への浸漬時間と重量変化率の関係
実施例Aと実施例Bと比較例における3種類のボンド磁石について、水への浸漬時間と重量変化率の関係を調べた。結果を図4に示す。図4から明らかなように、実施例Aと実施例Bにおけるボンド磁石は、比較例におけるボンド磁石よりも重量変化率が遥かに少なかった。また、比較例におけるボンド磁石を封孔処理したボンド磁石の重量変化率は、実施例Aと実施例Bにおけるボンド磁石の重量変化率と、比較例におけるボンド磁石の重量変化率の中間的なものであった。この結果は、比較例におけるボンド磁石を封孔処理したボンド磁石は、磁石の表面における空孔部は効果的に処理されているものの、磁石の内部の空孔部は十分に処理されていないことを示す一方、実施例Aと実施例Bにおけるボンド磁石は、磁石の表面のみならず内部における空孔部の発生も軽減されていることを示すものであると考えられた。
【0034】
注:比較例におけるボンド磁石の封孔処理方法
比較例におけるボンド磁石を実施例Aの工程1で調製した水性処理液に浸漬し、圧力を0.5Paに保持した真空容器中で空孔部に処理液を減圧含浸させた後、真空容器内を常圧に戻してからボンド磁石を取り出し、その表面を水洗することにより過剰に付着している処理液を除去した後に大気中120℃で20分間乾燥させて行った。
【0035】
評価C:ボンド磁石の圧縮破壊強度
実施例Bと比較例における2種類のボンド磁石について、万能試験機(AUTOGRAPH AG−10TB:島津製作所社製)にて圧縮破壊強度を測定した。結果を表3に示す。表3から明らかなように、実施例Bにおけるボンド磁石は、比較例におけるボンド磁石よりも圧縮破壊強度が約10%程度向上していることがわかった。この結果は、実施例Bにおけるボンド磁石は、磁石粉末の粒子と粒子の間に、顔料が充填されることで樹脂バインダによる粒子同士の接着性が高まり、凝集力が向上したことによるものと考えられた。
【0036】
【表3】
Figure 0004127077
【0037】
【発明の効果】
本発明によれば、表面や内部における空孔部の発生が軽減された、耐食性に優れるとともに高い磁気特性を示す希土類系ボンド磁石の簡便な製造方法が提供される。
【図面の簡単な説明】
【図1】 実施例のボンド磁石についての、大気中100℃で500時間加熱する加熱試験による磁束劣化率(不可逆減磁率)の測定結果を示すグラフ。
【図2】 同、大気中150℃で100時間加熱する加熱試験における測定結果を示すグラフ。
【図3】 同、表面に存在する空孔部の個数を示すグラフ。
【図4】 同、水への浸漬時間と重量変化率の関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a simple method for producing a rare earth-based bonded magnet having reduced corrosion and excellent magnetic resistance with reduced generation of pores on the surface and inside.
[0002]
[Prior art]
By molding rare earth magnet powder such as R-Fe-B magnet powder represented by Nd-Fe-B magnet powder into a predetermined shape using thermosetting resin or thermoplastic resin as resin binder. The manufactured rare-earth bonded magnet contains a resin binder and thus has a magnetic property lower than that of a rare-earth sintered magnet, but still has sufficiently high magnetic properties compared to a ferrite magnet or the like. In addition, it has a characteristic not found in rare earth sintered magnets, such as a magnet having a complicated shape or a thin wall shape, or a radial anisotropic magnet can be easily obtained. Therefore, rare earth-based bonded magnets are often used particularly for small motors such as spindle motors and stepping motors, and the demand for them is increasing in recent years.
As a typical method for manufacturing rare earth bonded magnets, rare earth magnet powder and a thermosetting resin such as epoxy resin are kneaded to form a kneaded product, and the kneaded product is compression molded into a predetermined shape and then heat cured. There is a way to do it. However, in the bonded magnet manufactured by such a method, there are pores (voids) on the surface and inside of the magnet due to insufficient filling of the resin binder between the particles of the magnet powder. Therefore, there is a problem that even a slight amount of acid, alkali, moisture, etc., penetrates into the pores, and corrosion proceeds from the surface of the magnet to generate rust. As a means for solving this problem, a method of increasing the blending ratio of the thermosetting resin to the magnet powder in the kneaded product can be considered, but when the blending ratio of the thermosetting resin is increased, the fluidity of the kneaded product is poor. As a result, problems in production occur, and magnetic properties are lowered due to a decrease in the density of the magnet powder, so there is an upper limit to the blending ratio of the thermosetting resin to the magnet powder in the kneaded product ( This method is not usually an effective solution.
