JP2012199462A - Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet - Google Patents

Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet Download PDF

Info

Publication number
JP2012199462A
JP2012199462A JP2011063662A JP2011063662A JP2012199462A JP 2012199462 A JP2012199462 A JP 2012199462A JP 2011063662 A JP2011063662 A JP 2011063662A JP 2011063662 A JP2011063662 A JP 2011063662A JP 2012199462 A JP2012199462 A JP 2012199462A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
powder
particles
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063662A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroshige Mitarai
浩成 御手洗
Chisato Mishima
千里 三嶋
Hiroshi Matsuoka
浩 松岡
Kenji Noguchi
健児 野口
Hiroyuki Doi
洋幸 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2011063662A priority Critical patent/JP2012199462A/en
Publication of JP2012199462A publication Critical patent/JP2012199462A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide rare earth magnet powder for obtaining such as a bond magnet having excellent resistance to environment.SOLUTION: Rare earth magnet powder of the invention has coated magnet particles comprising: basic magnet particles being an aggregation of RTMBtype crystals which are tetragon compounds of rare earth elements (R), boron (B), and transition elements (TM); and thermoset resin coats generated by thermal hardening of thermoset resin coating surfaces of the basic magnet particles. A bond magnet manufactured by using the rare earth magnet powder: has excellent resistance to environment, because the bond magnet is composed of the coated magnet particles coated with the thermoset resin coats having excellent oxidation resistance; and has a magnetic characteristic which is hardly deteriorated even when being exposed under severe environment. Thereby, the bond magnet having extremely excellent resistance to environment can be obtained by using the rare earth magnet powder of the invention.

Description

本発明は、耐酸化性等に優れた希土類ボンド磁石、希土類磁石粉末とその製造方法およびその希土類磁石粉末を用いた希土類ボンド磁石用コンパウンドに関する。   The present invention relates to a rare earth bonded magnet excellent in oxidation resistance, a rare earth magnet powder, a method for producing the same, and a compound for a rare earth bonded magnet using the rare earth magnet powder.

希土類磁石は、非常に高い磁気特性を発揮するため、省エネルギー化や軽量化が望まれる電化製品や自動車等の各種機器へ利用されつつある。希土類磁石には、希土類磁石粉末(適宜「磁石粉末」という。)の焼結体や緻密な成形体からなる緻密磁石と、圧縮成形や射出成形により磁石粉末をバインダー樹脂で結着させたボンド磁石とがある。最近では、成形自由度が高く軽薄部品等の製造に適したボンド磁石が多用される傾向にある。   Since rare earth magnets exhibit extremely high magnetic properties, they are being used in various appliances such as electric appliances and automobiles that are required to be energy-saving and lightweight. A rare earth magnet includes a dense magnet made of a sintered body of a rare earth magnet powder (referred to as “magnet powder” as appropriate) or a dense molded body, and a bonded magnet in which the magnet powder is bound with a binder resin by compression molding or injection molding. There is. Recently, bond magnets having a high degree of freedom in molding and suitable for manufacturing light and thin parts tend to be frequently used.

このボンド磁石を構成する磁石粉末は、鉄や希土類元素を主成分とするため、その製造過程や搬送中、さらにはボンド磁石の使用中に酸素や水分によって酸化され易い。中でも、水素化処理して得られた希土類磁石粉末は、微細なクラック(マイクロクラック)を多数内包しているために割れ易く、新たに酸化される新生面を出現させ易い。特に、ボンド磁石の原料となる磁石粉末を圧縮成形する際に、磁石粒子の割れが多く生じ、ボンド磁石を構成する磁石粒子はより酸化され易くなる。いずれにしろ、このような酸化は磁石粒子ひいてはボンド磁石の磁気特性を経時的に劣化させるため、従来から種々の酸化抑止策が提案されている。   Since the magnet powder constituting this bonded magnet contains iron and rare earth elements as main components, it is easily oxidized by oxygen and moisture during the manufacturing process, transportation, and use of the bonded magnet. Among them, the rare earth magnet powder obtained by the hydrogenation treatment is easy to break because it contains a large number of fine cracks (microcracks), and a new surface to be newly oxidized is likely to appear. In particular, when the magnet powder that is the raw material of the bond magnet is compression-molded, the magnet particles are often cracked, and the magnet particles constituting the bond magnet are more easily oxidized. In any case, since such oxidation deteriorates the magnetic properties of the magnet particles and thus the bonded magnets with time, various oxidation suppression measures have been proposed.

例えば、ボンド磁石の表面に樹脂やメッキなどのコーティングを施すことが挙げられる。しかし、このようなコーティングはコスト高であり、必ずしも十分な酸化抑止効果が得られていない。   For example, the surface of the bond magnet may be coated with a resin or plating. However, such a coating is expensive and does not necessarily have a sufficient oxidation inhibiting effect.

また、圧縮成形時に生じる磁石粒子の割れに起因する酸化を抑制する方法が下記の特許文献で提案されている。具体的には、水素化処理(d−HDDR)して得られた割れ易い粒径の大きい磁石粉末(粗粉末)に、粒径の小さい磁石粉末(微粉末)およびバインダー樹脂を加え、微粉末およびバインダー樹脂からなる強磁性緩衝体(若しくは強磁性流動層)を形成する。この強磁性緩衝体により、粗粉末を構成する磁石粒子同士の直接接触またはその磁石粒子への応力集中を回避し、その磁石粒子の割れを低減させて、結果的にその酸化を抑制している。   In addition, the following patent document proposes a method for suppressing oxidation caused by cracking of magnet particles that occurs during compression molding. Specifically, a magnet powder (fine powder) having a small particle size and a binder resin are added to a magnet powder (coarse powder) having a large particle size that is obtained by hydrogenation (d-HDDR), and a fine powder. And a ferromagnetic buffer (or ferromagnetic fluidized bed) made of a binder resin. This ferromagnetic buffer prevents direct contact between the magnet particles constituting the coarse powder or stress concentration on the magnet particles, reduces cracking of the magnet particles, and consequently suppresses the oxidation. .

特許3731597号公報Japanese Patent No. 3731597

確かに、特許文献1の方法によれば、耐候性に優れたボンド磁石が得られるが、これは酸化される磁石粒子の表面積を減少させて、ボンド磁石の耐酸化性を間接的に向上させるものである。すなわち、磁石粒子自体の耐酸化性を直接的または積極的に向上させるものではない。   Certainly, according to the method of Patent Document 1, a bonded magnet having excellent weather resistance can be obtained, but this reduces the surface area of the magnet particles to be oxidized and indirectly improves the oxidation resistance of the bonded magnet. Is. That is, it does not directly or positively improve the oxidation resistance of the magnet particles themselves.

