JP3941134B2 - Raw material powder for manufacturing bond type permanent magnet and manufacturing method - Google Patents

Raw material powder for manufacturing bond type permanent magnet and manufacturing method Download PDF

Info

Publication number
JP3941134B2
JP3941134B2 JP21016596A JP21016596A JP3941134B2 JP 3941134 B2 JP3941134 B2 JP 3941134B2 JP 21016596 A JP21016596 A JP 21016596A JP 21016596 A JP21016596 A JP 21016596A JP 3941134 B2 JP3941134 B2 JP 3941134B2
Authority
JP
Japan
Prior art keywords
resin
magnetic
magnetic powder
powder
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21016596A
Other languages
Japanese (ja)
Other versions
JPH1055907A (en
Inventor
秀樹 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP21016596A priority Critical patent/JP3941134B2/en
Publication of JPH1055907A publication Critical patent/JPH1055907A/en
Application granted granted Critical
Publication of JP3941134B2 publication Critical patent/JP3941134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、耐酸化性、耐食性に優れ、かつ磁気特性、機械的強度にも優れたボンド型永久磁石の製造方法と、この製造方法に用いる樹脂で被覆された磁石粉末からなる原料粉末とに関する。
【0002】
【従来の技術】
ボンド型永久磁石 (以下、ボンド磁石という) は、ハードフェライトや希土類系合金などの磁石粉末(以下、磁粉という)を、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂などの熱硬化性樹脂、またはポリアミド樹脂、ポリプロピレン樹脂、ポリフェニレンスルフィド樹脂などの熱可塑性樹脂からなるバインダーで結合した磁石である。
【0003】
粉末冶金の手法で磁粉を焼結した焼結型永久磁石に比べ、ボンド磁石は磁性を発現しない樹脂分を含むため磁気特性は多少劣るが、焼結による収縮がないので高い寸法精度で種々の形状の磁石を樹脂の成形と同様の手法で簡単に製造できるという特徴がある。そのため、ボンド磁石は一般家庭の各種電気製品から大形コンピューターの周辺端末機器に至るまで広く応用されており、特にスピンドルモーター、ステッピングモーター等の小型モーターに近年多く用いられている。
【0004】
ボンド磁石の成形法としては、射出成形、押出成形、圧縮成形 (プレス成形) などが可能である。
射出成形と押出成形では、磁粉と樹脂との混合物が成形温度で流動しなければならないため、一般にバインダーとして熱可塑性樹脂を用い、樹脂の配合割合を比較的多くする必要がある。
【0005】
一方、圧縮成形では流動性は必要ないため、バインダーとして熱硬化性樹脂が一般に使用される。圧縮成形によるボンド磁石の一般的な製造においては、まず磁粉と熱硬化性樹脂 (必要に応じて硬化剤などの添加剤を含有する) とを混合して、樹脂で被覆された磁粉からなる圧縮成形用の原料粉末(一般にコンパウンドと呼ばれる)を得る。この原料粉末を金型に充填してプレス機で圧縮成形して所望の形状に賦形し、成形体を加熱して被覆樹脂を硬化させると、ボンド磁石が得られる。
【0006】
圧縮成形は、押出成形や射出成形に比べると、工程が多少複雑でコストが高いという欠点はあるが、成形時に流動する必要がないため、樹脂の割合を少なくする(磁粉の充填率が上げる)ことが可能であり、磁気特性がより優れたボンド磁石を得ることができる。
【0007】
しかし、近年のコンピューター、通信機器をはじめとする電気・電子製品の小型化、高性能化の進展はめざましく、それに対応して、ボンド磁石のさらなる磁気特性の向上が望まれている。そのため、▲1▼用いる原料磁粉の磁気特性を向上させる、▲2▼磁石中の磁粉の磁気的配向度を増大させる、▲3▼磁石中の磁粉の体積充填率を大きくする、▲4▼磁石中の磁粉の酸化劣化、熱劣化を抑えるといった対策が採られてきた。
【0008】
▲1▼の磁気特性の向上手段として、希土類・コバルト系 (=R−Co系、Rは希土類金属) や希土類・鉄系 (=R−Fe−B系) を含む希土類系合金からなる磁粉について、どの方向に磁化しても同じ磁気特性が発現する従来の等方性磁粉とは異なり、特定の方向 (磁化容易方向) に対して高い磁気特性を示す磁気異方性の磁粉 (以下では異方性磁粉という)が開発されている。
【0009】
この磁気異方性の磁粉から磁石を製造する場合、磁石の内部において各異方性磁粉の磁化容易方向が同一方向に揃っている (配向している) ことが磁気特性の向上を得る条件となる。この磁石中の異方性磁粉の配向度を増大させることが上記▲2▼に示した対策である。この配向は、成形時に磁場を印加し、各磁粉をその磁化容易軸が磁場方向を向くように回転させることにより行われる。従って、成形時に個々の磁粉を回転し易くする (すなわち、粉末表面の摩擦抵抗を低くする) ような工夫が必要である。例えば、樹脂が溶融するように温間で圧縮成形を行う方法、潤滑剤を樹脂中に含有させる方法が知られている。
【0010】
一方、▲3▼の単位体積中の磁粉の充填率を多くするには、樹脂割合を減らすか、または、圧縮成形で作製する成形体の空隙を少なくすることが必要となる。しかし、ボンド磁石の成形性や機械的強度を考慮すると、樹脂量の低減には限界があるため、必要最低限の樹脂割合のもとで成形体の空隙を減少させ、磁粉の充填率を向上させる成形条件が検討されてきた。
【0011】
希土類・鉄系合金の磁粉は、酸素と結合しやすい希土類元素と鉄が主体となるため、空気中において酸化され易い。製造工程における磁粉の酸化が原因で磁石が所定の磁気特性を発揮しえないことが多く、磁気特性が安定化せず、また特に高温環境下で使用した場合に磁気特性の劣化が顕著であった。この磁粉の酸化劣化、熱劣化を抑制することが上記の▲4▼の対策である。
【0012】
ボンド磁石では、磁粉をバインダーの樹脂で被覆することにより、磁粉の酸化劣化や熱劣化を抑えてきた。また、焼結型の磁石と同様に、最終的に磁石をメッキおよび/または塗装により被覆して磁粉の酸化劣化や熱劣化を防止することも行われている。
【0013】
この点に関して、特開昭63−24607 号公報には、バインダーが従来のエポキシ樹脂では、磁粉に対するぬれ性やガスシールド性が十分でなく、希土類系合金の磁粉の酸化を十分には防止できないことが指摘されている。そのため、この公報に記載のボンド磁石では、バインダーとして熱硬化型ポリイミド樹脂を使用する。この樹脂は希土類系合金の磁粉に対するぬれ性、ガスシールド性、および機械的強度に優れているので、樹脂量を5重量%以下に低減でき、耐熱性および耐酸化性に優れ、かつ磁気特性にも優れたボンド磁石が得られると説明されている。実施例では、ポリイミド樹脂としてビスマレイミドトリアジン樹脂を使用している。
【0014】
しかし、本発明者らが追試したところ、バインダーに上記ポリイミド樹脂 (ビスマレイミドトリアジン樹脂) を使用しても、エポキシ樹脂を使用した場合に比べて、機械的強度、耐熱性、耐酸化性、耐食性はほとんど向上せず、さらに得られたボンド磁石には欠けや割れが見られ、製品歩留りが大幅に悪化することが判明した。
【0015】
【発明が解決しようとする課題】
本発明の目的は、上述した従来技術の問題点を解消して、耐熱性、耐酸化性、耐食性に優れ、かつ磁気特性、機械的強度にも優れたボンド磁石を圧縮成形により製造するための方法と、この製造方法に使用する原料粉末とを提供することである。
【0016】
本発明者らは、希土類・鉄系磁石合金の磁粉からなるボンド磁石では、磁粉が製造過程、特に圧縮成形において割れや歪みなどの損傷を受けることが原因で、高温での磁粉の熱劣化が促進され、この損傷による磁気特性の劣化も顕著であることを究明した。
【0017】
この磁粉の損傷による影響は従来ほとんど考慮されてこなかった。しかし、希土類・鉄系合金の磁粉は強度が比較的低く、磁石製造過程、特に圧縮成形で損傷を受け易いので、成形前に磁粉表面を樹脂で被覆しても、成形後には活性な新生破面が生じ、高温に曝されるとその部位から熱劣化、酸化劣化を生じて磁気特性が劣化することがわかった。
【0018】
また、圧縮成形した圧粉体の内部には空隙が多く存在する。磁石表面をメッキや塗装により被覆しても、磁石に内包された空気中の水、酸素により磁粉の熱劣化、酸化劣化が引き起こされる。この内包空気は、磁粉の損傷により生じた新生破面にも悪影響を及ぼす。従って、内包空気による劣化を防止するため空隙率を可及的に小さくすることが望まれる。空隙率の低減は、単位体積当たりの磁粉の充填率を高くする点でも磁気特性の向上に寄与する。
【0019】
よって、本発明の具体的な課題は、希土類・鉄系合金の磁粉からなるボンド磁石の製造過程、特に圧縮成形において磁粉が損傷しても、磁気特性の劣化や高温での磁粉の熱劣化を防止することができ、かつ空隙率を低下させる手段を講じることにより上記目的を達成することである。
【0020】
【課題を解決するための手段】
本発明者らは、バインダーとして使用する熱硬化性樹脂を工夫することにより上記課題を解決すべく検討を重ねた。
【0021】
特開昭63−24607 号公報の実施例で使用しているビスマレイミドトリアジン樹脂は、無水マレイン酸と芳香族ジアミンとの反応物であるビスマレイミドに、トリアジン骨格を持つオリゴマーとそのモノマーからなるトリアジン成分を配合した、熱硬化性ポリイミド樹脂の一種である。
【0022】
本発明者らは、この樹脂が軟化して融解した後、硬化前にトリアジン成分が揮発することに着目し、この揮発性成分を含む樹脂をバインダーに使用すると、圧縮成形時に活性な新生破面が生成しても、成形体を硬化させるための加熱時に、硬化に先立ってこの揮発性成分が揮発して磁粉に再付着することにより新生破面が被覆され、かつこの再付着時に磁粉内の空隙が充填されて、上記目的が達成されるのではないかと考えた。しかし、揮発した成分は、磁粉の新生破面に再付着する以外に、加熱炉の内壁などにも付着し、磁石内部の空隙がかえって多くなることが判明した。
【0023】
しかも、ビスマレイミドトリアジン樹脂をバインダーとするボンド磁石は、磁場中で圧縮成形する際の磁粉の配向性が低く、磁気特性が不十分である上、耐熱性、耐酸化性、耐食性、機械的強度もほとんど向上せず、さらに製品には割れや欠けが発生し易い。その理由は、この樹脂の磁粉に対する接着性が低く、溶融樹脂による磁粉間の潤滑効果が低いためではないかと考えられる。
【0024】
圧縮成形中に磁粉が流動しやすいほど、磁粉相互間の摩擦が低減し、磁粉の充填率と配向性が向上し、磁粉の損傷が抑制され、ボンド磁石の磁気特性が向上する。また、活性な新生破面が少なく、耐熱性、耐酸化性、耐食性も向上する。しかし、ビスマレイミドトリアジン樹脂では溶融しても磁粉間の潤滑(摩擦低減)効果が小さく、接着性の低さも加わって上記の結果になったものと思われる。
【0025】
ビスマレイミドトリアジン樹脂を、これより潤滑性が高いエポキシ樹脂との混合樹脂にして磁粉を被覆しても、結果はほとんど変わらず、ボンド磁石の機械的強度はかえって低下することが判明した。その原因は、温間成形時にビスマレイミドトリアジン樹脂の硬化反応が開始し、溶融粘度が上がって潤滑性が低下するためであると考えられる。
【0026】
これに対し、磁粉を内層がビスマレイミドトリアジン樹脂、外層がエポキシ樹脂となるように2層被覆すると、ビスマレイミドトリアジン樹脂のみ、または両樹脂を混合して1層被覆した場合の前述した難点が解消され、硬化前の揮発性のトリアジン成分による磁粉新生破面の被覆による保護効果によって耐熱性、耐酸化性、耐食性が改善され、かつ磁気特性、機械的強度、磁粉の接着性も良好なボンド磁石が得られることを見出した。その理由は完全には解明されていないが、次のように考えられる。
【0027】
即ち、被覆を上記の2層構造とすると、外層の不揮発性のエポキシ樹脂が、内層のビスマレイミドトリアジン樹脂から硬化前に揮発したトリアジン成分の逃散を阻止するため、揮発したトリアジン成分が加熱炉の内壁などに付着するのが防止される結果、硬化前に新生破面の被覆や空隙の充填に有効利用される。また、潤滑性のよいエポキシ樹脂が、外層としてビスマレイミドトリアジン樹脂とは別個に存在することにより、温間成形中の粘度増大による潤滑性の低下が阻止され、磁粉の損傷が抑制される。また、磁気異方性の磁粉では配向性も向上する。さらに、内層のビスマレイミドトリアジン樹脂は磁粉との接着性がエポキシ樹脂より低いが、内層樹脂と磁粉との接着性は若干低くても、外層に接着性の高いエポキシ樹脂が存在することで磁粉間の接着性が確保され、ボンド磁石の割れや欠けも防止される。
【0028】
ここに、本発明により、希土類・鉄系磁石合金の粉末を、熱硬化性樹脂(a)と、室温で固体のトリアジン樹脂およびビスマレイミドトリアジン樹脂から選ばれた、揮発性成分を含有する熱硬化性樹脂(b)とで、樹脂(a)が外層、樹脂(b)が内層となるように2層被覆した粉末であって、内層の熱硬化性樹脂(b)中の揮発性成分が該樹脂の硬化開始温度よりも低温で揮発するものであることを特徴とする、圧縮成形によりボンド型永久磁石を製造するための原料粉末が提供される。
【0029】
好適態様にあっては熱硬化性樹脂(a)はエポキシ樹脂である。2層被覆の被覆量は、被覆後の粉末重量に対する重量%で、熱硬化性樹脂(a)が0.5〜10.0%、揮発性樹脂(b)が0.1〜5.0%であり、かつ樹脂(a)の被覆量が樹脂(b)の被覆量より多いことが好ましい。この両樹脂とも室温で固体のものを用いる方が2層構造を確実に形成できる。
【0030】
本発明によればまた、上記の2層被覆された原料粉末を、磁場中で圧縮成形した後、加熱して2種類の熱硬化性樹脂(a) および(b) を硬化させることを特徴とする、ボンド型永久磁石の製造方法も提供される。
成形中の磁粉の流動性を向上させるため、圧縮成形を両樹脂の軟化温度以上、かつ樹脂(a) の硬化開始温度未満で、樹脂(b) の揮発温度未満、の温間で行うことが好ましい。
【0031】
【発明の実施の形態】
[磁粉]
本発明で使用する磁粉は、永久磁石用の希土類・鉄系合金、即ち、 (ただしRはYを含む希土類元素の1種以上) と、Fe (Feの一部はCoで置換されていてもよい) と、Bとを基本組成とする希土類・鉄系合金からなる粉末である。合金組成は特に制限されないが、通常は、重量%でRが25〜33%、Feが64〜74%、Bが0.8 〜1.3 %である。Feの半量までCoで置換してもよい。Rは1種もしくは2種以上でよく、Ndおよび/またはPrを単独または他の希土類元素との混合物として使用することが好ましい。上記以外に、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Ge、Ga、W、V、Zr、Ti、Mo、Bi、Ta、Hf、P、Sなどの1種もしくは2種以上の元素を少量添加してもよい。
【0032】
本発明で使用する磁粉は磁気異方性と磁気等方性のいずれの粉末でもよい。磁気異方性は、例えば磁粉を 700〜900 ℃で水素化処理し、その後、減圧下で脱水素化処理を行うことにより付与できる。また、別の手法として、熱間後方押出加工により磁気異方性を発現させた磁粉 (例えば、ゼネラルモーターズ社製のMQ-3粉末) も本発明に使用できる。
【0033】
一般に磁気異方性の磁粉の方が磁気等方性の磁粉より歪みが大きく損傷し易いので、本発明による効果がより顕著に得られるが、希土類・鉄系磁石合金それ自体が酸化し易く、強度も非常に高いわけではないので、磁気等方性の磁粉の場合にも、耐熱性、耐酸化性、耐食性、磁気特性、機械的強度の向上という本発明による効果は十分に得られる。
【0034】
磁粉は平均粒径が20μm以上であることが望ましい。平均粒径が20μmより小さいと、保磁力、磁石の減磁曲線の角型性等の磁気特性の劣化が見られ、さらに、比表面積が大きくなりすぎるため、耐熱性、耐酸化性、耐食性にとっても不利となる。好ましい磁粉の平均粒径は20〜300 μmである。
【0035】
[磁粉の樹脂被覆による原料粉末の調製]
本発明では、上記希土類・鉄系合金の磁粉に、異なる2種類の熱硬化性樹脂を用いて2層構造の被覆を施す。一方の熱硬化性樹脂は揮発性成分を含む。以下、この揮発性成分を含む熱硬化性樹脂を、単に揮発性樹脂といい、他方の熱硬化性樹脂を単に熱硬化性樹脂という。揮発性樹脂と熱硬化性樹脂のいずれも、室温で固体のものが好ましく、またそれぞれ1種もしくは2種以上を使用できる。
【0036】
2層被覆の内層を構成する揮発性樹脂は、その硬化開始温度よりも低温で揮発する成分を含むものであれば、その種類は特に制限されない。磁粉の表面や熱硬化性樹脂の極性基との親和性が良い極性基を分子内に持つ化学構造であることが好ましい。このような揮発性樹脂の例は、トリアジン樹脂およびビスマレイミドトリアジン樹脂である。中でもビスマレイミドトリアジン樹脂が好ましい。
【0037】
トリアジン樹脂は、下記構造式(1) で示されるビスフェノールAのシアン酸エステルを環化重合させることにより得られる、下記構造式(2) で示されるトリアジン骨格の反復単位を持つオリゴマー(トリアジンオリゴマーと呼ばれる)を主成分とする樹脂である。得られたオリゴマーがトリアジン骨格を持つため、構造式(1) で示されるモノマー (ビスフェノールAのシアン酸エステル) もトリアジンモノマーと呼ばれている。
【0038】
【化1】