For this reason, it is well known that various methods have been proposed for the processing method of the voids existing in the rare earth-based bonded magnet. For example, as in the method described in Patent Document 1 below, The method of sealing the already existing hole portion is effective in processing the hole portion on the surface of the magnet, but has a problem that the hole portion inside the magnet cannot be sufficiently processed.
[0003]
In view of the above points, with respect to vacancies generated on the surface and inside of the rare earth-based bonded magnet, the vacancies are not generated more than the viewpoint of how to seal the existing vacancies. From the perspective of how to manufacture bonded magnets, it is considered more appropriate to examine solutions. For example, the magnetic powder described in the following Patent Document 2 has a solid resin film formed on the surface of the core magnetic powder, and is smaller than the core magnetic powder via the liquid resin film on the surface. The manufacturing method of the bonded magnet using the granulated powder with the adhering powder is based on this point of view, and promotes the densification of the compact during compression molding and reduces the generation of pores. is there. However, although this method is remarkable, there is a problem that it has to go through several manufacturing steps.
[0004]
Further, as a method for imparting corrosion resistance to a rare earth bond magnet, in Patent Document 3 below, a phosphate coating treatment is applied to the surface of the rare earth magnet powder for the purpose of imparting corrosion resistance. There has been proposed a method of manufacturing a bonded magnet that is molded into a predetermined shape using surface-coated magnetic powder. However, the phosphate coating formed on the surface of the magnet powder is formed by a chemical reaction between the phosphate coating treatment liquid component and the magnet powder component on the surface of the magnet powder. , R and Fe, which are constituents of the magnet powder, are eluted in the treatment liquid, so that the vicinity of the surface of the magnet powder (about 0.1 μm deep from the surface) is altered and the magnetic properties of the magnet powder are deteriorated. There's a problem.
[0005]
[Patent Document 1]
JP 2001-11504 A
[Patent Document 2]
JP-A-5-129119
[Patent Document 3]
JP-A 64-11304
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple method for producing a rare earth-based bonded magnet having excellent corrosion resistance and high magnetic properties with reduced generation of pores on the surface and inside.
[0007]
[Means for Solving the Problems]
The method for producing a rare earth-based bonded magnet of the present invention based on the above technical background includes a rare earth-based magnet powder, an organic pigment having an average particle diameter of 0.01 μm to 0.5 μm, and an organic After mixing the treatment liquid containing the dispersion medium, the rare earth magnet powder with the treatment liquid adhering to the surface is mixed. After filtering under reduced pressure, By drying, a rare earth magnet powder having an adherent layer containing the organic pigment as a main constituent component on the surface is obtained, and a kneaded product obtained by kneading the rare earth magnet powder and a resin binder is used. It is characterized in that it is molded into a predetermined shape in a process including at least compression molding, and the obtained molded body is heat-cured at 140 ° C. to 200 ° C.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the organic pigment is an indanthrene pigment or a phthalocyanine pigment.
The manufacturing method according to claim 3 is the manufacturing method according to claim 1 or 2, wherein the rare earth magnet powder has an average particle size (major axis) of 200 μm or less.
The manufacturing method according to claim 4 is the manufacturing method according to claim 3, wherein the rare earth magnet powder is HDDR magnet powder.
The manufacturing method according to claim 5 is characterized in that in the manufacturing method according to any one of claims 1 to 4, compression molding is performed by pressurizing at a pressure of 0.1 GPa to 1 GPa.
Moreover, the rare earth-based bonded magnet of the present invention is manufactured by the manufacturing method according to any one of claims 1 to 5 as described in claim 6.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a rare earth bonded magnet of the present invention comprises mixing a rare earth magnet powder, a treatment liquid containing fine particles (organic pigment) having an average particle diameter of 0.01 μm to 0.5 μm, and an organic dispersion medium, and then performing this treatment. Rare earth magnet powder with liquid adhering to the surface After filtering under reduced pressure, By drying, a rare earth magnet powder having an adherent layer containing the fine particles as a main constituent on the surface is obtained, and at least a kneaded product obtained by kneading the rare earth magnet powder and a resin binder is used. It is characterized in that it is molded into a predetermined shape in a process including compression molding, and the obtained molded body is heat-cured at 140 ° C. to 200 ° C.