また磁石粉末に防錆材等を混在させて、磁石粒子の表面の酸化を防止することも考えられる。しかしこのような防錆被膜では、ボンド磁石の成形時に?がれて、結局は、ボンド磁石中の磁石粒子自体の耐酸化性を向上させることにはならない。同様のことは、従来の希土類ボンド磁石用コンパウンド(以下適宜「コンパウンド」という。)を用いて成形したボンド磁石中の磁石粒子についてもいえる。従来のコンパウンド中の磁石粒子は、熱硬化前のバインダー樹脂で被覆された状態にあり、その状態だけを観ると、磁石粒子の耐酸化性の向上が期待される。しかし、そのコンパウンドを用いて実際に成形したボンド磁石中の磁石粒子を観ると、その表面は樹脂被膜で完全には被覆されておらず、磁石粒子の表面に酸化が生じていた。   It is also conceivable to prevent oxidation of the surface of the magnet particles by mixing a rust preventive material or the like with the magnet powder. However, such a rust-preventing film is cracked during molding of the bonded magnet, and ultimately does not improve the oxidation resistance of the magnet particles themselves in the bonded magnet. The same applies to magnet particles in a bonded magnet formed using a conventional rare earth bonded magnet compound (hereinafter referred to as “compound” as appropriate). The magnet particles in the conventional compound are in a state of being coated with a binder resin before thermosetting, and when only the state is observed, the oxidation resistance of the magnet particles is expected to be improved. However, when the magnet particles in the bonded magnet actually formed using the compound were observed, the surface was not completely covered with the resin coating, and the surface of the magnet particles was oxidized.

本発明は、このような事情の下で為されたものである。すなわち、磁石粒子自体の耐酸化性を高め、耐候性に優れるボンド磁石が得られる希土類磁石粉末を提供することを目的とする。また、その磁石粉末の製造方法と、その希土類磁石粉末を用いたコンパウンドおよびボンド磁石も併せて提供することを目的とする。   The present invention has been made under such circumstances. That is, an object of the present invention is to provide a rare earth magnet powder that can improve the oxidation resistance of the magnet particles themselves and provide a bonded magnet having excellent weather resistance. Moreover, it aims at providing the manufacturing method of the magnet powder, the compound and bond magnet using the rare earth magnet powder together.

本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、薄い熱硬化した樹脂被膜を磁石粒子の表面に形成することを思いつき、実際に、そのような被膜を磁石粒子の表面に形成することに成功した。そして、この樹脂被膜で被覆された磁石粒子からなるボンド磁石が優れた耐候性(耐環境性)を発揮することを確認した。この成果をさらに発展させることにより、以降に述べる本発明を完成するに至った。   As a result of intensive research and trial and error to solve this problem, the present inventor has come up with the idea that a thin thermoset resin film is formed on the surface of the magnet particle, and in fact, such a film is formed on the surface of the magnet particle. Succeeded in forming. And it confirmed that the bond magnet which consists of a magnet particle coat | covered with this resin film exhibits the outstanding weather resistance (environment resistance). By further developing this result, the present invention described below has been completed.

《希土類磁石粉末》
(1)本発明の希土類磁石粉末は、希土類元素(R)とホウ素(B)と遷移元素(TM)との正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子と、該基本磁石粒子の表面を被覆する熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜と、により構成される被覆磁石粒子からなることを特徴とする。
<Rare earth magnet powder>
(1) The rare earth magnet powder of the present invention is a basic magnet particle which is an aggregate of R 2 TM 14 B 1 type crystals which are tetragonal compounds of rare earth elements (R), boron (B) and transition elements (TM). And a thermosetting resin film formed by thermosetting a thermosetting resin that coats the surfaces of the basic magnet particles.

(2)本発明の希土類磁石粉末(適宜「磁石粉末」という。)は、熱硬化性樹脂が熱硬化してできた熱硬化樹脂被膜により外表面が被覆された被覆磁石粒子からなる。この磁石粉末は、高い耐酸化性を発現し、保管性や取扱性に優れることは勿論、ボンド磁石の耐酸化性を大きく向上させ得る。 (2) The rare earth magnet powder of the present invention (referred to as “magnet powder” as appropriate) is composed of coated magnet particles whose outer surface is coated with a thermosetting resin film formed by thermosetting a thermosetting resin. This magnet powder expresses high oxidation resistance, and is excellent in storage and handling properties, as well as greatly improving the oxidation resistance of the bonded magnet.

(3)ところで、本発明の磁石粉末が非常に高い耐酸化性を発現する理由は、必ずしも明らかではないが、現状では次のように考えられる。基本磁石粒子の表面に形成された熱硬化樹脂被膜は、熱硬化性樹脂の各分子が三次元的に架橋して熱硬化して形成されたものである。この熱硬化樹脂被膜は、緻密で酸素遮蔽性に優れることに加え、吸水率が非常に低いため、薄膜であっても、基本磁石粒子と酸素(または水分)との接触を効果的に遮断する。この結果、基本磁石粒子の耐酸化性が直接的に向上すると考えられる。 (3) By the way, the reason why the magnet powder of the present invention exhibits very high oxidation resistance is not necessarily clear, but at present, it is considered as follows. The thermosetting resin film formed on the surface of the basic magnet particles is formed by thermosetting the respective molecules of the thermosetting resin by three-dimensionally crosslinking. In addition to being dense and excellent in oxygen shielding properties, this thermosetting resin film has a very low water absorption rate, so that even a thin film effectively blocks contact between basic magnet particles and oxygen (or moisture). . As a result, it is considered that the oxidation resistance of the basic magnet particles is directly improved.

また熱硬化樹脂被膜は、基本磁石粒子の外表面を補強し、基本磁石粒子の割れも抑制すると考えられる。具体的にいうと、水素化処理を経た基本磁石粒子は、その表面や内部に多数のマイクロクラックを有するが、熱硬化樹脂被膜の形成時に、少なくともその一部が熱硬化した熱硬化性樹脂(以下「熱硬化樹脂」という。)によって充填、補強される。また、基本磁石粒子表面(全体)が熱硬化樹脂で被覆されることで、磁石粉末に掛かる応力が熱硬化樹脂被膜の弾性変形により吸収される。このため、基本磁石粒子の耐割れ性が増し(割れ感受性が低減し)、新生面の生成が低減する。この結果、基本磁石粒子の酸化表面積が減少して、基本磁石粒子の耐酸化性が間接的にも向上すると考えられる。   Moreover, it is thought that a thermosetting resin film reinforces the outer surface of basic magnet particles and suppresses cracking of the basic magnet particles. Specifically, the basic magnet particles that have undergone the hydrogenation treatment have a large number of microcracks on the surface and inside thereof, but at the time of forming the thermosetting resin film, at least a part of the thermosetting resin (that is thermoset) Hereinafter referred to as “thermosetting resin”). Moreover, the surface (the whole) of the basic magnet particles is coated with the thermosetting resin, so that the stress applied to the magnet powder is absorbed by the elastic deformation of the thermosetting resin film. For this reason, the crack resistance of the basic magnet particles is increased (the crack sensitivity is reduced), and the generation of a new surface is reduced. As a result, it is considered that the oxidation surface area of the basic magnet particles is reduced and the oxidation resistance of the basic magnet particles is indirectly improved.

このように熱硬化樹脂被膜が酸化要因となる酸素や水分等を基本磁石粒子に対して遮断すると共に基本磁石粒子の割れを抑制し、これらが相乗的に作用することにより、基本磁石粒子の耐酸化性が著しく向上したと考えられる。そして、この基本磁石粒子(被覆磁石粒子)を用いることにより、優れた耐環境性と長期的に安定した磁気特性を発現するボンド磁石が得られたと考えられる。   In this way, the thermosetting resin coating blocks oxygen and moisture, which are oxidation factors, from the basic magnet particles and suppresses cracking of the basic magnet particles. It is considered that the chemical conversion has been remarkably improved. And it is thought that the bond magnet which expressed the outstanding environmental resistance and the long-term stable magnetic characteristic was obtained by using this basic magnet particle (covered magnet particle).