Figure 0003941134
【0039】
トリアジンモノマーの環化重合の生成物は、上記のトリアジンオリゴマーの他に、未反応のトリアジンモノマーも含んでいる。従って、トリアジン樹脂は、上記のトリアジンモノマーとトリアジンオリゴマーとの混合物である。このモノマーとオリゴマーはいずれも揮発性である。即ち、トリアジン樹脂はそれ自体揮発性の樹脂である。
【0040】
ビスマレイミドトリアジン樹脂は熱硬化性ポリイミドの1種であって、無水マレイン酸と芳香族ジアミンとの反応生成物であるビスマレイミドに、共重合成分として上記のトリアジン樹脂を配合した樹脂である。従って、揮発性成分 (トリアジン樹脂) を含有している。通常は、ビスマレイミドよりトリアジン樹脂の方が多量に配合される。
【0041】
ビスマレイミドの形成に用いる芳香族ジアミンは、アニリンとホルマリンとから得られるメチレンジアニリンが一般的である (この場合のビスマレイミドの構造式を次の(3) 式に示す) が、m−アミノ安息香酸とヒドラジンとの反応により得られるm−アミノ安息香酸ヒドラジド等の他のジアミンも使用される。芳香族ジアミンがメチレンジアニリンであるビスマレイミドトリアジン樹脂は、三菱瓦斯化学社よりBTレジンなる商品名で市販されている。
【0042】
【化2】
Figure 0003941134
【0043】
ビスマレイミドトリアジン樹脂とトリアジン樹脂はいずれも、昇温するとまず軟化・溶融するが、約150 ℃でトリアジンモノマーおよびトリアジンオリゴマーが揮発し、さらに昇温させると約170 ℃以上の温度で硬化反応が起こる。従って、樹脂の硬化開始温度より低温で揮発性成分が揮発する。後述するように、原料粉末を圧縮成形した後、得られた成形体を硬化開始温度より高温に加熱して被覆樹脂を硬化させる。この加熱過程で、硬化開始前に、磁粉表面の揮発性樹脂被覆から揮発性成分が揮発し、一部は近くにある活性な新生破面や空隙に付着し、その間に昇温が進んで硬化開始温度に達すると、付着した揮発性成分は再揮発せずにその場所で硬化樹脂になる。こうして圧縮成形中に生じた新生破面や磁粉間の空隙にも樹脂が付着して、それらが樹脂で被覆ないし充填される。
【0044】
2層被覆の外層を構成する熱硬化性樹脂もその種類は特に制限されず、例えば、エポキシ樹脂、フェノール樹脂、熱硬化性ポリエステル樹脂などが使用できる。好ましい熱硬化性樹脂は、従来と同様にエポキシ樹脂である。エポキシ樹脂としては、室温で固体のビスフェノールA型樹脂が好ましいが、ノボラック型等の他のエポキシ樹脂も使用できる。熱硬化性樹脂は、必要に応じて、硬化剤、硬化促進剤と一緒に使用する。
【0045】
前述したように、揮発性樹脂と熱硬化性樹脂はいずれも室温で固体のものが好ましく、さらに好ましくは軟化温度が40〜120 ℃のものである。揮発性樹脂と熱硬化性樹脂の軟化温度はいずれが高くなってもよい。
【0046】
磁粉を被覆する揮発性樹脂と熱硬化性樹脂が両方とも室温で固体であると、樹脂被覆した原料粉末は流動性に富む粉体として取り扱える。その結果、金型への粉末の充填性がよくなり、均質な成形体が得られ、成形体中の局部的な密度の変動が小さく、かつ製品磁石のロット間の密度バラツキも小さく、また、圧縮成形体の密度が増大し、磁粉充填率が向上する。また、成形体の機械的強度が高いため、搬送等の取り扱い時の成形体の端部や角部の欠けが生じにくく、寸法精度と製品歩留まりが向上する。
【0047】
しかし、両樹脂の軟化温度が40℃未満では、室温で液体の樹脂と同様に、樹脂被覆した原料粉末が互いに凝集または融着して金型への給粉性が低下することがある。また、気温が高い場合に樹脂が軟化し、原料粉末の貯蔵安定性が低下する傾向がある。両樹脂の軟化温度が120 ℃より高くなると、圧縮成形時に金型内に投入した原料粉末を両樹脂が軟化するまで加熱するのに時間がかかり、金型の温度調整と磁気回路の設計が難しくなる上、磁粉の熱劣化、酸化劣化が生じやすくなる。両樹脂の軟化温度がともに50〜100 ℃の範囲であるのが特に好ましい。
【0048】
本発明では、内層が揮発性樹脂、外層が熱硬化性樹脂とする。それにより、隣接する磁粉間の熱硬化性樹脂による接着性が良くなり、磁石の機械的強度が向上する。また、温間プレス時に成形体から溶融した揮発性樹脂がしみ出たり、樹脂硬化時に揮発性樹脂が磁石の外部へ飛散する現象を、外層の熱硬化性樹脂により防止することができる。さらに、この効果により、揮発性樹脂が少量でも磁粉の新生破面を再被覆できるので、目的とする磁粉の熱劣化、酸化劣化の防止を実現できる。
【0049】
磁粉に2層構造の被覆を形成するには、例えば次のようにすればよい。まず内層となる揮発性樹脂を適当な有機溶媒に溶解して低粘度の樹脂液を調製し、この樹脂液を磁粉と混合した後、溶剤を揮発させて、内層の樹脂層を磁粉の表面に形成する。この内層樹脂層の上に、外層となる熱硬化性樹脂を同様にして溶液化して被覆し、外層の樹脂層を形成する。外層樹脂の樹脂液は、内層樹脂を溶解しにくい溶媒を用いて調製する。内層と外層のいずれも、被覆に用いる樹脂液は溶液に限定されるものではなく、エマルジョン、懸濁液等の形態であってもよい。
【0050】
磁粉の被覆に使用する樹脂液には、所望によりシラン系カップリング剤、チタネート系カップリング剤、潤滑剤などの添加剤を少量配合することもできる。また、磁粉を予めシラン系もしくはチタネート系カップリング剤または潤滑剤などで表面処理しておくこともできる。
【0051】
被覆方法は上記の方法に制限されるものではなく、上記と同等の均一な樹脂被覆が可能な方法であれば、他の方法を採用することもできる。例えば、揮発性樹脂と熱硬化性樹脂の一方または両方が、加熱すると溶融粘度が小さい融液を形成する場合には、融液を磁粉と混練する溶融混練法により被覆を行ってもよい。ただし、この方法で外層を形成できるのは、外層樹脂の軟化温度が内層樹脂より低い場合に限られ、内層樹脂の軟化温度より低温で溶融混練法による外層の被覆を行う。
【0052】
各樹脂の被覆量は、被覆後の粉末重量に対する重量%で、内層の揮発性樹脂が 0.1〜5.0 %、好ましくは 0.1〜3%、より好ましくは 0.5〜2.0 %であり、外層の熱硬化性樹脂は 0.5〜10%、好ましくは 1.0〜5.0 %、より好ましくは 1.5〜4.0 %である。外層樹脂の被覆量の方が内層樹脂の被覆量より多くすることが好ましい。両樹脂 (即ち、内層と外層) の合計被覆量は好ましくは 1.0〜10.0%、より好ましくは 2.0〜5.0 %の範囲内である。
【0053】
揮発性樹脂の被覆量が0.1 %未満では、新生破面の被覆が不十分となり、ボンド磁石の耐熱性が向上しない。揮発性樹脂の被覆量が5.0 %を越えると、成形されたボンド磁石の機械的強度が低下する。一方、熱硬化性樹脂の被覆量が0.5 %未満では、磁粉間の結合が不十分となり、成形性が悪く、かつ圧粉体およびボンド磁石の機械的強度が著しく低下する。熱硬化性樹脂の配合量が10%を越えると、磁粉の充填率が小さくなり、所定の高磁気特性を発揮できなくなる。
【0054】
[磁場中の圧縮成形]
磁粉を揮発性樹脂と熱硬化性樹脂の2層で被覆した原料粉末を圧縮成形する。各磁粉が予め2種類の樹脂で均一に被覆されているため、圧縮成形により均質な成形体を得ることができる。磁粉が磁気異方性である場合には、圧縮成形を磁場中で行う。それにより、圧縮成形中に個々の磁粉の磁化容易方向を磁場の方向に揃え、磁粉が配向した磁気異方性の成形体を得る。一般に磁気異方性のボンド磁石では、磁粉の配向度が高いほど磁気特性が向上する。
【0055】
圧縮成形は室温で行ってもよいが、揮発性樹脂と熱硬化性樹脂の両樹脂の軟化温度以上で、かつ両樹脂の硬化温度よりも低温である温間で行う方が好ましい。それにより、軟化した両樹脂の潤滑効果のために、磁粉相互間および磁粉と樹脂間の摩擦が低減し、次の(1) 〜(3) に述べるように、磁粉の充填率と配向度が増大し、磁粉の損傷が抑制され、磁気特性、機械的強度、耐熱性、耐酸化性、耐食性に優れたボンド磁石が得られる。
【0056】
(1) 摩擦低減により、空隙が減少し、磁粉の充填率が向上した高密度の成形体、したがってボンド磁石が得られる。そのため、磁気特性、機械的強度、耐熱性、耐酸化性、耐食性が向上する。
【0057】
(2) 磁粉が磁気異方性である場合には、摩擦低減により、磁場中で圧縮成形する際に各磁粉の回転が容易になるので、磁粉の磁化容易方向が磁場方向に揃いやすくなり、磁粉の配向度が向上して、磁気特性が向上する。
【0058】
(3) 本発明で用いる希土類・鉄系合金の磁粉、特に磁気異方性の磁粉は、一般に熱処理を受けていることから粉末の強度が低下している。そのため被覆時の磁粉と樹脂との混合のトルクや、圧縮成形時の圧縮圧力により破砕・歪みを受けて損傷し易く、この磁粉の損傷がボンド磁石の磁気特性の低下の大きな原因であることを本発明者らは究明した。
【0059】
樹脂が軟化する温間で圧縮成形することにより摩擦を低減させると、圧縮成形時の磁粉の損傷が抑制され、それによる磁気特性の低減や、機械的強度、耐熱性、耐酸化性、耐食性などの各種特性の劣化を避けることができる。この効果は磁気異方性の磁粉で特に顕著であるが、磁気等方性の磁粉である程度得られる。
【0060】
圧縮成形は、常法に従って、原料粉末をプレス金型に充填し、好ましくは所定の温間プレス温度に加温し、次いで磁場の印加下に上下の押さえ治具 (パンチ) により加圧・圧縮することにより実施できる。
【0061】
金型内の原料粉末の加熱手段に特に制限はないが、金型を加熱して伝熱により行うことが簡便である。金型の加熱手段としては、例えば抵抗加熱、油等の熱媒による加熱、高周波加熱などが利用できる。加熱時間を短縮するため、金型を予熱しておいてもよい。また、金型内の原料粉末に通電し、その抵抗加熱により磁性粉末を直接加熱する方法を採用できる。さらに、プレス成形機の上下のパンチの一方に超音波振動を加えることにより、摩擦熱で原料粉末を直接加熱する方法も可能である。
【0062】
磁場の印加方法は、圧縮方向と平行な磁場 (縦磁場ともいう) 、これと垂直な磁場 (横磁場ともいう) 、半径方向の極配向磁場、のいずれでもよい。磁界強度は特に制限されないが、通常は4〜20 kOeの範囲内である。プレス圧力は、2〜10 ton/cm2の範囲内が適当である。
【0063】
[樹脂の熱硬化]
圧縮成形後、脱型した成形体を加熱設備 (例、加熱炉) に移してさらに加熱し、揮発性樹脂と熱硬化性樹脂の両者を熱硬化させると、ボンド磁石が得られる。この加熱条件は、揮発性樹脂と熱硬化性樹脂が完全に硬化するように、樹脂種や硬化剤、硬化促進剤の種類に応じて選択する。加熱雰囲気は、磁粉の酸化を防ぐために、真空あるいは不活性ガスなどの無酸素雰囲気とすることが好ましい。得られたボンド磁石は、必要により、常法により塗装やメッキなどの表面処理を施してもよい。
【0064】
この加熱により、磁粉を被覆している2種類の樹脂はいずれも一旦軟化して溶融し、流動するため、空隙がある程度は樹脂で充填される。さらに昇温すると、揮発性樹脂からはその硬化が起こる前に揮発性成分が揮発し、揮発した成分が磁粉に再付着する際に圧縮成形時の磁粉の粉砕で生じた新生破面にも付着するため、新生破面が被覆され、新生破面による熱劣化や酸化劣化が防止され、ボンド磁石の耐熱性、耐酸化性、耐食性が向上する。また、この際にも空隙の充填も起こるので、空隙率は一層低下する。
【0065】
そのため、本発明の方法で製造されるボンド磁石は、空隙率が8.0 体積%以下、好ましくは5.0 体積%以下、特に好ましくは3.0 体積%以下である。空隙率の低下により、高い残留磁化(Br)が得られ、機械的強度が向上する。さらに、空隙中の酸素や空隙を通路としてボンド磁石に侵入する酸素、水に起因する磁粉の熱劣化、酸素劣化も抑制される。
【0066】
なお、本発明において、空隙率は次式により算出される値である。
[(理論密度−実測密度) /理論密度] ×100(%)
ここで、理論密度とは空隙が全くない磁性粉末と被覆樹脂だけから成る磁石の密度の計算値である。
【0067】
【実施例】
本発明の効果を実施例により実証する。実施例および比較例中、%および部は特に指定のない限り、重量%および重量部である。
【0068】
[磁粉]
Nd:28%、Co:10%、Ga:1%、B:1%、Zr:0.1 %、残部:Feの組成を持つNd−Fe−B系合金を、 700〜900 ℃の水素ガス中に保持して、Ndの水素化物、Fe2B、Feに分解する。次にこの温度領域で水素圧を下げ、Ndの水素化物から水素を解離させ、微細なNd2Fe14B結晶体からなる磁粉を作製した。得られた磁粉を、分級して、粒度分布が38〜300 μm (平均粒径125 μm) の磁気異方性のNd−Fe−B系合金の磁粉を調製した。
別に溶融合金の急冷凝固により磁気等方性のNd−Fe−B系合金粉末を調製した。合金組成および粒度分布は上記と同じであった。
【0069】
[揮発性樹脂]
揮発性樹脂▲1▼ (溶融混練用)
三菱瓦斯化学社よりBTレジンBT2100として市販されている、室温で固体のビスマレイミドトリアジン樹脂 (軟化温度80℃) をそのまま使用した。この揮発性樹脂のトリアジン含有率 (ビスマレイミドを含む樹脂全量に対するトリアジンモノマーおよびオリゴマーの合計量) は90%、軟化温度は約80℃、揮発成分の揮発温度は約150 ℃、硬化開始温度は約170 ℃である。
【0070】
揮発性樹脂▲2▼ (溶液混練用)
三菱瓦斯化学社よりBTレジンBT2060Bとして市販されている、室温で固体のビスマレイミドトリアジン樹脂70%をメチルエチルケトン30%に溶解して使用した。この揮発性樹脂の軟化温度は約80℃、揮発成分の揮発温度、および硬化開始温度は上記と同じである。
【0071】
[熱硬化性樹脂]
熱硬化性樹脂▲1▼ (溶融混練用)
室温で固体のビスフェノールA型エポキシ樹脂 (軟化温度60℃) 100 部と変性アミン系硬化剤25部を60℃で溶融混練して用いた。このエポキシ樹脂の軟化温度は60℃、硬化開始温度は120 ℃である。
【0072】
熱硬化性樹脂▲2▼ (溶液混練用)
室温で固体のクレゾールノボラック系エポキシ樹脂 (軟化温度60℃) 30%とフェノール樹脂系硬化剤7%をメチルエチルケトン63%に溶解し、25℃での粘度が5cps の低粘度液状のエポキシ樹脂溶液を得た。このエポキシ樹脂の軟化温度と硬化開始温度は上記▲1▼とほぼ同じである。
【0073】
[被覆方法]
溶融混練法 (揮発性樹脂▲1▼および/または熱硬化性樹脂▲1▼)
磁粉を所定割合の樹脂と混合し、80℃ (樹脂が揮発性樹脂▲1▼の場合) または60℃ (樹脂が熱硬化性樹脂▲1▼の場合) に加熱して、樹脂の溶融状態で混練した。2層被覆の場合は、最初に80℃で揮発性樹脂▲1▼と溶融混練した後、60℃まで冷却し、さらに熱硬化性樹脂▲1▼と溶融混練した。
【0074】
溶液混合法 (揮発性樹脂(2)および/または熱硬化性樹脂(2))
磁粉を所定割合の樹脂を含む樹脂溶液と混合し、室温で溶媒を蒸発させた後、乳鉢で粉砕した。本実施例では、揮発性樹脂と熱硬化性樹脂のいずれも同じ溶媒を用いて樹脂溶液を調製したため、2層被覆の場合には内層の形成のみに溶液混練法を採用した。内層の揮発性樹脂を溶解しにくい溶媒を用いて外層の熱硬化性樹脂の溶液を調製すれば、外層も溶液混練法により形成することができる。
【0075】
比較例では、揮発性樹脂または熱硬化性樹脂で1層被覆するか、或いは揮発性樹脂と熱硬化性樹脂とを混合して1層被覆した。
いずれの場合も、被覆作業の終了後、最後に乳鉢で粉末を解砕して、被覆作業中に固着した粉末をほぐした。
【0076】
[ボンド磁石の作製方法]
圧縮成形/熱硬化
上記のように樹脂被覆した磁粉 (原料粉末) を、金型に充填した後、磁粉が磁気異方性である場合には10 kOeの横磁場の印加下に、磁粉が磁気等方性である場合には磁場を印加せずに、圧力6ton/cm2 で80℃で温間圧縮成形した。
【0077】
脱型後、得られた成形体を真空中またはArガス中で175 ℃に120 分間加熱して被覆樹脂を硬化させ、ボンド磁石のサンプルを得た。磁石サンプルの形状は、長さ100 mm、幅10mm、厚さ5mmの短冊形状と、10mm立方の立方形状、の2種類とした。
【0078】
[試験方法]
ボンド磁石の磁気特性、曲げ強度、耐熱性、耐湿性、外観検査、寸法・形状と密度・磁粉充填率について次の要領で評価した。また、圧縮成形時の金型への給粉性と成形体の微粉発生量を下記のように判定した。
【0079】
(1) 磁気特性
10mm立方のボンド磁石サンプルを用い、これを40 kOeで着磁後、BHトレーサーにより残留磁化(Br)、保磁力(iHc) 、減磁曲線の角型性(Hk)ならびに最大エネルギー積[(BH)max] を測定した。減磁曲線の角型性(Hk)は、磁化が残留磁化(Br)の90%になる時の磁界(H) の大きさを意味し、磁粉の損傷が大きいほどHkが低下することが判明しているので、磁粉の損傷度の指標となる。
なお、磁粉の配向度は次式により算出した。
【0080】
【数1】
Figure 0003941134
【0081】
式中、Br(//) は圧縮成形時のプレス方向と平行方向のBrであり、Br(⊥) は圧縮成形時のプレス方向と垂直方向のBrである。
【0082】
(2) 曲げ強度
100 mm×10mm×5mmのボンド磁石サンプルを用いて、JIS K7203 の硬質プラスチックスの曲げ試験方法に準じて行った。支点間距離は75mm、試験速度は2mm/分で行い、結果より曲げ破壊強度を算出した。
【0083】
(3) 耐熱性
10mm立方のボンド磁石サンプルを120 ℃の大気雰囲気に1000時間放置し、1000時間後の試験片の磁気特性を測定し、減磁曲線の角型性Hkの低下率で耐熱性を評価した。
【0084】
(4) 耐湿性
10mm立方のボンド磁石サンプルを80℃に予熱した後、80℃、90℃の雰囲気内に24時間置いた。そして、24時間後の試験片表面の錆発生状況を目視により観察し錆発生数を計数して、次の基準で評価した。
○:錆発生なし、×:錆発生数3〜5個/cm2
【0085】
(5) 微粉発生量
圧縮成形した10mm立方の成形体から、樹脂部分をメチルエチルケトンで溶解除去し、残った磁粉をふるいにより粒度別に分級し、<38μmの微粉の発生量を測定した。この微粉発生量により磁粉の損傷度を評価した。つまり、成形前の磁粉には含まれていない<38μmの微粉の発生量が多いほど、磁粉の損傷が大きいと判断できる。
【0086】
(6) 外観検査
長さ100 mm、幅10mm、厚さ5mmの短冊形状と10mm立方の立方形状のボンド磁石サンプルに欠けや割れなどがないかを外観検査した。いずれの磁石にも割れや欠けが認められない場合を○、いずれかに認められた場合を×と評価した。
【0087】
(7) 寸法・形状測定
長さ100 mm、幅10mm、厚さ5mmの短冊形状と10mm立方の立方形状のボンド磁石サンプルの寸法・形状と重量を測定し、実成形密度 (見掛け密度) を算出した。寸法・形状精度は、寸法精度が±50μm以内で、かつ形状に歪みがない場合を○、寸法精度が±50μm超か、または形状に歪みが存在する磁石があった場合には×と評価した。
また、この密度と磁粉の重量分率 (樹脂被覆の合計量を100 %から差し引いた値) から磁粉充填率を次式により算出した。
【0088】
【数2】
Figure 0003941134
【0089】
(8) 金型への給粉性
圧縮成形体の重量のバラツキ (重量偏差) で評価した。この重量偏差が±0.5 g以内の場合を○、±0.5 g超の場合を×と評価した。
【0090】
これらの試験結果を表2にまとめて示す。
実施例および比較例では、上記の磁気異方性または磁気等方性のNd−Fe−B系磁粉に下記の被覆を施した。被覆量は表1に示す通りである。
【0091】
実施例1〜4
磁気異方性の磁粉に内層のビスマレイミドトリアジン樹脂と外層のエポキシ樹脂をいずれも溶融混練法により順に2層被覆した。
【0092】
実施例5〜8
磁気異方性の磁粉に内層のビスマレイミドトリアジン樹脂を溶液混練法で、外層のエポキシ樹脂を溶融混練法で順に2層被覆した。
【0093】
比較例1
磁気異方性の磁粉に溶融混練法でエポキシ樹脂を1層被覆した。
比較例2
磁気異方性の磁粉に溶液混練法でエポキシ樹脂を1層被覆した。
【0094】
比較例3
磁気異方性の磁粉に溶融混練法でビスマレイミドトリアジン樹脂を1層被覆した。
比較例4〜6
磁気異方性の磁粉にビスマレイミドトリアジン樹脂とエポキシ樹脂との混合物を溶融混練法で1層被覆した。
【0095】
比較例7
磁気異方性の磁粉に溶液混練法でビスマレイミドトリアジン樹脂を1層被覆した。
比較例8〜 10
磁気異方性の磁粉にビスマレイミドトリアジン樹脂とエポキシ樹脂との混合物を溶液混練法で1層被覆した。
【0096】
実施例9〜 11
磁気等方性の磁粉に内層のビスマレイミドトリアジン樹脂と外層のエポキシ樹脂をいずれも溶融混練法により順に2層被覆した。
【0097】
比較例 11
磁気等方性の磁粉に溶融混練法でエポキシ樹脂を1層被覆した。
比較例 12
磁気等方性の磁粉に溶液混練法でエポキシ樹脂を1層被覆した。
【0098】
【表1】
Figure 0003941134
【0099】
【表2】
Figure 0003941134
【0100】
表1と表2から明らかな通り、本発明に従って希土類・鉄系合金からなる磁粉を揮発性樹脂と熱硬化性樹脂の2層で被覆した原料粉末を用いて、磁場中で温間プレス成形すると、2層の樹脂の合計被覆量が最高でも5%程度と少量であるにもかかわらず、耐熱性、耐酸化性、耐食性が改善されたボンド磁石が得られる。また、このボンド磁石は、磁粉の充填率が大きく、空隙率が小さく、かつ磁粉の配向度も大きく、磁粉の損傷が抑えられているので、磁気特性と機械的強度も大きく向上した。なお、以上の効果は、磁粉が磁気異方性である場合だけでなく、磁気等方性の磁粉の場合にも得られた。
【0101】
【発明の効果】
本発明によれば、希土類・鉄系合金磁粉に対して、硬化反応の開始前に揮発する揮発性成分を含む熱硬化性樹脂からなる内層と、接着性に優れた通常の熱硬化性樹脂からなる外層という2層構造の被覆を施した原料粉末を、好ましくは温間で圧縮成形した後、加熱して上記2種類の樹脂を硬化させてボンド磁石を製造することにより、下記の効果を得ることができる。
【0102】
(1) 圧縮成形時に生じた磁粉の活性な新生破面を、樹脂硬化時に揮発性樹脂が被覆することにより、磁粉の熱劣化、酸化劣化を防止できるため、ボンド磁石の耐熱性、耐酸化性、耐食性が向上する。
【0103】
さらに、原料磁粉の表面が揮発性樹脂と熱硬化性樹脂で均一に被覆されているので、成形および加熱硬化中の磁粉の酸化が防止され、磁粉の酸化による磁気特性の低下を抑制できる。得られたボンド型永久磁石においても、磁粉の表面が樹脂で均一に被覆されていることから、使用時に高温高湿の環境下に曝された場合も、磁粉の酸化防止作用が持続し、耐熱性および耐食性が良好となる。
【0104】
(2) 圧縮成形時に磁粉相互間および磁粉と樹脂間の摩擦が低減されるため、得られたボンド磁石の密度が増大すると共に、圧縮成形時に磁粉に対して割れ、歪みなどの損傷が生じにくくなる。その結果、磁粉間の空隙が少なく、磁粉の充填率が高いボンド磁石が得られる。また、磁気異方性の磁粉では、摩擦低減により磁場中での圧縮成形時の磁粉が回転が容易となって、磁粉配向度が向上する。以上の結果、磁気特性が向上する。
【0105】
(3) 少量の樹脂被覆量で原料磁粉が完全に樹脂で結合され、しかも磁粉間の空隙が少なく、高密度で充填されるため、ボンド磁石の機械的強度が向上し、割れ、カケも生じにくく、寸法精度と製品歩留まりが向上する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a bond-type permanent magnet having excellent heat resistance, oxidation resistance, corrosion resistance, magnetic properties and mechanical strength, and a raw material comprising a magnet powder coated with a resin used in the production method. With powder.
[0002]
[Prior art]
Bond-type permanent magnets (hereinafter referred to as bond magnets) are magnet powders such as hard ferrites and rare earth alloys (hereinafter referred to as magnetic powders), thermosetting resins such as epoxy resins, phenol resins, and polyester resins, or polyamide resins, A magnet bound by a binder made of a thermoplastic resin such as polypropylene resin or polyphenylene sulfide resin.
[0003]
Compared to sintered permanent magnets that have been sintered by powder metallurgy, the bonded magnet contains a resin component that does not exhibit magnetism, so the magnetic properties are somewhat inferior, but since there is no shrinkage due to sintering, there are various dimensional accuracy with high dimensional accuracy. There is a feature that a magnet having a shape can be easily manufactured by a method similar to that of resin molding. For this reason, bonded magnets are widely applied from various household electric appliances to peripheral terminals of large computers, and in recent years, they are often used in small motors such as spindle motors and stepping motors.
[0004]
As a method for forming the bonded magnet, injection molding, extrusion molding, compression molding (press molding), and the like are possible.
In injection molding and extrusion molding, since a mixture of magnetic powder and resin must flow at the molding temperature, it is generally necessary to use a thermoplastic resin as a binder and relatively increase the blending ratio of the resin.
[0005]
On the other hand, since fluidity is not required in compression molding, a thermosetting resin is generally used as a binder. In general production of bonded magnets by compression molding, first, magnetic powder and thermosetting resin (containing additives such as a curing agent if necessary) are mixed, and compression consisting of magnetic powder coated with resin is used. A raw material powder for molding (generally called a compound) is obtained. When this raw material powder is filled in a mold and compression molded with a press machine to form a desired shape, and the molded body is heated to cure the coating resin, a bonded magnet is obtained.