The method for producing a rare earth based bonded magnet of the present invention is a method for producing a rare earth based bonded magnet using a rare earth based magnetic powder having an adherent layer having fine particles of a predetermined size as a main constituent on its surface. Yes, according to this method, fine particles constituting the adherent layer formed on the surface of the magnet powder are filled between the particles of the magnet powder at the time of compression molding, so that the surface of the bonded magnet and the inside Generation | occurrence | production of a void | hole part can be reduced. In addition, the adherent layer formed on the surface of the magnet powder is not formed based on a chemical reaction involving the magnet powder component as in the case of a phosphate coating, and the fine particles are intermolecular force. Since it is formed by adsorbing on the surface, in the formation process, R and Fe, which are constituent components of the magnet powder, are eluted in the treatment liquid, so that the vicinity of the surface of the magnet powder is altered and the magnet powder is changed. Since there is no problem such as deterioration of the magnetic properties of the magnetic powder, excellent corrosion resistance is imparted to the magnet powder. Therefore, according to the method for producing a rare earth bonded magnet of the present invention using a rare earth based magnet powder having an adherent layer mainly composed of fine particles of a predetermined size on the surface, the surface and the inside It is possible to easily produce a rare-earth bond magnet that is excellent in corrosion resistance and has high magnetic properties with reduced generation of voids.
[0009]
In the method for producing a rare earth bond magnet of the present invention, first, a rare earth magnet powder is mixed with a treatment liquid containing fine particles having an average particle diameter of 0.01 μm to 0.5 μm and an organic dispersion medium. By drying the rare earth magnet powder adhering to the surface, a rare earth magnet powder having an adherent layer containing the fine particles as the main constituent component on the surface is obtained.
[0010]
As a method for preparing a treatment liquid containing fine particles having an average particle diameter of 0.01 μm to 0.5 μm and an organic dispersion medium, for example, weak alkaline water whose pH is adjusted to 6.5 to 9.0 with ammonia or the like is used. There is a method of adding a dispersion medium and dispersing predetermined fine particles. The reason why the pH of the treatment liquid is adjusted to 6.5 to 9.0 is to prevent corrosion of the rare earth magnet powder by the treatment liquid. The viscosity of the treatment liquid is preferably 2 cP to 20 cP from the viewpoint of ensuring good handleability. The treatment liquid may be prepared using an organic solvent such as ethyl alcohol or isopropyl alcohol.
[0011]
Examples of fine particles having an average particle diameter of 0.01 μm to 0.5 μm include fine particles such as metals, metal oxides, and glass in addition to pigments of this size. However, in the present invention, an organic pigment is employed. . The reason why the average particle size of the fine particles is defined as 0.01 μm to 0.5 μm is mainly from the viewpoint of ensuring uniform dispersibility of the fine particles in the treatment liquid, and the average particle size is less than 0.01 μm. While its production is difficult and it tends to agglomerate in the processing liquid and is inferior in handling properties, when the average particle size exceeds 0.5 μm, the specific gravity in the processing liquid becomes large and may settle. Because there is a risk of doing.
[0012]
As the pigment, any of inorganic pigments and organic pigments can be used. However, in the present invention, an organic pigment is employed. . Examples of the inorganic pigment include carbon black, titanium dioxide, iron oxide, chromium oxide, zinc oxide, alumina, zinc sulfide, talc, mica, calcium carbonate, and the like. Organic pigments include indanthrene pigments, azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigo, thioindigo, perinone, perylene, isoindylene, azomethine azo, diketopyrrolo Examples include pyrrole pigments.
When an inorganic pigment is used as the pigment, the adherent layer mainly composed of the inorganic pigment formed on the surface of the rare earth magnet powder is particularly excellent in magnet powder because it is excellent in impermeability of oxygen, water vapor, and the like. It is convenient in that it can provide corrosion resistance. A suitable inorganic pigment includes carbon black.
When an organic pigment is used as a pigment, the rare earth-based magnet powder having an adhesion layer containing the organic pigment as a main component on the surface is suitable for kneaded materials obtained by kneading with a resin binder and has excellent viscoelasticity. In addition, the organic pigment constituting the adherent layer absorbs and relaxes the stress that is applied during compression molding, so that it is difficult for the magnetic powder to break up and to form a new fracture surface. convenient. In addition, depending on the type of organic pigment, it is expected that high resistance can be imparted to the bonded magnet. Among them, indanthrene pigments and phthalocyanine pigments are excellent organic pigments because they are excellent in corrosion resistance and heat resistance in addition to the adsorptivity to magnet powder.