なお、熱硬化樹脂被膜は薄いため、磁石粉末やボンド磁石の磁気特性への影響は少ない。また、被覆磁石粒子は流動性にも優れ、バインダー樹脂とのなじみ性、密着性、接着性等に優れる。このため、本発明の磁石粉末を用いれば、より緻密なボンド磁石を効率的に生産し得る。   In addition, since the thermosetting resin film is thin, there is little influence on the magnetic characteristics of the magnet powder and the bonded magnet. In addition, the coated magnet particles are excellent in fluidity and excellent in compatibility with the binder resin, adhesion, adhesiveness, and the like. For this reason, if the magnet powder of the present invention is used, a denser bonded magnet can be efficiently produced.

(4)本発明の熱硬化樹脂被膜は、膜厚、樹脂の組成、構造、形態等を問わない。ただ、ボンド磁石の製造過程で剥離等せず、酸素等を安定的に遮蔽するために、その膜厚は、10nm以上、20nm以上、50nm以上さらには100nm以上であると好ましい。このように磁石粉末の耐酸化性の観点から膜厚の増加は好ましいが、一方、膜厚の増加は、磁石粉末やボンド磁石の磁気特性の低下を招く。特に本発明者が鋭意研究したところ、その膜厚がある範囲を超えて増加すると、ボンド磁石の残留磁束密度(Br)の低下が急になる。バインダー樹脂量を一定にして磁石粉末を圧縮成形する場合を考えると、熱硬化樹脂被膜となる樹脂(被膜樹脂)が増加すれば樹脂総量も増加する。バインダー樹脂量が一定なら圧縮成形時における磁石粉末の流動性は確保され、磁石粒子の割れは抑制されると共にボンド磁石の高充填率も維持、達成される。しかし、樹脂総量が増加することにより、ボンド磁石中の非磁性部である樹脂部が増加することになって、ボンド磁石全体としての磁気特性は低下する。このような観点から、熱硬化樹脂被膜の膜厚は700nm以下、600nm以下、500nm以下さらには400nm以下であると好ましい。 (4) The thermosetting resin film of the present invention may be any film thickness, resin composition, structure, and form. However, the film thickness is preferably 10 nm or more, 20 nm or more, 50 nm or more, or 100 nm or more in order to stably shield oxygen and the like without being peeled off in the manufacturing process of the bonded magnet. As described above, the increase in the film thickness is preferable from the viewpoint of the oxidation resistance of the magnet powder. On the other hand, the increase in the film thickness causes a decrease in the magnetic properties of the magnet powder and the bonded magnet. In particular, when the present inventor has intensively studied, when the film thickness increases beyond a certain range, the residual magnetic flux density (Br) of the bonded magnet rapidly decreases. Considering the case where the magnet powder is compression-molded with a constant binder resin amount, the total resin amount increases as the resin (coating resin) that becomes the thermosetting resin coating increases. If the amount of the binder resin is constant, the fluidity of the magnet powder at the time of compression molding is ensured, cracking of the magnet particles is suppressed, and a high filling rate of the bonded magnet is maintained and achieved. However, when the total resin amount increases, the resin part, which is a nonmagnetic part in the bonded magnet, increases, and the magnetic properties of the bonded magnet as a whole deteriorate. From such a viewpoint, the film thickness of the thermosetting resin film is preferably 700 nm or less, 600 nm or less, 500 nm or less, and further 400 nm or less.

なお、膜厚が1200nm以上の熱硬化樹脂被膜を各磁石粒子毎の表面に均一に形成することは困難である。逆に、そのような熱硬化樹脂被膜を形成しようとすると、複数の磁石粒子が凝集した磁石粒子塊に熱硬化樹脂被膜が形成され易くなる。   It is difficult to uniformly form a thermosetting resin film having a film thickness of 1200 nm or more on the surface of each magnet particle. Conversely, when such a thermosetting resin film is to be formed, the thermosetting resin film is likely to be formed on a magnet particle mass in which a plurality of magnet particles are aggregated.

熱硬化樹脂被膜の「膜厚」の特定方法は種々考えられるが、本明細書では、JIS K 5600−1−7 No.5A(塗装膜の膜厚測定方法、断面顕微鏡観察)を応用して熱硬化樹脂被膜の「膜厚」を特定することとした。具体的には図2に示すように、先ず、熱硬化樹脂被膜を形成した磁石粉末の表面を走査型電子顕微鏡(SEM)で観察する。次に、その視野内の10箇所(ポイント)で膜厚を測定し、これらの測定値の算術平均を「膜厚」とする。   Various methods for specifying the “film thickness” of the thermosetting resin coating are conceivable. In this specification, JIS K 5600-1-7 No. The “film thickness” of the thermosetting resin coating was specified by applying 5A (coating film thickness measurement method, cross-sectional microscope observation). Specifically, as shown in FIG. 2, first, the surface of the magnet powder on which the thermosetting resin film is formed is observed with a scanning electron microscope (SEM). Next, the film thickness is measured at 10 points (points) in the field of view, and the arithmetic average of these measured values is defined as “film thickness”.

なお、各ポイントにおける膜厚は、磁石粒子自体の最表面(結晶粒界ではない面)に立てた法線上における熱硬化樹脂被膜の厚さを測定して求めた。これらのポイントは、ほぼ一義的な接線を引ける滑らかな磁石粒子の表面上から選定され、さらに隣接するポイント間の直線距離が原則50〜500nmとなるように選定される。   The film thickness at each point was determined by measuring the thickness of the thermosetting resin film on the normal line set on the outermost surface (the surface that is not the crystal grain boundary) of the magnet particle itself. These points are selected on the surface of a smooth magnet particle that can draw a substantially unique tangent, and are further selected so that the linear distance between adjacent points is in principle 50 to 500 nm.

ちなみに、図2に示したSEM像は3万倍の視野であり、この場合の膜厚は86.0nmであった。また、同じ被覆処理をした粉末の他の視野について測定したところ、その膜厚は87.2nmであった。これらのことから、上記の方法によれば、膜厚をある程度、正確に安定して特定できることがわかる。なお、本測定は、後述する実施例中の試料No.1−3について行った。   Incidentally, the SEM image shown in FIG. 2 has a field of view of 30,000 times, and the film thickness in this case was 86.0 nm. Moreover, when it measured about the other visual field of the powder which carried out the same coating process, the film thickness was 87.2 nm. From these facts, it can be seen that according to the above method, the film thickness can be specified accurately and stably to some extent. Note that this measurement was performed using the sample No. in Examples described later. It went about 1-3.

このようにして一つの磁石粒子あたり(磁石粒子単位)の「膜厚」が特定される。このような磁石粒子が集合した磁石粉末単位の「膜厚」は、さらに次のようにして特定できる。すなわち、対象となる磁石粉末中から無作為に抽出した5粒子について上述した「膜厚」を求め、それらの算術平均を磁石粉末の「膜厚」とする。   In this way, the “film thickness” per magnet particle (magnet particle unit) is specified. The “film thickness” of the magnet powder unit in which such magnet particles are gathered can be further specified as follows. That is, the above-mentioned “film thickness” is obtained for five particles randomly extracted from the target magnet powder, and the arithmetic average thereof is set as the “film thickness” of the magnet powder.