[0006]
Compression molding has the disadvantage that the process is somewhat complicated and expensive compared to extrusion molding and injection molding, but it does not need to flow during molding, so the proportion of resin is reduced (the filling rate of magnetic powder is increased). It is possible to obtain a bonded magnet with more excellent magnetic properties.
[0007]
However, recent progress in downsizing and higher performance of electrical and electronic products such as computers and communication devices is remarkable, and in response to this, further improvement in the magnetic properties of bond magnets is desired. Therefore, (1) improve the magnetic properties of the raw magnetic powder used, (2) increase the magnetic orientation of the magnetic powder in the magnet, (3) increase the volume filling rate of the magnetic powder in the magnet, (4) magnet Measures have been taken to suppress oxidative degradation and thermal degradation of the magnetic powder inside.
[0008]
As a means for improving magnetic properties of (1), magnetic powders made of rare earth alloys including rare earth / cobalt (= R—Co, R is rare earth metal) and rare earth / iron (= R—Fe—B) alloys. Unlike conventional isotropic magnetic powders that exhibit the same magnetic characteristics regardless of the direction of magnetization, magnetic anisotropic magnetic powders that exhibit high magnetic characteristics in a specific direction (easy magnetization direction) An isotropic magnetic powder) has been developed.
[0009]
When a magnet is manufactured from magnetically anisotropic magnetic particles, it is necessary that the directions of easy magnetization of the anisotropic magnetic particles are aligned in the same direction (orientated) in the magnet. Become. Increasing the degree of orientation of the anisotropic magnetic powder in the magnet is the countermeasure shown in (2) above. This orientation is performed by applying a magnetic field at the time of molding and rotating each magnetic powder so that its easy magnetization axis is in the direction of the magnetic field. Therefore, it is necessary to devise a method for facilitating the rotation of individual magnetic particles during molding (that is, reducing the frictional resistance of the powder surface). For example, a method of performing compression molding warmly so that the resin melts, and a method of incorporating a lubricant in the resin are known.
[0010]
On the other hand, in order to increase the filling ratio of the magnetic powder in the unit volume of (3), it is necessary to reduce the resin ratio or to reduce the voids of the molded body produced by compression molding. However, considering the moldability and mechanical strength of bonded magnets, there is a limit to the amount of resin that can be reduced. Therefore, the voids in the compact are reduced and the magnetic powder filling rate is improved under the minimum resin ratio. The molding conditions to be made have been studied.
[0011]
The rare earth / iron-based alloy magnetic powder is mainly oxidized with rare earth elements and iron, which are easily combined with oxygen, and is easily oxidized in air. Due to the oxidation of magnetic particles in the manufacturing process, the magnets often fail to exhibit the prescribed magnetic properties, the magnetic properties are not stabilized, and the deterioration of the magnetic properties is noticeable especially when used in a high temperature environment. It was. The countermeasure (4) is to suppress the oxidative degradation and thermal degradation of the magnetic powder.
[0012]
In bond magnets, magnetic powder is coated with a binder resin to prevent oxidative degradation and thermal degradation of the magnetic powder. In addition, as in the case of a sintered magnet, the magnet is finally covered with plating and / or coating to prevent oxidative deterioration and thermal deterioration of the magnetic powder.
[0013]
In this regard, Japanese Patent Application Laid-Open No. 63-24607 discloses that a conventional epoxy resin binder does not have sufficient wettability and gas shielding performance against magnetic powder, and cannot sufficiently prevent oxidation of rare earth alloy magnetic powder. Has been pointed out. Therefore, in the bonded magnet described in this publication, a thermosetting polyimide resin is used as a binder. Since this resin is excellent in wettability to rare earth alloy magnetic powder, gas shielding properties, and mechanical strength, the amount of resin can be reduced to 5% by weight or less, excellent in heat resistance and oxidation resistance, and in magnetic properties. It is described that an excellent bonded magnet can be obtained. In the examples, bismaleimide triazine resin is used as the polyimide resin.
[0014]
However, as a result of a further trial by the present inventors, even when the above polyimide resin (bismaleimide triazine resin) is used as a binder, mechanical strength, heat resistance, oxidation resistance, and corrosion resistance are higher than when an epoxy resin is used. As a result, chipping and cracking were observed in the obtained bonded magnet, and it was found that the product yield was greatly deteriorated.
[0015]
[Problems to be solved by the invention]
An object of the present invention is to eliminate the above-mentioned problems of the prior art, and to produce a bonded magnet excellent in heat resistance, oxidation resistance and corrosion resistance, and also excellent in magnetic properties and mechanical strength by compression molding. The method and raw material powder used for this manufacturing method are provided.
[0016]
In the bonded magnets made of rare earth / iron-based magnet alloy magnetic powders, the inventors have found that the magnetic powder is subject to thermal degradation of the magnetic powder at high temperatures due to damage such as cracking and distortion in the manufacturing process, particularly compression molding. It was found that the deterioration of magnetic properties due to this damage was also remarkable.
[0017]
The influence of the magnetic powder damage has hardly been considered. However, rare earth / iron alloy magnetic powders are relatively low in strength and are susceptible to damage during the magnet manufacturing process, especially compression molding. It has been found that when the surface is exposed and exposed to high temperature, the magnetic properties deteriorate due to thermal degradation and oxidation degradation.
[0018]
In addition, there are many voids inside the compacted green compact. Even if the surface of the magnet is covered with plating or painting, the water and oxygen in the air contained in the magnet cause thermal deterioration and oxidation deterioration of the magnetic powder. This encapsulated air also has an adverse effect on the new fracture surface caused by the damage of the magnetic powder. Therefore, it is desirable to make the porosity as small as possible in order to prevent deterioration due to the encapsulated air. The reduction of the porosity contributes to the improvement of the magnetic characteristics in terms of increasing the filling rate of the magnetic powder per unit volume.
[0019]
Therefore, a specific problem of the present invention is that the manufacturing process of a bonded magnet made of rare earth / iron alloy magnetic powder, especially deterioration of magnetic properties or thermal deterioration of magnetic powder at high temperature even if the magnetic powder is damaged in compression molding. It is possible to prevent and to achieve the above object by taking measures to lower the porosity.
[0020]
[Means for Solving the Problems]
The present inventors have repeatedly studied to solve the above problems by devising a thermosetting resin used as a binder.
[0021]
The bismaleimide triazine resin used in the examples of JP-A-63-24607 is a triazine composed of an oligomer having a triazine skeleton and a monomer thereof in addition to bismaleimide which is a reaction product of maleic anhydride and aromatic diamine. It is a kind of thermosetting polyimide resin containing ingredients.
[0022]
The present inventors paid attention to the fact that the triazine component volatilizes before being cured after the resin is softened and melted. When a resin containing this volatile component is used as a binder, a new rupture surface that is active during compression molding. However, during heating to cure the molded body, the volatile component volatilizes and reattaches to the magnetic powder prior to curing, and the newly broken surface is covered, and at the time of reattachment, It was thought that the above-mentioned purpose could be achieved by filling the voids. However, it has been found that the volatilized component adheres not only to the newly broken surface of the magnetic powder but also to the inner wall of the heating furnace, and the gap inside the magnet increases.
[0023]
In addition, bond magnets using bismaleimide triazine resin as a binder have low magnetic powder orientation during compression molding in a magnetic field, insufficient magnetic properties, and heat resistance, oxidation resistance, corrosion resistance, mechanical strength. However, the product is prone to cracking and chipping. The reason is thought to be that the adhesiveness of the resin to the magnetic particles is low and the lubricating effect between the magnetic particles by the molten resin is low.
[0024]
The easier the magnetic particles flow during compression molding, the lower the friction between the magnetic particles, the higher the filling rate and orientation of the magnetic particles, the less damage to the magnetic particles, and the improved the magnetic properties of the bonded magnet. Moreover, there are few active new fracture surfaces, and heat resistance, oxidation resistance, and corrosion resistance are also improved. However, it seems that bismaleimide triazine resin has the effect of reducing lubrication (friction reduction) between magnetic powders even when melted, and that the above results are obtained due to the low adhesion.
[0025]
It was found that even when bismaleimide triazine resin was mixed with an epoxy resin having higher lubricity and coated with magnetic powder, the results were almost unchanged, and the mechanical strength of the bonded magnet was rather lowered. The cause is considered to be that the curing reaction of the bismaleimide triazine resin starts during warm molding, the melt viscosity increases, and the lubricity decreases.
[0026]
On the other hand, when the magnetic powder is coated in two layers so that the inner layer is a bismaleimide triazine resin and the outer layer is an epoxy resin, the above-mentioned difficulties when only one layer of bismaleimide triazine resin or a mixture of both resins is coated are eliminated. Bonded magnet with improved heat resistance, oxidation resistance, and corrosion resistance due to the protective effect of the newly formed fracture surface of the magnetic powder with volatile triazine component before curing, and good magnetic properties, mechanical strength, and magnetic powder adhesion It was found that can be obtained. The reason for this is not fully understood, but it is thought to be as follows.
[0027]
That is, when the coating has the two-layer structure described above, the non-volatile epoxy resin of the outer layer prevents escape of the triazine component volatilized before curing from the bismaleimide triazine resin of the inner layer. As a result of being prevented from adhering to the inner wall or the like, it is effectively used for covering a newly fractured surface or filling a void before curing. In addition, since the epoxy resin having good lubricity is present as the outer layer separately from the bismaleimide triazine resin, a decrease in lubricity due to an increase in viscosity during warm molding is prevented, and damage to magnetic powder is suppressed. In addition, the magnetic anisotropy magnetic powder improves the orientation. Furthermore, the bismaleimide triazine resin of the inner layer has lower adhesion to the magnetic powder than the epoxy resin, but even if the adhesion between the inner layer resin and the magnetic powder is slightly lower, the presence of the highly adhesive epoxy resin in the outer layer makes it The adhesion of the magnet is ensured, and cracking and chipping of the bonded magnet are also prevented.