[0013]
The organic dispersion medium is used for the purpose of preparing a uniform treatment liquid by suppressing aggregation and sedimentation of the fine particles in the treatment liquid and uniformly adsorbing the fine particles on the entire surface of the rare earth magnet powder. Examples of organic dispersion media include anionic dispersion media (aliphatic polycarboxylic acids, polyether polyester carboxylates, polymer polyester acid polyamine salts, high molecular weight polycarboxylic acid long chain amine salts, etc.), nonionic dispersion media (Carboxylic acid salts such as polyoxyethylene alkyl ethers and sorbitan esters, sulfonic acid salts and ammonium salts), polymer dispersion media (such as water-soluble epoxy carboxylates, sulfonic acid salts and ammonium salts). Polymers, glues, etc.) are preferably used from the viewpoints of the above-mentioned purposes and from the viewpoints of affinity with fine particles (particularly pigments) and cost.
[0014]
The content of fine particles in the treatment liquid is preferably 5% by weight to 33% by weight. If the content is less than 5% by weight, an adherent layer composed of a sufficient amount of fine particles may not be formed on the surface of the rare earth magnet powder, and the predetermined effect may not be achieved. If the amount exceeds 33% by weight, the fine particles aggregate or settle in the treatment liquid, which may deteriorate the dispersibility. The content of fine particles in the treatment liquid is more desirably 10% by weight to 30% by weight.
The amount of the organic dispersion medium added to the treatment liquid is desirably 9% by weight to 24% by weight. If the added amount is less than 9% by weight, the dispersibility of the fine particles may be lowered. On the other hand, if the added amount exceeds 24% by weight, the viscosity of the treatment liquid becomes too high and the handleability may be deteriorated.
[0015]
A rare earth magnet powder having an adherent layer containing fine particles of a predetermined size as a main constituent on the surface is mixed with the rare earth magnet powder and, for example, the treatment liquid prepared as described above. It is obtained by drying the rare earth magnet powder with the treatment liquid adhering to the surface. As a specific method, there is a method in which magnet powder is immersed in a treatment liquid, mixed and stirred, and then the magnet powder adhered to the surface of the treatment liquid is collected by filtration and then dried. The time for immersing the magnet powder in the treatment liquid and mixing and stirring is generally about 1 minute to 20 minutes, although it depends on the amount of magnet powder processed. When filtering the magnet powder with the treatment liquid adhering to the surface, if filtration under reduced pressure is performed, fine particles can be more firmly adsorbed on the surface of the magnet powder. Drying of rare earth magnet powder with the treatment liquid attached to the surface is natural drying or in an inert gas (nitrogen gas, argon gas, etc.) atmosphere or in vacuum in order to give corrosion resistance without causing deterioration of magnetic properties. Heat drying at 80 ° C. to 120 ° C. is desirable. The drying time in the case of adopting heat drying is generally 20 minutes to 2 hours, although it depends on the processing amount of the magnet powder. When the magnetic powder with the treated liquid adhering to the surface is agglomerated, it is desirable to crush in advance and then dry. In addition, you may perform acquisition of the magnet powder which the process liquid adhering to the surface by mixing magnetic powder and a process liquid sprays a process liquid on magnet powder.
[0016]
The rare earth-based magnet powder having an adherence layer whose main constituent is fine particles of a predetermined size obtained in this way adheres with the fine particles uniformly adsorbed on the entire surface of the magnet powder. A layer is formed and has excellent corrosion resistance. Therefore, the magnet powder does not corrode in the subsequent processes. Further, when a kneaded product is obtained by kneading with a resin binder, the adherent layer is not dissolved in an organic solvent used for obtaining the kneaded product. Furthermore, since the fluidity of the magnet powder is increased by the presence of the adherent layer, it is difficult to cause a new fracture surface due to crushing due to poor fluidity of the magnet powder in the subsequent process.
[0017]
The process of kneading a rare earth magnet powder having a coating layer having fine particles of a predetermined size as a main constituent on the surface and a resin binder to obtain a kneaded product is a conventional method, that is, the magnet powder and organic What is necessary is just to carry out by evaporating the organic solvent after uniformly mixing the resin binder dissolved in the solvent. Resin binders include thermosetting resins such as epoxy resins, phenolic resins, melamine resins, thermoplastic resins such as polyamide (nylon 66, nylon 6, nylon 12, etc.), polyethylene, polypropylene, polyvinyl chloride, polyester, polyphenylene sulfide, etc. , Rubber and elastomers, modified products, copolymers and mixtures of these materials (for example, thermoplastic resin powder dispersed in thermosetting resin (epoxy resin, etc.): F. Yamashita, Applications of Rare-Earth Magnets to (See the Small Motor Industry, pp. 100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by GC Hadjipanayis and MJBonder, Rinton Press) Etc. can be used. The blending ratio of the resin binder to the magnet powder in the kneaded product is desirably 3 wt%. When obtaining a kneaded product, additives such as a coupling agent, a lubricant, and a curing agent may be added in a commonly used addition amount. In addition, you may granulate the kneaded material obtained in this way in the shape of a powder granule etc. as a compound for rare earth type bond magnets.