磁石粉末中の一部の磁石粒子について検討したが、数十nmレベルの非常に薄い膜が形成されていることは、同一試料の別視野により観察されるさまざまな粒径の粒子についても同様に観察されている。但し、このような熱硬化樹脂被膜の観察は、膜厚が非常に薄いため、相当大きな倍率で観察する必要がある。従って、一視野で観察できる磁石粒子数は自ずと限られ、多くの磁石粒子を一度に観察することは非常に困難であるというのが実情である。従って、熱硬化樹脂被膜の膜厚を厳密な意味で一義的に特定することは困難であり、現実的でもないため、本明細書では上述したような方法により膜厚を特定した。   Although some magnet particles in the magnet powder were examined, the fact that a very thin film of several tens of nanometers was formed is also the same for particles of various particle sizes observed from different fields of view of the same sample. Has been observed. However, the observation of such a thermosetting resin film needs to be observed at a considerably large magnification because the film thickness is very thin. Therefore, the number of magnet particles that can be observed in one visual field is naturally limited, and it is very difficult to observe many magnet particles at once. Therefore, it is difficult to unambiguously specify the film thickness of the thermosetting resin film in a strict sense, and it is not realistic. Therefore, in this specification, the film thickness is specified by the method described above.

(5)本発明に係る熱硬化性樹脂被膜の有用性は、圧縮成形や射出成形に用いるコンパウンドを製造するとき、そのコンパウンドを用いて射出成形したボンド磁石や圧縮成形したボンド磁石を製造するとき、さらには磁石粉末を輸送、搬送する際など、種々の場面で現れる。ここでは、磁石粒子および熱硬化樹脂被膜が非常に過酷な状況におかれ、磁石粒子の酸化が生じ易い一例として、ボンド磁石を加熱圧縮成形して製造する場合を取り上げて説明する。ちなみに、圧縮成形したボンド磁石は、高い磁気特性および耐候性が求められる一方、バインダー樹脂量が少ないため、射出成形したボンド磁石よりも大気中の酸素や水分によって酸化劣化し易い。従って、圧縮成形したボンド磁石は、本発明に係る熱硬化性樹脂の真価を検討するのに最適である。逆にいえば、圧縮成形したボンド磁石に関して熱硬化樹脂被膜の有用性が十分ならば、射出成形したボンド磁石に関しても、それらの原料となるコンパウンドに関しても、さらには長距離輸送や長時間保管される際の品質確保または可燃対策が要求される磁石粉末自体に関しても、熱硬化樹脂被膜は十分に有用性があるといえる。 (5) The usefulness of the thermosetting resin film according to the present invention is that when a compound used for compression molding or injection molding is manufactured, a bond magnet injection-molded or a compression-bonded bond magnet is manufactured using the compound. Furthermore, it appears in various situations, such as when transporting and transporting magnet powder. Here, as an example in which the magnet particles and the thermosetting resin coating are extremely harsh and the magnet particles are likely to be oxidized, a case where a bonded magnet is manufactured by heat compression molding will be described. Incidentally, a compression-molded bond magnet is required to have high magnetic properties and weather resistance, but has a small amount of binder resin, and therefore is more easily oxidized and deteriorated by oxygen and moisture in the atmosphere than an injection-molded bond magnet. Therefore, the compression-bonded bonded magnet is optimal for examining the true value of the thermosetting resin according to the present invention. Conversely, if the usefulness of thermosetting resin coatings is sufficient for compression-molded bonded magnets, both injection-molded bonded magnets and their raw materials can be transported over long distances and stored for long periods of time. It can be said that the thermosetting resin coating is sufficiently useful for the magnet powder itself that requires quality assurance or flammability countermeasures.

先ず、圧縮成形したボンド磁石(以下、「圧縮ボンド磁石」という。)中の磁石粒子が酸化され易い理由は、明確には分からないが、結果から推測するに次のように考えられる。圧縮ボンド磁石は、キャビティへ供給されたコンパウンドを加熱しつつ圧縮成形して得られる。この際、そのキャビティ中に導入された空気は、加圧成形時に逃げ場を求めて、磁石粒子間の隙間を通じて、一気に金型外へ抜け出ようとする。このため、磁石粒子間に介在するバインダー樹脂中に、その空気の通り道となった貫通経路が形成され得る。   First, the reason why magnet particles in a compression-bonded bonded magnet (hereinafter referred to as “compressed bonded magnet”) are likely to be oxidized is not clearly understood, but is considered as follows from the results. The compression bonded magnet is obtained by compression molding while heating the compound supplied to the cavity. At this time, the air introduced into the cavity seeks a escape field at the time of pressure molding and tries to escape from the mold at once through the gaps between the magnet particles. For this reason, the penetration path | route used as the passage of the air can be formed in the binder resin interposed between magnet particles.

次に、従来のコンパウンド中の磁石粒子は、バインダー樹脂により全面が被覆された状態にあった。ところが、そのコンパウンドを圧縮成形して得られたボンド磁石中の磁石粒子は、バインダー樹脂により被覆されていない部分、つまり露出部分が存在していたと思われる。この理由は、コンパウンド中の磁石粒子の表面にあったバインダー樹脂は未硬化なため、加熱圧縮成形時に?がれたと考えられる。これは加熱圧縮成形時、バインダー樹脂は低粘度流体化して磁石粒子の姿勢変化を容易にするが、その一方で上記の貫通経路が形成される際に勢いよく抜け出る高圧空気に連れられて、磁石粒子の表面から引き剥がされ易くなっているためと考えられる。   Next, the magnet particles in the conventional compound were in a state where the entire surface was coated with the binder resin. However, it seems that the magnet particles in the bonded magnet obtained by compression molding the compound had a portion not covered with the binder resin, that is, an exposed portion. The reason for this is considered that the binder resin on the surface of the magnet particles in the compound was uncured and was removed during the heat compression molding. This is because during heat compression molding, the binder resin reduces the viscosity of the fluid to facilitate the change in the orientation of the magnet particles, but on the other hand, the magnet is moved by the high-pressure air that escapes vigorously when the above-mentioned through path is formed. This is thought to be because the particles are easily peeled off from the surface of the particles.

そして従来は、このような状態のまま加熱圧縮成形が終了して、その後にバインダー樹脂を熱硬化させる加熱処理(キュアー処理)が完了していた。こうして得られたボンド磁石は、表面に連通した微細な貫通経路を多数有すると共に、その貫通経路中または貫通経路近傍に表面が部分的に露出した磁石粒子が存在している状態にあったと思われる。その結果、従来の希土類磁石粉末やコンパウンドからなるボンド磁石では、その貫通経路から酸素や水分が内部に侵入し、ボンド磁石を構成する磁石粒子を酸化させ、ひいてはボンド磁石の耐候性を低下させていたと考えられる。   Conventionally, the heat compression molding is completed in such a state, and then the heat treatment (curing treatment) for thermosetting the binder resin has been completed. The bond magnet obtained in this way seems to have many fine penetrating paths communicating with the surface, and there were magnet particles with the surface partially exposed in or near the penetrating path. . As a result, in conventional bonded magnets composed of rare earth magnet powders and compounds, oxygen and moisture penetrate into the inside through the through path, oxidize the magnet particles constituting the bonded magnet, and thus reduce the weather resistance of the bonded magnet. It is thought.