[0028]
  Here, according to the present invention, the rare earth-iron-based magnet alloy powder is combined with the thermosetting resin (a).Selected from triazine resin and bismaleimide triazine resin solid at room temperature,A powder that is coated with two layers of a thermosetting resin (b) containing a volatile component so that the resin (a) is an outer layer and the resin (b) is an inner layer.Inner layerA raw material powder for producing a bond-type permanent magnet by compression molding is provided, wherein the volatile component in the thermosetting resin (b) is volatilized at a temperature lower than the curing start temperature of the resin. Is done.
[0029]
  In a preferred embodiment,The thermosetting resin (a) is an epoxy resin. The coating amount of the two-layer coating is weight% with respect to the weight of the powder after coating, the thermosetting resin (a) is 0.5 to 10.0%, the volatile resin (b) is 0.1 to 5.0%, and the resin (a) It is preferable that the coating amount of is greater than the coating amount of the resin (b). If both resins are solid at room temperature, a two-layer structure can be reliably formed.
[0030]
According to the present invention, the two-layer-coated raw material powder is compression-molded in a magnetic field and then heated to cure the two types of thermosetting resins (a) and (b). A method for manufacturing a bonded permanent magnet is also provided.
In order to improve the fluidity of the magnetic powder during molding, compression molding should be performed at a temperature not lower than the softening temperature of both resins and lower than the curing start temperature of the resin (a) and lower than the volatilization temperature of the resin (b). preferable.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
[Magnetic powder]
The magnetic powder used in the present invention is a rare earth / iron-based alloy for permanent magnets, that is, where R is one or more of rare earth elements including Y, and Fe (even if part of Fe is replaced by Co). And a rare earth / iron alloy having a basic composition of B. The alloy composition is not particularly limited, but usually R is 25 to 33% by weight, Fe is 64 to 74%, and B is 0.8 to 1.3%. Up to half of Fe may be substituted with Co. R may be one or more, and it is preferable to use Nd and / or Pr alone or as a mixture with other rare earth elements. In addition to the above, one or two of Al, Cr, Mn, Mg, Si, Cu, C, Nb, Ge, Ga, W, V, Zr, Ti, Mo, Bi, Ta, Hf, P, S, etc. A small amount of the above elements may be added.
[0032]
The magnetic powder used in the present invention may be either magnetic anisotropy or magnetic isotropic powder. Magnetic anisotropy can be imparted, for example, by subjecting magnetic powder to a hydrogenation treatment at 700 to 900 ° C., and then performing a dehydrogenation treatment under reduced pressure. As another method, magnetic powder (for example, MQ-3 powder manufactured by General Motors Co., Ltd.) in which magnetic anisotropy is developed by hot backward extrusion can be used in the present invention.
[0033]
In general, magnetically anisotropic magnetic powder is more susceptible to distortion and damage than magnetically isotropic magnetic powder, so the effect of the present invention can be obtained more remarkably, but the rare earth-iron-based magnet alloy itself is easily oxidized, Since the strength is not very high, even in the case of magnetically isotropic magnetic powder, the effects of the present invention such as improvement in heat resistance, oxidation resistance, corrosion resistance, magnetic properties, and mechanical strength can be sufficiently obtained.
[0034]
The magnetic powder preferably has an average particle size of 20 μm or more. If the average particle size is less than 20 μm, the magnetic properties such as coercive force and squareness of the demagnetization curve of the magnet will be deteriorated, and the specific surface area will be too large, resulting in heat resistance, oxidation resistance and corrosion resistance. It is very disadvantageous. A preferable average particle diameter of the magnetic powder is 20 to 300 μm.
[0035]
[Preparation of raw material powder by resin coating of magnetic powder]
In the present invention, the magnetic powder of the rare earth / iron alloy is coated with a two-layer structure using two different types of thermosetting resins. One thermosetting resin contains a volatile component. Hereinafter, the thermosetting resin containing the volatile component is simply referred to as a volatile resin, and the other thermosetting resin is simply referred to as a thermosetting resin. Both the volatile resin and the thermosetting resin are preferably solid at room temperature, and one or more of them can be used.
[0036]
The type of the volatile resin constituting the inner layer of the two-layer coating is not particularly limited as long as it contains a component that volatilizes at a temperature lower than its curing start temperature. A chemical structure having a polar group in the molecule with good affinity with the surface of the magnetic powder and the polar group of the thermosetting resin is preferable. Examples of such volatile resins are triazine resins and bismaleimide triazine resins. Of these, bismaleimide triazine resin is preferred.
[0037]
The triazine resin is obtained by cyclopolymerizing a cyanate ester of bisphenol A represented by the following structural formula (1), and an oligomer having a repeating unit of triazine skeleton represented by the following structural formula (2) (triazine oligomer and Called) as a main component. Since the obtained oligomer has a triazine skeleton, the monomer represented by the structural formula (1) (cyanate ester of bisphenol A) is also called a triazine monomer.
[0038]
[Chemical 1]
Figure 0003941134
[0039]
The product of the cyclopolymerization of the triazine monomer contains unreacted triazine monomer in addition to the above triazine oligomer. Accordingly, the triazine resin is a mixture of the above triazine monomer and triazine oligomer. Both the monomer and the oligomer are volatile. That is, the triazine resin is itself a volatile resin.
[0040]
The bismaleimide triazine resin is a kind of thermosetting polyimide, and is a resin obtained by blending the above triazine resin as a copolymerization component with bismaleimide which is a reaction product of maleic anhydride and aromatic diamine. Therefore, it contains a volatile component (triazine resin). Usually, a larger amount of triazine resin is blended than bismaleimide.
[0041]
The aromatic diamine used for the formation of bismaleimide is generally methylenedianiline obtained from aniline and formalin (the structural formula of bismaleimide in this case is shown in the following formula (3)). Other diamines such as m-aminobenzoic acid hydrazide obtained by reaction of benzoic acid and hydrazine are also used. A bismaleimide triazine resin whose aromatic diamine is methylenedianiline is commercially available from Mitsubishi Gas Chemical Company under the trade name BT resin.
[0042]
[Chemical 2]
Figure 0003941134
[0043]
Both bismaleimide triazine resin and triazine resin first soften and melt when the temperature rises, but the triazine monomer and triazine oligomer volatilize at about 150 ° C, and when the temperature rises further, a curing reaction occurs at a temperature of about 170 ° C or higher. . Therefore, the volatile component is volatilized at a temperature lower than the curing start temperature of the resin. As will be described later, after compression molding the raw material powder, the obtained molded body is heated to a temperature higher than the curing start temperature to cure the coating resin. During this heating process, volatile components are volatilized from the volatile resin coating on the surface of the magnetic powder before the curing starts, and some of them adhere to the active new fracture surface and voids nearby, and the temperature rises and cures in the meantime. When the starting temperature is reached, the attached volatile components do not re-volatilize and become a cured resin in place. In this way, the resin also adheres to the newly fractured surface and the gap between the magnetic particles generated during the compression molding, and these are covered or filled with the resin.
[0044]
The type of the thermosetting resin constituting the outer layer of the two-layer coating is not particularly limited, and for example, an epoxy resin, a phenol resin, a thermosetting polyester resin, or the like can be used. A preferable thermosetting resin is an epoxy resin as in the prior art. The epoxy resin is preferably a bisphenol A type resin that is solid at room temperature, but other epoxy resins such as a novolac type can also be used. A thermosetting resin is used with a hardening | curing agent and a hardening accelerator as needed.
[0045]
As described above, both the volatile resin and the thermosetting resin are preferably solid at room temperature, and more preferably have a softening temperature of 40 to 120 ° C. Either the softening temperature of the volatile resin or the thermosetting resin may be high.
[0046]
When both the volatile resin and the thermosetting resin for coating the magnetic powder are solid at room temperature, the raw material powder coated with the resin can be handled as a powder having high fluidity. As a result, the filling property of the powder into the mold is improved, a homogeneous molded body is obtained, the local density fluctuation in the molded body is small, and the density variation between lots of product magnets is small, The density of the compression molded body increases, and the magnetic powder filling rate is improved. In addition, since the mechanical strength of the molded body is high, chipping at the ends and corners of the molded body during handling such as conveyance is difficult to occur, and dimensional accuracy and product yield are improved.
[0047]
However, if the softening temperature of both resins is less than 40 ° C., the resin-coated raw material powders may agglomerate or fuse with each other and the powder feedability to the mold may be reduced, as is the case with liquid resins at room temperature. Further, when the temperature is high, the resin is softened, and the storage stability of the raw material powder tends to decrease. If the softening temperature of both resins is higher than 120 ° C, it will take time to heat the raw material powder put into the mold during compression molding until both resins soften, making it difficult to adjust the mold temperature and design the magnetic circuit. In addition, the magnetic powder is likely to be thermally deteriorated and oxidized. It is particularly preferable that the softening temperatures of both resins are in the range of 50 to 100 ° C.
[0048]
In the present invention, the inner layer is a volatile resin and the outer layer is a thermosetting resin. Thereby, the adhesiveness by the thermosetting resin between adjacent magnetic powder becomes good, and the mechanical strength of a magnet improves. Further, the outer layer thermosetting resin can prevent the volatile resin melted from the molded body during the warm pressing or the volatile resin from scattering to the outside of the magnet when the resin is cured. Furthermore, because of this effect, the newly broken surface of the magnetic powder can be recoated even with a small amount of volatile resin, so that the target magnetic powder can be prevented from thermal degradation and oxidation degradation.
[0049]
In order to form a two-layer coating on the magnetic powder, for example, the following may be performed. First, a low-viscosity resin liquid is prepared by dissolving a volatile resin as an inner layer in a suitable organic solvent. After mixing this resin liquid with magnetic powder, the solvent is volatilized and the inner resin layer is placed on the surface of the magnetic powder. Form. On the inner resin layer, the thermosetting resin to be the outer layer is similarly solution-coated to form an outer resin layer. The resin solution of the outer layer resin is prepared using a solvent that hardly dissolves the inner layer resin. For both the inner layer and the outer layer, the resin liquid used for coating is not limited to a solution, and may be in the form of an emulsion, a suspension, or the like.