[0018]
A kneaded product obtained by kneading a rare earth magnet powder having a coating layer having fine particles of a predetermined size as a main constituent on the surface and a resin binder is formed into a predetermined shape at least in a process including compression molding. To do. Here, the “step including at least compression molding” refers to a compression method that is generally performed, as well as a molding method that combines compression molding and rolling (for example, F. Yamashita, Applications of Rare-Earth described above). Magnets to the Small motor industry, pp. 100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by GC Hadjipanayis and MJBonder, Rinton Press This means a process using the reference.
[0019]
By compressing and molding the kneaded product, the fine particles constituting the adherent layer formed on the surface of the magnet powder are pushed and filled between the particles of the magnet powder, so that the surface of the bonded magnet and the inside thereof are filled. Generation | occurrence | production of a void | hole part can be reduced. The compression molding of the kneaded product is preferably performed by pressurization at a pressure of 0.1 GPa to 1 GPa, and more preferably performed by pressurization at a pressure of 0.3 GPa to 0.6 GPa. If the pressure is less than 0.1 GPa, the pressure may be too small to sufficiently increase the density of the bonded magnet, which may not effectively reduce the generation of holes. On the other hand, if the pressure exceeds 1 GPa, the pressure is too high and the magnet powder may be crushed and a new fracture surface may be generated. The molding temperature is usually room temperature (20 ° C.) to 120 ° C., although it depends on the type of resin binder. In order to reduce the friction between the magnet powder particles and between the magnet powder particles and the resin binder to obtain a high-density bonded magnet, the fine particles constituting the adherent layer formed on the surface of the magnet powder In order to enhance the fluidity and make it easy for the fine particles to be smoothly pushed and filled between the particles of the magnet powder, the molding temperature is desirably 80 ° C. to 100 ° C.
[0020]
When a thermosetting resin is used as the resin binder, the obtained molded body is finally heat-cured to obtain a rare earth bond magnet. What is necessary is just to perform the heat-hardening of a molded object in accordance with a conventional method, for example, in inert gas (nitrogen gas, argon gas, etc.) atmosphere or in a vacuum at 140-200 degreeC for 1 hour-5 hours.
[0021]
The adherent layer mainly composed of fine particles of a predetermined size formed on the surface of the rare earth magnet powder is formed based on a chemical reaction involving the magnet powder component, such as a phosphate coating. Instead, the fine particles are formed by adsorbing on the surface of the magnet powder by intermolecular force. Therefore, a magnet powder having a small average particle size (major axis) (for example, 200 μm or less), specifically, a rare earth magnet alloy having an average particle size of about 80 μm to 100 μm was heated in hydrogen to occlude hydrogen. Deterioration of magnetic properties of magnetically anisotropic HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) magnet powder (see Japanese Patent Publication No. 6-82575) obtained by dehydrogenation and then cooling It is possible to impart excellent corrosion resistance without causing any corrosion. The rare earth magnet powder may be subjected to surface treatment for imparting functions such as corrosion resistance and insulation by a method known per se.
[0022]
For the purpose of imparting further corrosion resistance to the rare earth-based bonded magnet produced according to the present invention, various coatings such as a resin coating film and an electroplating film may be formed on the surface thereof as a single layer or a laminate. Not too long.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, the composition was obtained by high-frequency melting: Nd 12.8 atomic%, Dy 1.0 atomic%, B 6.3 atomic%, Co 14.8 atomic%, Ga 0.5 atomic%, Zr 0.09 atomic%, the balance An iron cast iron was prepared and annealed at 1100 ° C. for 24 hours in an argon gas atmosphere and pulverized in an argon gas atmosphere with an oxygen concentration of 0.5% or less to obtain a pulverized powder having an average particle size of 100 μm. The hydrogenation heat treatment is performed at 870 ° C. for 3 hours in a hydrogen gas pressurized atmosphere of 15 MPa, and then the dehydrogenation treatment is performed at 850 ° C. for 1 hour in a reduced pressure (1 kPa) argon gas stream, followed by cooling. This was carried out using the produced HDDR magnet powder (average crystal grain size 0.4 μm).
[0024]
Example A:
Step 1:
It contains 17% by weight of carbon black (average particle size 0.08 μm) as an inorganic pigment and 15% by weight of a water-soluble epoxy carboxylate as an organic dispersion medium. A treatment liquid (viscosity 10 cP) was prepared.