これに対して本発明の希土類磁石粉末を構成する磁石粒子は、その表面が圧縮成形前から既に熱硬化している熱硬化樹脂被膜によって被覆されている。この熱硬化樹脂被膜は加熱時に可逆的に液状化することもなく強固である。このため熱硬化樹脂被膜は、加熱圧縮成形時におけるキャビティ内の空気やバインダー樹脂の挙動には影響されず、圧縮成形時に殆ど剥離することもない。そして熱硬化樹脂被膜は、圧縮成形後も磁石粒子のほぼ全表面を被覆したまま残存する。   On the other hand, the magnet particle which comprises the rare earth magnet powder of this invention is coat | covered with the thermosetting resin film which the surface has already thermoset before compression molding. This thermosetting resin film is strong without being reversibly liquefied upon heating. For this reason, the thermosetting resin coating is not affected by the behavior of the air in the cavity and the binder resin during the heat compression molding, and hardly peels during the compression molding. The thermosetting resin film remains after covering almost the entire surface of the magnet particles even after compression molding.

この結果、圧縮ボンド磁石中へ貫通経路等を通じて酸素や水分が侵入することがあっても、各磁石粒子は緻密で酸素や水分を遮断する熱硬化樹脂被膜により被覆され保護されているため、磁石粒子は殆ど酸化劣化せず、ボンド磁石は高い耐候性を発現し得る。   As a result, even if oxygen or moisture may enter the compression bonded magnet through a through-path or the like, each magnet particle is covered with a thermosetting resin film that is dense and blocks oxygen and moisture, so that the magnet is protected. The particles hardly undergo oxidative deterioration, and the bonded magnet can exhibit high weather resistance.

なお、希土類磁石粉末を構成する全磁石粒子の全表面が熱硬化樹脂被膜で被覆されているのが好ましいが、本発明では熱硬化樹脂被膜による被覆割合は問わない。ボンド磁石に要求される磁気特性や耐候性等を踏まえて決定されればよい。そして、その所望する熱硬化樹脂被膜の被覆割合や膜厚に応じて、使用する熱硬化性樹脂量を決定すればよい。   In addition, although it is preferable that the whole surface of all the magnet particles which comprise rare earth magnet powder is coat | covered with the thermosetting resin film, the coating ratio by a thermosetting resin film is not ask | required in this invention. It may be determined based on the magnetic properties and weather resistance required for the bond magnet. And what is necessary is just to determine the amount of thermosetting resins to be used according to the coating ratio and film thickness of the desired thermosetting resin film.

《希土類磁石粉末の製造方法》
本発明は、上述した希土類磁石粉末の製造方法としても把握できる。すなわち本発明は、RとBとTMとの正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子の表面にカップリング剤を付着させるカップリング処理工程と、該カップリング処理工程後の基本磁石粒子の表面に熱硬化性樹脂を付着させる樹脂付着工程と、該熱硬化性樹脂を加熱して該基本磁石粒子の表面に該熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜を形成する被膜形成工程とを備え、上述した被覆磁石粒子からなる希土類磁石粉末が得られることを特徴とする希土類磁石粉末の製造方法でもよい。
《Rare earth magnet powder manufacturing method》
The present invention can also be grasped as a method for producing the rare earth magnet powder described above. That is, the present invention relates to a coupling treatment step in which a coupling agent is attached to the surface of basic magnet particles that are aggregates of R 2 TM 14 B 1 type crystals that are tetragonal compounds of R, B, and TM; A resin adhesion step in which a thermosetting resin is adhered to the surface of the basic magnet particles after the ring treatment step, and the thermosetting resin is thermally cured on the surfaces of the basic magnet particles by heating the thermosetting resin. A method for producing a rare earth magnet powder, characterized in that a rare earth magnet powder comprising the above-described coated magnet particles is obtained.

《コンパウンドおよびボンド磁石》
(1)本発明は、さらに上述の希土類磁石粉末を用いたコンパウンドとしても把握できる。すなわち本発明は、上述の希土類磁石粉末と、該希土類磁石粉末の被覆磁石粒子を結着させ得るバインダー樹脂と、からなることを特徴とする希土類ボンド磁石用コンパウンドでもよい。
<Compound and bonded magnet>
(1) The present invention can also be grasped as a compound using the above-mentioned rare earth magnet powder. That is, the present invention may be a compound for a rare earth bonded magnet comprising the rare earth magnet powder described above and a binder resin capable of binding the coated magnet particles of the rare earth magnet powder.

(2)また本発明は、上述の希土類磁石粉末やコンパウンドからなるボンド磁石としても把握できる。すなわち本発明は、上述の希土類磁石粉末と、該希土類磁石粉末の被覆磁石粒子を結着するバインダー樹脂と、からなることを特徴とする希土類ボンド磁石でもよい。 (2) Moreover, this invention can be grasped | ascertained also as a bonded magnet which consists of the above-mentioned rare earth magnet powder and a compound. That is, the present invention may be a rare earth bonded magnet comprising the rare earth magnet powder described above and a binder resin that binds the coated magnet particles of the rare earth magnet powder.

(3)なお、圧縮成形されたボンド磁石を構成する従来の磁石粒子がバインダー樹脂によって被包された状態にあるにもかかわらず酸化され易かったのは、硬化したバインダー樹脂間に、酸素等の通路となる微小な空孔路が形成されているためと考えられる。このような空孔路は、成形型のキャビティへ大気中で充填したコンパウンドを圧縮成形してボンド磁石を得る製造過程上、不可避的に形成され得る。 (3) The conventional magnet particles constituting the compression-molded bonded magnet were easily oxidized despite being encapsulated by the binder resin, between the cured binder resin, such as oxygen This is thought to be due to the formation of minute air holes that serve as passages. Such a hole path can be inevitably formed in the manufacturing process of obtaining a bonded magnet by compression-molding a compound filled in the atmosphere of the mold cavity.

本発明のボンド磁石によれば、それを構成する被覆磁石粒子の表面に形成された熱硬化樹脂被膜が、ボンド磁石中に形成された空孔路を通過してくる酸素や水分等と基本磁石粒子との接触を遮断し、基本磁石粒子をそれらから保護する。この結果、上記の空孔路が存在する場合でも、圧縮成形されたボンド磁石を構成する基本磁石粒子は、酸化が抑制され、本発明のボンド磁石は高い耐候性を発揮する。   According to the bonded magnet of the present invention, the thermosetting resin film formed on the surface of the coated magnet particle constituting the basic magnet and the oxygen, moisture, etc. passing through the air holes formed in the bonded magnet Block contact with the particles and protect the basic magnet particles from them. As a result, even in the presence of the above-described air holes, the basic magnet particles constituting the compression-bonded bonded magnet are suppressed from being oxidized, and the bonded magnet of the present invention exhibits high weather resistance.

《その他》
(1)本明細書でいう希土類元素は、イットリウム(Y)、ランタノイドおよびアクチノイドの一種以上である。その中でも、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(TM元素)、ルテチウム(Lu)が代表的である。これら希土類元素(R)は一種でも二種以上でもよい。
<Others>
(1) The rare earth element referred to in this specification is one or more of yttrium (Y), lanthanoid and actinoid. Among them, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Typical examples are Er), thulium (TM element), and lutetium (Lu). These rare earth elements (R) may be one kind or two or more kinds.