[0050]
A small amount of additives such as a silane coupling agent, a titanate coupling agent, and a lubricant can be blended in the resin liquid used for coating the magnetic powder, if desired. Further, the magnetic powder can be surface-treated with a silane or titanate coupling agent or a lubricant in advance.
[0051]
The coating method is not limited to the above method, and any other method can be adopted as long as it is a method capable of uniform resin coating equivalent to the above. For example, when one or both of a volatile resin and a thermosetting resin forms a melt having a low melt viscosity when heated, the coating may be performed by a melt-kneading method in which the melt is kneaded with magnetic powder. However, the outer layer can be formed by this method only when the softening temperature of the outer layer resin is lower than that of the inner layer resin, and the outer layer is coated by a melt-kneading method at a temperature lower than the softening temperature of the inner layer resin.
[0052]
The coating amount of each resin is% by weight based on the weight of the powder after coating, and the volatile resin in the inner layer is 0.1 to 5.0%, preferably 0.1 to 3%, more preferably 0.5 to 2.0%, and the thermosetting property of the outer layer. The resin is 0.5 to 10%, preferably 1.0 to 5.0%, more preferably 1.5 to 4.0%. It is preferable that the coating amount of the outer layer resin is larger than the coating amount of the inner layer resin. The total coverage of both resins (ie, inner and outer layers) is preferably in the range of 1.0 to 10.0%, more preferably 2.0 to 5.0%.
[0053]
If the coating amount of the volatile resin is less than 0.1%, the coating of the new fracture surface becomes insufficient and the heat resistance of the bonded magnet is not improved. When the coating amount of the volatile resin exceeds 5.0%, the mechanical strength of the molded bond magnet is lowered. On the other hand, when the coating amount of the thermosetting resin is less than 0.5%, the bonding between the magnetic particles becomes insufficient, the moldability is poor, and the mechanical strength of the green compact and the bonded magnet is remarkably lowered. If the blending amount of the thermosetting resin exceeds 10%, the filling rate of the magnetic powder becomes small and the predetermined high magnetic properties cannot be exhibited.
[0054]
[Compression molding in a magnetic field]
A raw material powder in which magnetic powder is coated with two layers of a volatile resin and a thermosetting resin is compression-molded. Since each magnetic powder is uniformly coated with two kinds of resins in advance, a homogeneous molded body can be obtained by compression molding. When the magnetic powder has magnetic anisotropy, compression molding is performed in a magnetic field. Thereby, during the compression molding, the direction of easy magnetization of each magnetic powder is aligned with the direction of the magnetic field, and a magnetic anisotropic molded body in which the magnetic powder is oriented is obtained. In general, in a magnetic anisotropic bond magnet, the magnetic properties improve as the degree of orientation of the magnetic powder increases.
[0055]
Although compression molding may be performed at room temperature, it is preferably performed at a temperature that is higher than the softening temperature of both the volatile resin and the thermosetting resin and lower than the curing temperature of both resins. As a result, due to the lubrication effect of both softened resins, friction between magnetic particles and between magnetic particles and resin is reduced, and as described in (1) to (3) below, the filling rate and orientation degree of magnetic particles are reduced. It increases, damage to magnetic powder is suppressed, and a bonded magnet excellent in magnetic properties, mechanical strength, heat resistance, oxidation resistance, and corrosion resistance is obtained.
[0056]
(1) By reducing friction, a high-density molded body with reduced voids and improved magnetic powder filling rate, and hence a bonded magnet can be obtained. Therefore, magnetic properties, mechanical strength, heat resistance, oxidation resistance, and corrosion resistance are improved.
[0057]
(2) When the magnetic powder has magnetic anisotropy, the reduction of friction facilitates the rotation of each magnetic powder during compression molding in a magnetic field, so that the easy magnetization direction of the magnetic powder is easily aligned with the magnetic field direction. The degree of orientation of the magnetic powder is improved and the magnetic properties are improved.
[0058]
(3) The magnetic powder of rare earth / iron alloys used in the present invention, particularly magnetic powder with magnetic anisotropy, generally undergoes a heat treatment, and therefore the strength of the powder is reduced. Therefore, it is easy to damage due to crushing / distortion due to the mixing torque of the magnetic powder and resin at the time of coating and the compression pressure at the time of compression molding, and this magnetic powder damage is a major cause of deterioration of the magnetic properties of the bond magnet. The inventors have investigated.
[0059]
If the friction is reduced by compression molding while the resin is softened, damage to the magnetic powder during compression molding is suppressed, thereby reducing magnetic properties, mechanical strength, heat resistance, oxidation resistance, corrosion resistance, etc. It is possible to avoid deterioration of various characteristics. This effect is particularly remarkable with magnetic anisotropic magnetic powder, but can be obtained to some extent with magnetic isotropic magnetic powder.
[0060]
In compression molding, the raw material powder is filled into a press die in accordance with a conventional method, preferably heated to a predetermined warm pressing temperature, and then pressed and compressed by upper and lower holding jigs (punch) under application of a magnetic field. Can be implemented.
[0061]
There is no particular limitation on the means for heating the raw material powder in the mold, but it is convenient to carry out the heat transfer by heating the mold. As the mold heating means, for example, resistance heating, heating with a heat medium such as oil, high-frequency heating or the like can be used. In order to shorten the heating time, the mold may be preheated. Further, it is possible to employ a method in which the raw material powder in the mold is energized and the magnetic powder is directly heated by resistance heating. Furthermore, it is possible to directly heat the raw material powder with frictional heat by applying ultrasonic vibration to one of the upper and lower punches of the press molding machine.
[0062]
The method for applying the magnetic field may be any of a magnetic field parallel to the compression direction (also referred to as a longitudinal magnetic field), a magnetic field perpendicular to the magnetic field (also referred to as a transverse magnetic field), and a polar orientation magnetic field in the radial direction. The magnetic field strength is not particularly limited, but is usually in the range of 4 to 20 kOe. Press pressure is 2-10 ton / cm2The range of is suitable.
[0063]
[Heat curing of resin]
After compression molding, the demolded molded body is transferred to a heating facility (eg, a heating furnace) and further heated to thermally cure both the volatile resin and the thermosetting resin, thereby obtaining a bonded magnet. This heating condition is selected according to the type of resin, curing agent, and curing accelerator so that the volatile resin and the thermosetting resin are completely cured. The heating atmosphere is preferably an oxygen-free atmosphere such as a vacuum or an inert gas in order to prevent oxidation of the magnetic powder. If necessary, the obtained bonded magnet may be subjected to surface treatment such as painting or plating by a conventional method.
[0064]
By this heating, both of the two types of resins covering the magnetic powder are once softened, melted, and flowed, so that the voids are filled with the resin to some extent. When the temperature is further increased, the volatile component is volatilized from the volatile resin before the curing occurs, and when the volatilized component is reattached to the magnetic powder, it also adheres to the newly fractured surface generated by the pulverization of the magnetic powder during compression molding. Therefore, the newly fractured surface is coated, heat deterioration and oxidation degradation due to the newly fractured surface are prevented, and the heat resistance, oxidation resistance, and corrosion resistance of the bonded magnet are improved. In this case also, the voids are filled, so that the porosity is further reduced.
[0065]
Therefore, the bonded magnet manufactured by the method of the present invention has a porosity of 8.0% by volume or less, preferably 5.0% by volume or less, and particularly preferably 3.0% by volume or less. High residual magnetization (Br) is obtained due to the decrease in the porosity, and the mechanical strength is improved. Furthermore, thermal deterioration and oxygen deterioration of the magnetic powder due to oxygen in the gap, oxygen entering the bond magnet through the gap as a passage, and water are suppressed.
[0066]
In the present invention, the porosity is a value calculated by the following equation.
[(Theoretical density-Actual density) / Theoretical density] × 100 (%)
Here, the theoretical density is a calculated value of the density of a magnet composed only of a magnetic powder having no voids and a coating resin.
[0067]
【Example】
The effect of the present invention is demonstrated by examples. In Examples and Comparative Examples, “%” and “parts” are “% by weight” and “parts by weight” unless otherwise specified.
[0068]
[Magnetic powder]
Nd-Fe-B alloy having a composition of Nd: 28%, Co: 10%, Ga: 1%, B: 1%, Zr: 0.1%, balance: Fe, in hydrogen gas at 700 to 900 ° C. Hold Nd hydride, Fe2Decomposes into B and Fe. Next, in this temperature range, the hydrogen pressure is lowered to dissociate hydrogen from the hydride of Nd, and fine Nd2Fe14Magnetic powder made of B crystal was prepared. The obtained magnetic powder was classified to prepare magnetic powder of magnetically anisotropic Nd—Fe—B alloy having a particle size distribution of 38 to 300 μm (average particle diameter 125 μm).
Separately, magnetically isotropic Nd-Fe-B alloy powder was prepared by rapid solidification of the molten alloy. The alloy composition and particle size distribution were the same as above.
[0069]
[Volatile resin]
Volatile resin (1) (For melt kneading)
The bismaleimide triazine resin (softening temperature 80 ° C.) which is commercially available as BT resin BT2100 from Mitsubishi Gas Chemical Co., Inc. and is solid at room temperature was used as it was. This volatile resin has a triazine content (total amount of triazine monomers and oligomers based on the total amount of resin containing bismaleimide) of 90%, softening temperature of about 80 ° C, volatilization temperature of volatile components of about 150 ° C, and curing start temperature of about 170 ° C.
[0070]
Volatile resin (2) (For solution kneading)
70% of bismaleimide triazine resin which is commercially available as BT resin BT2060B from Mitsubishi Gas Chemical Co., Ltd. at room temperature was dissolved in 30% of methyl ethyl ketone and used. The softening temperature of the volatile resin is about 80 ° C., the volatilization temperature of the volatile component, and the curing start temperature are the same as described above.
[0071]
[Thermosetting resin]
Thermosetting resin (1) (For melt kneading)
100 parts of a bisphenol A type epoxy resin (softening temperature 60 ° C.) solid at room temperature and 25 parts of a modified amine curing agent were melt kneaded at 60 ° C. and used. The epoxy resin has a softening temperature of 60 ° C. and a curing start temperature of 120 ° C.
[0072]
Thermosetting resin (2) (For solution kneading)
30% solid cresol novolak epoxy resin (softening temperature 60 ° C) and 7% phenolic resin curing agent dissolved in 63% methyl ethyl ketone at room temperature to obtain a low viscosity liquid epoxy resin solution with a viscosity of 5 cps at 25 ° C It was. The softening temperature and curing start temperature of this epoxy resin are almost the same as in the above (1).