After 50 g of HDDR magnetic powder was immersed in 50 ml of processing liquid at room temperature for 3 minutes and mixed and stirred, the processed magnetic powder was filtered under reduced pressure for 30 seconds using a water aspirator, and then filtered at 100 ° C. in vacuum. Heat-dried for 1 hour. The obtained agglomerates were crushed in a mortar to produce a black corrosion-resistant HDDR magnet powder having an adherent layer containing carbon black as a main constituent component on the surface.
A heating test in which the corrosion-resistant HDDR magnet powder thus produced was heated at 150 ° C. for 100 hours in the atmosphere for 100 hours, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.
[0025]
Step 2:
An epoxy resin and a phenolic curing agent were dissolved in methyl ethyl ketone at a weight ratio of 100: 3 to prepare a resin solution. After uniformly mixing the corrosion-resistant HDDR magnet powder and the resin liquid produced in step 1 so that the ratio of the weight of the resin liquid to the total weight of the corrosion-resistant HDDR magnet powder and the resin liquid is 3%, methyl ethyl ketone is evaporated at room temperature. A powdered granular compound for rare earth bonded magnet was obtained. The obtained compound for rare earth-based bonded magnet was compression-molded (molded in a warm magnetic field at 100 ° C., Hex = 0.96 MA / m, 0.6 GPa), and the resulting molded product was placed in an argon gas atmosphere at 150 ° C. The epoxy resin is cured by heating for 1 hour, the dimensions are 12.0 mm long × 7.6 mm wide × 7.4 mm high, and the density is 5.9 g / cm Three The bonded magnet was manufactured.
The thus-produced bonded magnet was subjected to a heating test in which it was heated at 150 ° C. in the atmosphere for 100 hours, and the weight increase rate due to oxidation after the test before the test was measured. In addition, after magnetizing the bonded magnet, a heating test in which heating is performed at 100 ° C. in air for 500 hours and a heating test in which heating is performed at 150 ° C. in air for 100 hours are performed. The magnetic flux deterioration rate (irreversible demagnetization factor) was measured later. Furthermore, rebonding was performed on the bonded magnet that was subjected to a heating test at 150 ° C. for 100 hours in the atmosphere, and the magnetic flux deterioration rate (permanent demagnetization factor) after remagnetization before the heating test was measured. These results are shown in FIGS.
[0026]
Example B:
Step 1:
It contains 17% by weight of indanthrene (average particle size 0.06 μm) as an organic pigment as a pigment and 15% by weight of a water-soluble epoxy carboxylate as an organic dispersion medium, and the pH is adjusted to 7.2 with ammonia. An aqueous treatment liquid (viscosity 15 cP) was prepared.
Using this treatment liquid, indigo-colored corrosion-resistant HDDR magnet powder having an adherent layer containing indanthrene as a main constituent was produced in the same manner as in Step 1 of Example A. The corrosion resistance HDDR magnet powder thus manufactured was subjected to the same heating test as in Step 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.
[0027]
Step 2:
A bonded magnet was produced in the same manner as in Step 2 of Example A using the corrosion-resistant HDDR magnet powder produced in Step 1. Various tests similar to those in Step 2 of Example A were performed on the bonded magnet thus manufactured. These results are shown in FIGS.
[0028]
Comparative example:
The HDDR magnet powder not subjected to any surface treatment was subjected to the same heating test as in Step 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1. Moreover, the bonded magnet was manufactured like the process 2 of Example A using the HDDR magnet powder which has not performed any surface treatment. Various tests similar to those in Step 2 of Example A were performed on the bonded magnet thus manufactured. These results are shown in FIGS.
[0029]
[Table 1]
Figure 0004127077
[0030]
[Table 2]
Figure 0004127077
[0031]
As is apparent from Table 1, the corrosion-resistant HDDR magnet powder produced in Example A and Example B has a much lower rate of weight increase due to oxidation than HDDR magnet powder that has not been subjected to any surface treatment. The magnet powder was found to be excellent in corrosion resistance.
1 and 2 and Table 2, the bonded magnets in Example A and Example B had a lower rate of weight increase due to oxidation and a lowering rate of magnetic flux than the bonded magnets in the comparative example.
[0032]
Evaluation A: Number of holes present on the surface of the bonded magnet
For the three types of bonded magnets in Example A, Example B, and Comparative Example, the surface of 12.0 mm in length and 7.4 mm in height is equally divided into 7 areas in the height direction, and from the top in the compression direction to the bottom Numbering was performed, and the surface of each area was observed with an electron microscope. Count the number of holes with a diameter of 20 μm or more in each area, 1 mm 2 The number per unit was calculated. The results are shown in FIG. As is apparent from FIG. 3, the bonded magnets in Example A and Example B had far fewer holes than the bonded magnets in the comparative example.