ここでRとしては、特にNdが代表的であるが、Prを含んでもよい。磁石原料中または拡散原料中のNdの一部がPrに置換されても、磁気特性への影響は少なく、NdとPrの混在した混合希土類原料(ジジム)は比較的安価に入手可能だからである。なお、Dy、TbまたはHoなどの保磁力向上元素は稀少元素で高価なため、使用が抑制されると好ましい。そこで磁石粉末の製造に使用する磁石原料または拡散原料は、Dy、TbおよびHoを含まないと好適である。   Here, as R, Nd is particularly representative, but Pr may also be included. This is because even if a part of Nd in the magnet raw material or the diffusion raw material is replaced with Pr, there is little influence on the magnetic properties, and a mixed rare earth raw material (zidymium) mixed with Nd and Pr is available at a relatively low cost. . In addition, since the coercive force improving element such as Dy, Tb, or Ho is a rare element and expensive, it is preferable to suppress the use. Therefore, it is preferable that the magnet raw material or the diffusion raw material used for manufacturing the magnet powder does not contain Dy, Tb and Ho.

TMは、特に3d遷移元素または4d遷移元素の1種以上であると好ましい。3d遷移元素は原子番号21(Sc)〜原子番号29(Cu)であり、4d遷移元素は原子番号39(Y)〜原子番号47(Ag)である。中でもTMは、8族の鉄(Fe)、コバルト(Co)またはニッケル(Ni)のいずれか、さらにいえばFeであると好適である。また、ホウ素の一部を炭素(C)に置換することも可能である。   TM is particularly preferably one or more of 3d transition elements or 4d transition elements. The 3d transition element is atomic number 21 (Sc) to atomic number 29 (Cu), and the 4d transition element is atomic number 39 (Y) to atomic number 47 (Ag). Among them, TM is preferably any of group 8 iron (Fe), cobalt (Co), or nickel (Ni), and more preferably Fe. Further, a part of boron can be substituted with carbon (C).

(2)基本磁石粒子は、上述したR、BおよびTM以外に、その特性改善に有効な元素である「改質元素」を含み得る。改質元素には種々あり、各元素の組合せは任意であり、通常、その含有量は微量である。また当然ながら、本発明の希土類磁石粉末は、コスト的または技術的な理由等によって除去困難な「不可避不純物」をも含み得る。 (2) In addition to R, B and TM described above, the basic magnet particles may contain “modified elements” which are elements effective for improving the characteristics thereof. There are various kinds of modifying elements, the combination of each element is arbitrary, and the content thereof is usually very small. Of course, the rare earth magnet powder of the present invention may also contain “unavoidable impurities” that are difficult to remove due to cost or technical reasons.

(3)本明細書でいう「希土類磁石粉末」には、異方性希土類磁石粉末と等方性希土類磁石粉末の両方が含まれる。また単に「磁石粒子」というときは、基本磁石粒子の場合も、被覆磁石粒子の場合も、その他の粒子の場合もある。これは単に「磁石粉末」というときの構成粒子についても同様である。 (3) “Rare earth magnet powder” as used herein includes both anisotropic rare earth magnet powder and isotropic rare earth magnet powder. The term “magnet particles” may be basic magnet particles, coated magnet particles, or other particles. The same applies to the constituent particles when simply called “magnet powder”.

(4)本明細書でいう「平均粒径」は、サンプル粉末をHELOS&RODOSレーザ回折式粒子径分布測定装置により測定し、その結果得られた体積球相当径(VMD)により特定される。 (4) The “average particle diameter” as used herein is specified by the volume sphere equivalent diameter (VMD) obtained by measuring the sample powder with a HELOS & RODOS laser diffraction particle size distribution measuring device.

(5)本明細書でいう「x〜y」は、特に断らない限り、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値を任意に組合わせて「a〜b」のように新たな数値範囲を構成し得る。さらに、本明細書に記載した数値範囲内に含まれる任意の数値を、新たな数値範囲を構成する上限値または下限値とすることもできる。 (5) “x to y” in the present specification includes the lower limit value x and the upper limit value y unless otherwise specified. Further, a new numerical range such as “ab” can be configured by arbitrarily combining various lower limit values or upper limit values described in the present specification. Furthermore, any numerical value included in the numerical value range described in the present specification can be used as the upper limit value or the lower limit value constituting the new numerical value range.

本実施例に係るボンド磁石の表面を観察したSEM写真である。It is the SEM photograph which observed the surface of the bonded magnet which concerns on a present Example. そのボンド磁石の一部を拡大したSEM写真である。It is the SEM photograph which expanded a part of the bond magnet. さらにその一部を拡大したSEM写真である。Furthermore, it is the SEM photograph which expanded the part. 磁石粒子の表面に形成された熱硬化樹脂被膜の膜厚の算出方法を説明する説明図である。It is explanatory drawing explaining the calculation method of the film thickness of the thermosetting resin film formed in the surface of a magnet particle.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係る希土類磁石粉末のみならず、その製造方法、その磁石粉末を用いたコンパウンドやボンド磁石にも適用され得る。上述した本発明の構成に、本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。この際、製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. The contents described in this specification including the following embodiments can be applied not only to the rare earth magnet powder according to the present invention, but also to a manufacturing method thereof, a compound using the magnet powder, and a bonded magnet. One or more configurations arbitrarily selected from the present specification may be added to the configuration of the present invention described above. At this time, the structure related to the manufacturing method can be a structure related to an object if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《樹脂コーティング》
本発明に係る熱硬化樹脂被膜は、磁石粉末やボンド磁石の磁気特性および耐酸化性を高次元で両立させるために、均一で薄いほど好ましい。そこで熱硬化樹脂被膜は、前述したように、カップリング処理した基本磁石粒子に(カップリング処理工程)、被膜樹脂(熱硬化性樹脂等)を付着させ(樹脂付着工程)、それを硬化させて形成される(被膜形成工程)とよい。以下、これらの工程について詳述する。
<Resin coating>
The thermosetting resin coating according to the present invention is preferably as uniform and thin as possible in order to achieve both the magnetic properties and oxidation resistance of the magnet powder and the bonded magnet at a high level. Therefore, as described above, the thermosetting resin film is made by attaching a coating resin (thermosetting resin, etc.) to the basic magnet particles subjected to the coupling process (coupling process) and curing the resin (resin adhesion process). It is good to form (film formation process). Hereinafter, these steps will be described in detail.

(1)先ず、カップリング処理工程により、基本磁石粒子の表面にカップリング剤を付着させる。これにより、基本磁石粒子の金属表面に、被膜樹脂が均一に付着し易くなる。カップリング剤の種類や量は、使用する被膜樹脂の種類や量に応じて適宜調整される。 (1) First, a coupling agent is attached to the surface of the basic magnet particles by a coupling treatment step. This makes it easier for the coating resin to uniformly adhere to the metal surfaces of the basic magnet particles. The type and amount of the coupling agent are appropriately adjusted according to the type and amount of the coating resin used.

このようなカップリング剤として、Tiを含むチタネート系カップリング剤、Siを含むシラン系カップリング剤、Alを含むアルミネート系カップリング剤等がある。これらの中でもチタネート系カップリング剤は、基本磁石粒子の表面における被膜樹脂の濡れ性を大幅に改善するので好ましい。   Examples of such a coupling agent include a titanate coupling agent containing Ti, a silane coupling agent containing Si, and an aluminate coupling agent containing Al. Among these, titanate coupling agents are preferred because they greatly improve the wettability of the coating resin on the surface of the basic magnet particles.