[0073]
[Coating method]
Melt kneading method (Volatile resin (1) and / or thermosetting resin (1))
The magnetic powder is mixed with a certain proportion of resin and heated to 80 ° C (when the resin is a volatile resin (1)) or 60 ° C (when the resin is a thermosetting resin (1)), and in a molten state of the resin Kneaded. In the case of two-layer coating, first, it was melt-kneaded with volatile resin (1) at 80 ° C., then cooled to 60 ° C., and further melt-kneaded with thermosetting resin (1).
[0074]
Solution mixing method (Volatile resin (2) and / or thermosetting resin (2))
  The magnetic powder was mixed with a resin solution containing a predetermined proportion of resin, the solvent was evaporated at room temperature, and then pulverized in a mortar. In this example, since the resin solution was prepared using the same solvent for both the volatile resin and the thermosetting resin, the solution kneading method was adopted only for the formation of the inner layer in the case of two-layer coating. If a solution of the thermosetting resin of the outer layer is prepared using a solvent that hardly dissolves the volatile resin of the inner layer, the outer layer can also be formed by a solution kneading method.
[0075]
In the comparative example, one layer was coated with a volatile resin or a thermosetting resin, or one layer was coated by mixing a volatile resin and a thermosetting resin.
In any case, after the end of the coating operation, the powder was finally crushed in a mortar to loosen the powder fixed during the coating operation.
[0076]
[Production method of bonded magnet]
Compression molding / thermosetting
After the resin-coated magnetic powder (raw material powder) is filled in the mold as described above, the magnetic powder is magnetically isotropic under the application of a transverse magnetic field of 10 kOe when the magnetic powder has magnetic anisotropy. In this case, the pressure is 6 ton / cm without applying a magnetic field.2Was warm compression molded at 80 ° C.
[0077]
After demolding, the resulting molded body was heated in vacuum or Ar gas at 175 ° C. for 120 minutes to cure the coating resin, and a bonded magnet sample was obtained. There were two types of magnet samples: a strip shape with a length of 100 mm, a width of 10 mm, and a thickness of 5 mm, and a 10 mm cubic shape.
[0078]
[Test method]
The magnetic properties, bending strength, heat resistance, moisture resistance, appearance inspection, dimensions / shape / density / magnetic powder filling rate of the bond magnet were evaluated in the following manner. Moreover, the powder supply property to the metal mold | die at the time of compression molding and the fine powder generation amount of the molded object were determined as follows.
[0079]
(1)Magnetic properties
A 10 mm cubic bonded magnet sample was magnetized at 40 kOe, and then remanent magnetization (Br), coercive force (iHc), squareness of demagnetization curve (Hk) and maximum energy product [(BH ) max]. The squareness (Hk) of the demagnetization curve means the magnitude of the magnetic field (H) when the magnetization reaches 90% of the remanent magnetization (Br), and it turns out that the damage to the magnetic powder increases and the Hk decreases. Therefore, it becomes an index of the degree of damage of the magnetic powder.
The degree of orientation of the magnetic powder was calculated by the following formula.
[0080]
[Expression 1]
Figure 0003941134
[0081]
In the formula, Br (//) is Br in the direction parallel to the press direction at the time of compression molding, and Br (B) is Br perpendicular to the press direction at the time of compression molding.
[0082]
(2)Bending strength
Using a bonded magnet sample of 100 mm × 10 mm × 5 mm, the test was conducted in accordance with the bending test method for hard plastics of JIS K7203. The distance between fulcrums was 75 mm, the test speed was 2 mm / min, and the bending fracture strength was calculated from the results.
[0083]
(3)Heat-resistant
A 10 mm cubic bonded magnet sample was left in an air atmosphere at 120 ° C. for 1000 hours, the magnetic properties of the test piece after 1000 hours were measured, and the heat resistance was evaluated by the reduction rate of the squareness Hk of the demagnetization curve.
[0084]
(Four) Moisture resistance
A 10 mm cubic bonded magnet sample was preheated to 80 ° C and then placed in an atmosphere of 80 ° C and 90 ° C for 24 hours. And the rust generation | occurrence | production condition of the test piece surface 24 hours after was observed visually, the number of rust generation | occurence | production was counted, and the following reference | standard evaluated.
○: No rust generated, ×: Number of rust generated 3 to 5 / cm2.
[0085]
(Five) Fine powder generation
The resin part was dissolved and removed with methyl ethyl ketone from the compression molded 10 mm cubic compact, and the remaining magnetic powder was classified by particle size by sieving, and the generation amount of <38 μm fine powder was measured. The damage degree of the magnetic powder was evaluated based on the amount of fine powder generated. That is, it can be determined that the greater the amount of <38 μm fine powder that is not contained in the magnetic powder before molding, the greater the damage to the magnetic powder.
[0086]
(6)Visual inspection
The appearance was inspected for cracks and cracks in the 100 mm long, 10 mm wide, 5 mm thick strip and 10 mm cubic bond magnet samples. A case where no crack or chip was found in any magnet was evaluated as ◯, and a case where any crack was observed was evaluated as ×.
[0087]
(7)Dimension / shape measurement
The actual molding density (apparent density) was calculated by measuring the size, shape, and weight of a 100 mm long, 10 mm wide, 5 mm thick strip magnet and 10 mm cubic bonded magnet sample. Dimensional / shape accuracy was evaluated as ◯ when the dimensional accuracy was within ± 50 μm and the shape was not distorted, and × when the dimensional accuracy was over ± 50 μm or there was a magnet with distorted shape. .
The magnetic powder filling rate was calculated from the density and the magnetic powder weight fraction (the value obtained by subtracting the total amount of the resin coating from 100%) by the following equation.
[0088]
[Expression 2]
Figure 0003941134
[0089]
(8)Dust feedability to mold
The compression molding was evaluated by the variation in weight (weight deviation). The case where the weight deviation was within ± 0.5 g was evaluated as ◯, and the case where the weight deviation exceeded ± 0.5 g was evaluated as ×.
[0090]
These test results are summarized in Table 2.
In the examples and comparative examples, the following coating was applied to the magnetic anisotropy or magnetic isotropic Nd—Fe—B based magnetic powder. The coating amount is as shown in Table 1.
[0091]
Examples 1-4
The magnetic anisotropy magnetic powder was coated with two layers of the bismaleimide triazine resin of the inner layer and the epoxy resin of the outer layer in order by a melt kneading method.
[0092]
Examples 5-8
Two layers of the magnetic anisotropy powder were sequentially coated with the inner layer bismaleimide triazine resin by a solution kneading method and the outer layer epoxy resin by a melt kneading method.
[0093]
Comparative Example 1
One layer of the epoxy resin was coated on the magnetic anisotropic magnetic powder by a melt-kneading method.
Comparative Example 2
One layer of epoxy resin was coated on magnetically anisotropic magnetic powder by a solution kneading method.
[0094]
Comparative Example 3
One layer of bismaleimide triazine resin was coated on magnetically anisotropic magnetic powder by a melt-kneading method.
Comparative Examples 4-6
One layer of a mixture of a bismaleimide triazine resin and an epoxy resin was coated on the magnetically anisotropic magnetic powder by a melt kneading method.
[0095]
Comparative Example 7
One layer of bismaleimide triazine resin was coated on magnetically anisotropic magnetic powder by a solution kneading method.
Comparative Example 8 Ten
One layer of a mixture of a bismaleimide triazine resin and an epoxy resin was coated on the magnetically anisotropic magnetic powder by a solution kneading method.
[0096]
Example 9- 11
Both magnetic isotropic magnetic powders were coated with two layers of the bismaleimide triazine resin of the inner layer and the epoxy resin of the outer layer in order by a melt kneading method.
[0097]
Comparative example 11
One layer of epoxy resin was coated on the magnetically isotropic magnetic powder by a melt-kneading method.
Comparative example 12
One layer of epoxy resin was coated on the magnetically isotropic magnetic powder by a solution kneading method.
[0098]
[Table 1]
Figure 0003941134
[0099]
[Table 2]
Figure 0003941134
[0100]
As is apparent from Tables 1 and 2, according to the present invention, when the raw material powder obtained by coating a magnetic powder made of a rare earth / iron alloy with two layers of a volatile resin and a thermosetting resin is used, a warm press molding is performed in a magnetic field. A bonded magnet with improved heat resistance, oxidation resistance, and corrosion resistance can be obtained even though the total coating amount of the two layers of resin is as small as 5% at the maximum. In addition, since this bonded magnet has a high filling rate of magnetic powder, a low porosity, a high degree of orientation of magnetic powder, and damage to magnetic powder is suppressed, the magnetic properties and mechanical strength are greatly improved. In addition, the above effect was acquired not only when the magnetic powder is magnetic anisotropy but also when the magnetic powder is magnetically isotropic.
[0101]
【The invention's effect】
According to the present invention, the rare earth / iron-based alloy magnetic powder includes an inner layer made of a thermosetting resin containing a volatile component that volatilizes before the start of the curing reaction, and a normal thermosetting resin excellent in adhesiveness. The raw material powder coated with a two-layer structure called an outer layer is preferably compression-molded warm, and then heated to cure the above two types of resins to produce a bonded magnet, thereby obtaining the following effects. be able to.
[0102]
(1) The active new fracture surface of magnetic powder generated during compression molding is covered with a volatile resin when the resin is cured to prevent thermal and oxidative deterioration of the magnetic powder, so the heat resistance and oxidation resistance of the bonded magnet Corrosion resistance is improved.
[0103]
Furthermore, since the surface of the raw material magnetic powder is uniformly coated with a volatile resin and a thermosetting resin, the magnetic powder is prevented from being oxidized during molding and heat curing, and a decrease in magnetic properties due to the oxidation of the magnetic powder can be suppressed. Even in the obtained bond-type permanent magnet, the surface of the magnetic powder is uniformly coated with resin, so that the anti-oxidation action of the magnetic powder continues even when exposed to a high temperature and high humidity environment during use. And corrosion resistance are improved.
[0104]
(2) Since friction between magnetic particles and between magnetic particles and resin is reduced during compression molding, the density of the obtained bonded magnet is increased, and damage such as cracking and distortion to magnetic particles is difficult to occur during compression molding. Become. As a result, a bonded magnet having a small gap between magnetic particles and a high filling rate of magnetic particles can be obtained. Moreover, in magnetic anisotropic magnetic powder, the magnetic powder at the time of compression molding in a magnetic field becomes easy to rotate by reducing friction, and the degree of magnetic powder orientation is improved. As a result, the magnetic characteristics are improved.
[0105]
(3) Since the raw magnetic powder is completely bonded with resin with a small amount of resin coating, and there are few voids between the magnetic powder and it is filled with high density, the mechanical strength of the bond magnet is improved, cracking and chipping also occur It is difficult to improve dimensional accuracy and product yield.