[0033]
Evaluation B: Relationship between bond magnet water immersion time and weight change rate
The relationship between the immersion time in water and the rate of change in weight of the three types of bonded magnets in Example A, Example B, and Comparative Example was examined. The results are shown in FIG. As is clear from FIG. 4, the bonded magnets in Example A and Example B had a much lower weight change rate than the bonded magnet in the comparative example. In addition, the weight change rate of the bonded magnet obtained by sealing the bonded magnet in the comparative example is intermediate between the weight change rate of the bonded magnet in Example A and Example B and the weight change rate of the bonded magnet in the comparative example. Met. This result shows that, in the bonded magnet in which the bonded magnet in the comparative example is sealed, the hole in the magnet surface is effectively processed, but the hole in the magnet is not sufficiently processed. On the other hand, the bonded magnets in Example A and Example B were considered to indicate that not only the surface of the magnet but also the generation of pores inside was reduced.
[0034]
Note: Sealing method for bonded magnet in comparative example
The bonded magnet in the comparative example was immersed in the aqueous treatment liquid prepared in Step 1 of Example A, and after impregnating the treatment liquid under reduced pressure in a vacuum vessel maintained at a pressure of 0.5 Pa, the inside of the vacuum vessel After the pressure was returned to normal pressure, the bonded magnet was taken out, and the surface of the bonded magnet was washed with water to remove the excessively adhered treatment solution, and then dried in the atmosphere at 120 ° C. for 20 minutes.
[0035]
Evaluation C: Compressive fracture strength of bonded magnet
The compressive fracture strength of the two types of bonded magnets in Example B and Comparative Example was measured with a universal testing machine (AUTOGRAPH AG-10TB: manufactured by Shimadzu Corporation). The results are shown in Table 3. As is clear from Table 3, it was found that the bond magnet in Example B had a compressive fracture strength of about 10% higher than that in the comparative example. This result is considered that the bonded magnet in Example B is due to the fact that the adhesion between particles due to the resin binder is increased and the cohesion is improved by filling the pigment between the particles of the magnet powder. It was.
[0036]
[Table 3]
Figure 0004127077
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the simple manufacturing method of the rare earth-based bond magnet which is excellent in corrosion resistance and has a high magnetic characteristic by which generation | occurrence | production of the void | hole part in the surface and the inside was reduced is provided.
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of a magnetic flux deterioration rate (irreversible demagnetization rate) by a heating test in which the bonded magnet of the example is heated at 100 ° C. in the atmosphere for 500 hours.
FIG. 2 is a graph showing measurement results in a heating test in which heating is performed at 150 ° C. in air for 100 hours.
FIG. 3 is a graph showing the number of holes on the surface.
FIG. 4 is a graph showing the relationship between the immersion time in water and the weight change rate.

Claims (6)

希土類系磁石粉末と、平均粒径が0.01μm〜0.5μmの有機顔料および有機分散媒を含む処理液を混合した後、この処理液が表面に付着した希土類系磁石粉末を減圧濾過を行って濾取してから乾燥することで、前記有機顔料を主たる構成成分とする被着層を表面に有してなる希土類系磁石粉末を得、この希土類系磁石粉末と樹脂バインダを混練して得られる混練物を用いて少なくとも圧縮成形を含む工程にて所定形状に成形し、得られた成形体を140℃〜200℃にて加熱硬化することを特徴とする希土類系ボンド磁石の製造方法。After mixing the rare earth magnet powder and a treatment liquid containing an organic pigment having an average particle diameter of 0.01 μm to 0.5 μm and an organic dispersion medium, the rare earth magnet powder adhered to the surface of the rare earth magnet powder is filtered under reduced pressure. By filtering and drying, a rare earth-based magnet powder having an adhesion layer containing the organic pigment as a main component on the surface is obtained, and the rare-earth magnet powder and a resin binder are kneaded. A method for producing a rare earth-based bonded magnet, wherein the kneaded product is molded into a predetermined shape at least in a process including compression molding, and the obtained molded body is heat-cured at 140 ° C to 200 ° C. 有機顔料がインダンスレン系顔料またはフタロシアニン系顔料であることを特徴とする請求項1記載の製造方法。  The method according to claim 1, wherein the organic pigment is an indanthrene pigment or a phthalocyanine pigment. 希土類系磁石粉末の平均粒径(長径)が200μm以下であることを特徴とする請求項1または2記載の製造方法。  The method according to claim 1 or 2, wherein the rare earth magnet powder has an average particle size (major axis) of 200 µm or less. 希土類系磁石粉末がHDDR磁石粉末であることを特徴とする請求項3記載の製造方法。  The method according to claim 3, wherein the rare earth magnet powder is HDDR magnet powder. 圧縮成形を0.1GPa〜1GPaの圧力で加圧して行うことを特徴とする請求項1乃至4のいずれかに記載の製造方法。  The manufacturing method according to any one of claims 1 to 4, wherein the compression molding is performed under a pressure of 0.1 GPa to 1 GPa. 請求項1乃至5のいずれかに記載の製造方法によって製造されてなることを特徴とする希土類系ボンド磁石。  A rare earth-based bonded magnet manufactured by the manufacturing method according to claim 1.