適切な溶媒または分散媒を用いることにより、カップリング剤を基本磁石粒子の表面に効率的にかつ均一に付着させることができる。このような溶媒または分散媒として、ヘキサン、ノナン、デカン、ベンゼン、トルエン、キシレン等の非極性有機溶媒、エタノール、メタノール、プロパノール、メチルエチルケトン等の極性有機溶媒等がある。カップリング剤は基本磁石粒子の表面に均一に薄く延在すれば足るので、基本磁石粒子からなる粉末(被処理粉末)100質量%に対して0.1〜1.0質量%であればよい。特に、均一に混合するために、カップリング剤と分散媒の有機溶媒とを容器に入れた後に、マグネティックスターラ等の撹拌機を用いて撹拌することが好ましい。   By using an appropriate solvent or dispersion medium, the coupling agent can be efficiently and uniformly attached to the surfaces of the basic magnet particles. Examples of such a solvent or dispersion medium include nonpolar organic solvents such as hexane, nonane, decane, benzene, toluene, and xylene, and polar organic solvents such as ethanol, methanol, propanol, and methyl ethyl ketone. Since the coupling agent only needs to extend uniformly and thinly on the surface of the basic magnet particles, it may be 0.1 to 1.0% by mass with respect to 100% by mass of the powder (processed powder) made of the basic magnet particles. . In particular, in order to mix uniformly, it is preferable to stir using a stirrer such as a magnetic stirrer after putting the coupling agent and the organic solvent of the dispersion medium into a container.

(2)次に、樹脂付着工程により、カップリング処理された基本磁石粒子の表面へ、熱硬化樹脂被膜の原料となる被膜樹脂を付着させる。被膜樹脂の種類や量は、所望する熱硬化樹脂被膜の種類や膜厚に応じて適宜調整される。このような被膜樹脂として、熱可塑性樹脂も考えられるが、緻密性、熱硬化性、その後の熱履歴(コンパウンド製造時の加熱混練、ボンド磁石製造時の加熱成形等)等を考慮すると、熱硬化性樹脂が好ましい。このような熱硬化性樹脂として、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ウレア樹脂等がある。 (2) Next, in the resin attaching step, a coating resin that is a raw material for the thermosetting resin coating is attached to the surface of the coupling-treated basic magnet particles. The type and amount of the coating resin are appropriately adjusted according to the desired type and thickness of the thermosetting resin coating. A thermoplastic resin is also considered as such a coating resin, but considering the denseness, thermosetting, and subsequent heat history (heat kneading during compound production, thermoforming during bond magnet production, etc.), etc., thermosetting Is preferred. Examples of such thermosetting resins include epoxy resins, polyamide resins, polyimide resins, polyamideimide resins, and urea resins.

被膜樹脂は、ボンド磁石のバインダー樹脂と同種でも異種でも良い。もっとも、被膜樹脂とバインダー樹脂が同種であると、両者の密着性や接着性の向上も図り易い。また、それらの樹脂が同種ならボンド磁石の生産性向上やコスト低減も図れ得る。   The coating resin may be the same as or different from the binder resin of the bond magnet. However, if the coating resin and the binder resin are of the same type, it is easy to improve the adhesion and adhesion between them. In addition, if these resins are the same type, the productivity of bonded magnets can be improved and the cost can be reduced.

なお、本明細書でいう「樹脂」には、主剤のみの場合と、主剤の他に硬化剤や硬化促進剤などの種々の添加剤を含む場合との両方が含まれる。その主剤は単種でも複数種でもよい。上述した被膜樹脂とバインダー樹脂は、主剤が同種で添加剤が異なってもよい。添加剤を適切に選択することにより、各樹脂の軟化温度、ガラス転移点、硬化温度、硬化度等を調整できる。   The term “resin” as used herein includes both the case of using only the main agent and the case of containing various additives such as a curing agent and a curing accelerator in addition to the main agent. The main agent may be a single species or a plurality of species. The above-mentioned coating resin and binder resin may be the same type of main agent and different additives. By appropriately selecting the additive, the softening temperature, glass transition point, curing temperature, degree of curing and the like of each resin can be adjusted.

適切な溶媒または分散媒を用いることにより、被膜樹脂もカップリング処理された基本磁石粒子の表面へ、均一的にかつ効率的に付着させ得る。このような溶媒または分散媒として、メチルエチルケトン(MEK)、アセトン、メチルエーテル等がある。被膜樹脂量は、熱硬化樹脂被膜の所望する膜厚に応じて調整されるが、例えば、被処理粉末100質量%に対して0.1〜1.0質量%、0.2〜0.8質量%さらには0.3〜0.7質量%とすること好ましい。特に、均一に混合するために、樹脂と分散媒の有機溶媒とを容器に入れた後に、マグネティックスターラ等の撹拌機を用いて撹拌することが好ましい。   By using an appropriate solvent or dispersion medium, the coating resin can be uniformly and efficiently attached to the surface of the coupled basic magnet particles. Examples of such a solvent or dispersion medium include methyl ethyl ketone (MEK), acetone, and methyl ether. The amount of the coating resin is adjusted according to the desired film thickness of the thermosetting resin coating. For example, 0.1 to 1.0% by mass, 0.2 to 0.8% with respect to 100% by mass of the powder to be processed. It is preferable to set it as the mass% further 0.3-0.7 mass%. In particular, in order to mix uniformly, it is preferable to stir using a stirrer such as a magnetic stirrer after putting the resin and the organic solvent of the dispersion medium in a container.

(3)基本磁石粒子の表面に付着させた熱硬化性樹脂を熱硬化樹脂被膜とするには、その熱硬化性樹脂を熱硬化させる熱処理が必要となる(被膜形成工程)。この際のヒートパターンは、被膜樹脂の種類や量に応じて適宜選択されるが、例えば、処理温度(被膜硬化温度)は70〜200℃さらには90〜150℃程度で、処理時間は0.5〜3時間さらには0.75〜2時間程度が好ましい。 (3) In order to make the thermosetting resin adhered to the surface of the basic magnet particles into a thermosetting resin film, a heat treatment for thermosetting the thermosetting resin is required (film forming process). The heat pattern at this time is appropriately selected according to the type and amount of the coating resin. For example, the processing temperature (coating curing temperature) is about 70 to 200 ° C., further about 90 to 150 ° C., and the processing time is 0. About 5 to 3 hours, more preferably about 0.75 to 2 hours are preferable.

なお、被膜硬化温度は、ボンド磁石のバインダー樹脂を熱硬化させる温度(バインダー硬化温度)と同じでも異なってもよい。また、ボンド磁石のバインダー樹脂を硬化させるキュア熱処理中に、熱硬化樹脂被膜中の樹脂(被膜樹脂)をさらに硬化させてもよい。この場合、先工程の被膜硬化温度は、後工程のバインダー硬化温度よりも低く設定しておいてもよい。   The film curing temperature may be the same as or different from the temperature at which the binder resin of the bonded magnet is thermally cured (binder curing temperature). Further, the resin (coating resin) in the thermosetting resin film may be further cured during the curing heat treatment for curing the binder resin of the bonded magnet. In this case, the film curing temperature in the previous step may be set lower than the binder curing temperature in the subsequent step.