Claims (5)

希土類・鉄系磁石合金の粉末を、熱硬化性樹脂(a)と、室温で固体のトリアジン樹脂およびビスマレイミドトリアジン樹脂から選ばれた、揮発性成分を含有する熱硬化性樹脂(b)とで、樹脂(a)が外層、樹脂(b)が内層となるように2層被覆した粉末であって、内層の熱硬化性樹脂(b)中の揮発性成分が該樹脂の硬化開始温度よりも低温で揮発するものであることを特徴とする、圧縮成形によりボンド型永久磁石を製造するための原料粉末。Rare earth / iron-based magnet alloy powder is composed of a thermosetting resin (a) and a thermosetting resin (b) containing a volatile component selected from a triazine resin and a bismaleimide triazine resin solid at room temperature. A powder coated with two layers so that the resin (a) is an outer layer and the resin (b) is an inner layer, and the volatile component in the thermosetting resin (b) of the inner layer is higher than the curing start temperature of the resin A raw material powder for producing a bond-type permanent magnet by compression molding, characterized by being volatilized at a low temperature. 2層被覆の被覆量が、被覆後の粉末重量に対する重量%で、熱硬化性樹脂(a)は0.5〜10.0%、揮発性樹脂(b)は0.1〜5.0%であり、かつ樹脂(a)の被覆量が樹脂(b)の被覆量より多いことをさらに特徴とする、請求項1に記載の原料粉末。  The coating amount of the two-layer coating is% by weight relative to the weight of the powder after coating, the thermosetting resin (a) is 0.5 to 10.0%, the volatile resin (b) is 0.1 to 5.0%, and the resin (a) The raw material powder according to claim 1, further characterized in that the coating amount of is more than the coating amount of the resin (b). 熱硬化性樹脂(a) 室温で固体のエポキシ樹脂であることをさらに特徴とする請求項1または2に記載の原料粉末。3. The raw material powder according to claim 1, wherein the thermosetting resin (a) is an epoxy resin that is solid at room temperature. 求項1ないし3のいずれか1項に記載の原料粉末を圧縮成形した後、加熱して2種類の熱硬化性樹脂 (a) および (b) を硬化させることを特徴とする、ボンド型永久磁石の製造方法It Motomeko no 1 after compression molding a raw material powder according to any one of 3, characterized in that curing the heated two thermosetting resin (a) and (b), the bond type A method for manufacturing a permanent magnet . 圧縮成形を、(a)および(b)の両樹脂の軟化温度以上、かつ樹脂 (a) の硬化開始温度未満で、樹脂 (b) の揮発温度未満、の温間で行うことをさらに特徴とする、請求項4に記載の方法。 It is further characterized in that the compression molding is performed at a temperature not lower than the softening temperature of both resins (a) and (b) and lower than the curing start temperature of resin (a) and lower than the volatilization temperature of resin (b). The method according to claim 4 .
JP21016596A 1996-08-08 1996-08-08 Raw material powder for manufacturing bond type permanent magnet and manufacturing method Expired - Lifetime JP3941134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21016596A JP3941134B2 (en) 1996-08-08 1996-08-08 Raw material powder for manufacturing bond type permanent magnet and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21016596A JP3941134B2 (en) 1996-08-08 1996-08-08 Raw material powder for manufacturing bond type permanent magnet and manufacturing method