JP2003054561A 2003-01-10 2003-02-28 Rare earth bonded magnet manufacturing method Expired - Lifetime JP4127077B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003054561A JP4127077B2 (en) 2003-01-10 2003-02-28 Rare earth bonded magnet manufacturing method
EP04701105A EP1583111B1 (en) 2003-01-10 2004-01-09 Oxidation-resistant rare earth containing magnet powder and method for production thereof, compound for rare earth containing bonded magnet, rare earth containing bonded magnet and method for production thereof
PCT/JP2004/000116 WO2004064086A1 (en) 2003-01-10 2004-01-09 Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
US10/541,454 US20060099404A1 (en) 2003-01-10 2004-01-09 Oxidation-resistant rare earth based magnet magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003004694 2003-01-10
JP2003054561A JP4127077B2 (en) 2003-01-10 2003-02-28 Rare earth bonded magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2004266093A JP2004266093A (en) 2004-09-24
JP4127077B2 true JP4127077B2 (en) 2008-07-30

Family

ID=33133531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054561A Expired - Lifetime JP4127077B2 (en) 2003-01-10 2003-02-28 Rare earth bonded magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4127077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356615A (en) * 2003-01-10 2004-12-16 Neomax Co Ltd Oxidation-resistant rare earth based magnet powder and its producing process
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth based bond magnet and its manufacturing method
JP4806983B2 (en) * 2005-07-11 2011-11-02 日立金属株式会社 Rare earth bonded magnet manufacturing method
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187947A (en) * 1982-04-27 1983-11-02 Canon Inc Magnetic toner
JPH0422108A (en) * 1990-05-17 1992-01-27 Atom Chem Paint Co Ltd Colored magnetic powder and marking body thereof
JPH09153404A (en) * 1995-11-29 1997-06-10 Pentel Kk Coloring magnetic powder for bonded magnet, and magnetic material
JPH10335128A (en) * 1997-03-31 1998-12-18 Tdk Corp Ferromagnetic powder for dust core, dust core and its manufacture
JP3278647B2 (en) * 1999-01-27 2002-04-30 住友特殊金属株式会社 Rare earth bonded magnet
JP2001068314A (en) * 1999-08-26 2001-03-16 Sony Corp Magnetic powder and magnetic recording medium
JP2001072863A (en) * 1999-09-01 2001-03-21 Sumitomo Metal Mining Co Ltd Composition for resin-bonded type magnet
JP2001093712A (en) * 1999-09-20 2001-04-06 Sumitomo Special Metals Co Ltd Anisotropic permanent magnet, method for manufacturing thereof and manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356615A (en) * 2003-01-10 2004-12-16 Neomax Co Ltd Oxidation-resistant rare earth based magnet powder and its producing process
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004266093A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP6439876B2 (en) Magnet particle and magnet molded body using the same
KR20130030896A (en) Manufacturing method for bonded magnet
CN100590758C (en) Method for preparing powder for bound rare-earth permanent-magnet by quasi-compression method
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
EP1583111B1 (en) Oxidation-resistant rare earth containing magnet powder and method for production thereof, compound for rare earth containing bonded magnet, rare earth containing bonded magnet and method for production thereof
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
JP2006286903A (en) Method of manufacturing rare-earth bond magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP2016194140A (en) Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JP4433801B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
WO1998020507A1 (en) Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder
EP1049112A2 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP4433800B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP2006100560A (en) Rare earth based bond magnet and its manufacturing method
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
CN100416720C (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH1167514A (en) Manufacture of bonded permanent magnet and its raw material powder
JP4806983B2 (en) Rare earth bonded magnet manufacturing method
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JPH0480901A (en) Bonded magnet and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term