Publications (2)

Publication Number Publication Date
JPH1055907A JPH1055907A (en) 1998-02-24
JP3941134B2 true JP3941134B2 (en) 2007-07-04

Family

ID=16584852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21016596A Expired - Lifetime JP3941134B2 (en) 1996-08-08 1996-08-08 Raw material powder for manufacturing bond type permanent magnet and manufacturing method

Country Status (1)

Country Link
JP (1) JP3941134B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994252B1 (en) * 2012-08-01 2014-08-08 Cooltech Applications MONOBLOC PIECE COMPRISING A MAGNETOCALORIC MATERIAL NOT COMPRISING AN ALLOY COMPRISING IRON AND SILICON AND A LANTHANIDE, AND A THERMIC GENERATOR COMPRISING SAID PIECE

Also Published As

Publication number Publication date
JPH1055907A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
EP0831501B1 (en) Process for producing rare earth bond magnet
JPH03501190A (en) Epoxy resin bonded rare earth-iron magnet and its manufacturing method
US6136265A (en) Powder metallurgy method and articles formed thereby
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
JP5043389B2 (en) Iron-based soft magnetic powder for dust core, dust core and method for producing dust core
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JPH1167514A (en) Manufacture of bonded permanent magnet and its raw material powder
Xi et al. Preparation and characterization of phenol formaldehyde bonded Nd–Fe–B magnets with high strength and heat resistance
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP5159751B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
JP3729904B2 (en) Rare earth bonded magnet manufacturing method
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS60194509A (en) Manufacture of resin-bonded type magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH0922828A (en) Manufacture of bond type permanent magnet
JPH08167513A (en) Bonded permanent magnet
JP3984681B2 (en) Bond magnet, magnet component, and manufacturing method thereof
JP2008244128A (en) Dust core, powder therefor, and its production process
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH0480901A (en) Bonded magnet and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

EXPY Cancellation because of completion of term