《基本磁石粒子》
(1)熱硬化樹脂被膜を形成する基本磁石粒子は、微細なRTM14型結晶の集合体からなり、磁石合金(母合金)に水素化処理を施して得た粒子(水素処理粒子)でも、それに拡散原料を拡散させた拡散処理後の粒子(拡散処理粒子)でもよい。
《Basic magnet particles》
(1) Basic magnet particles for forming a thermosetting resin film are composed of an aggregate of fine R 2 TM 14 B 1 type crystals, and particles obtained by subjecting a magnet alloy (mother alloy) to hydrogenation treatment (hydrogen treatment) Or particles after diffusion treatment (diffusion treatment particles) in which a diffusion raw material is diffused.

(2)水素化処理は、磁石合金(母合金)に吸水素させ不均化反応を生じさせる不均化工程と、この不均化工程後の母合金から脱水素して再結合させる再結合工程とからなる。この水素化処理には、HDDR法(hydrogenation−decomposition(もしくはdisproportionation)−desorption−recombination)、d−HDDR法(dynamic−HDDR)等がある。d−HDDR法によれば、特に高い磁気特性の磁石粉末が得られる。 (2) The hydrogenation treatment includes a disproportionation step in which a magnet alloy (mother alloy) absorbs hydrogen to cause a disproportionation reaction, and recombination that dehydrogenates and recombines the mother alloy after the disproportionation step. Process. Examples of this hydrogenation treatment include the HDDR method (hydrogenation-decomposition (or decomposition) -deposition-recombination), the d-HDDR method (dynamic-HDDR), and the like. According to the d-HDDR method, a magnet powder having particularly high magnetic properties can be obtained.

d−HDDR法は、低温水素化工程と、高温水素化工程と、制御排気工程と、強制排気工程からなり、前述の不均化工程は高温水素化工程に、再結合工程は制御排気工程に対応する。ちなみに、低温水素化工程は、次工程(高温水素化工程)での水素化・不均化反応が緩やかに進むように、水素化・不均化反応を生じる温度以下の低温域で水素圧をかけて水素を十分固溶させる工程である。高温水素化工程は、磁石合金に対して水素化・不均化反応をさせる工程である。制御排気工程は、高温水素化工程で三相分解した組織を再結合反応をさせる工程である。強制排気工程は、磁石合金中に残留した水素を取除き、脱水素化処理を完了させる工程である。これら各工程の詳細は特開2006−28602号公報等に記載されている。   The d-HDDR method comprises a low temperature hydrogenation process, a high temperature hydrogenation process, a controlled exhaust process, and a forced exhaust process. The above-mentioned disproportionation process is a high temperature hydrogenation process, and the recombination process is a controlled exhaust process. Correspond. By the way, in the low-temperature hydrogenation process, the hydrogen pressure is reduced in the low temperature range below the temperature at which the hydrogenation / disproportionation reaction occurs so that the hydrogenation / disproportionation reaction in the next process (high-temperature hydrogenation process) proceeds slowly. This is a step for sufficiently dissolving hydrogen. The high-temperature hydrogenation step is a step of causing a hydrogenation / disproportionation reaction to the magnet alloy. The controlled exhaust process is a process in which a tissue that has undergone three-phase decomposition in a high-temperature hydrogenation process is subjected to a recombination reaction. The forced exhaust process is a process for removing hydrogen remaining in the magnet alloy and completing the dehydrogenation process. Details of these steps are described in JP-A-2006-28602.

(3)拡散処理は、磁石原料(水素処理粒子からなる粉末)に拡散原料を混合した混合原料(混合粉末)を、例えば400〜900℃さらには600〜850℃の酸化防止雰囲気(真空雰囲気または不活性雰囲気等)で加熱処理してなされる。 (3) The diffusion treatment is performed by mixing a mixed raw material (mixed powder) obtained by mixing a magnetic raw material (powder made of hydrogen-treated particles) with a diffusion raw material, for example, an antioxidation atmosphere (vacuum atmosphere or 400 to 900 ° C. or even 600 to 850 ° C. For example, an inert atmosphere).

拡散原料には、R−Cu系合金やR−Cu−Al系合金等を用いると好適である。これにより、Dy、Ga等の稀少な元素の使用を抑止しつつ、磁石粉末の保磁力を高めることができる。具体的にいうと拡散原料は、全体を100at%としたときに、Cuが1〜47at%さらには6〜39at%と、残部である希土類元素と、不可避不純物とからなると好適である。また拡散原料がAlを含む場合、拡散原料全体を100at%としたときにCuが5〜27at%、Al:20〜55at%と、残部である希土類元素と、不可避不純物とからなると好適である。   It is preferable to use an R—Cu alloy, an R—Cu—Al alloy, or the like as the diffusion raw material. Thereby, the coercive force of the magnet powder can be increased while suppressing the use of rare elements such as Dy and Ga. Specifically, when the diffusion raw material is 100 at% as a whole, it is preferable that Cu is 1 to 47 at%, further 6 to 39 at%, the remaining rare earth element, and inevitable impurities. When the diffusion raw material contains Al, it is preferable that Cu is 5 to 27 at%, Al: 20 to 55 at%, the remaining rare earth element, and inevitable impurities when the entire diffusion raw material is 100 at%.

また拡散原料は、そのAlに替えまたはAlと共に、Co、Ni、Si、Mn、Cr、Mo、Ti、V、Ga、Zr、Ge、Feなどを含んでもよい。これらの元素の総量は、拡散原料全体を100at%として5〜64at%であると好ましい。   The diffusion raw material may include Co, Ni, Si, Mn, Cr, Mo, Ti, V, Ga, Zr, Ge, Fe, or the like instead of Al or together with Al. The total amount of these elements is preferably 5 to 64 at% with respect to 100 at% of the entire diffusion raw material.

ところで、拡散処理が施される磁石原料は、理論近傍組成からなると好ましい。具体的には、Rが11.6〜12.7at%、11.7〜12.5at%、11.8〜12.4at%さらには11.9〜12.3at%であり、Bが5.5〜7at%さらには5.9〜6.5at%であると好ましい。理論近傍組成の磁石原料を用いることにより高磁化(残留磁束密度)の磁石粉末が得られる。従って、理論近傍組成の磁石原料に拡散処理を施せば、高磁化かつ高保磁力の磁石粉末が得られることになる。   By the way, it is preferable that the magnet raw material subjected to the diffusion treatment has a theoretical composition. Specifically, R is 11.6 to 12.7 at%, 11.7 to 12.5 at%, 11.8 to 12.4 at%, or 11.9 to 12.3 at%, and B is 5. It is preferable in it being 5-7 at% and also 5.9-6.5 at%. By using a magnet raw material having a theoretical composition, a magnet powder with high magnetization (residual magnetic flux density) can be obtained. Accordingly, if a magnetic material having a theoretical composition is subjected to a diffusion treatment, a magnet powder having high magnetization and high coercive force can be obtained.

このような拡散処理後の水素処理粒子(拡散処理粒子)は、全体を100at%とすれば、Cu:0.05〜2at%、0.05〜1at%、0.05〜0.8at%、0.2〜0.8at%さらには0.3〜0.7at%であると好ましい。またその拡散処理粒子全体を100at%としたときに、Al:0.1〜5at%さらには0.5〜3.0at%であると好ましい。   The hydrogen-treated particles (diffusion-treated particles) after such diffusion treatment are Cu: 0.05-2 at%, 0.05-1 at%, 0.05-0.8 at%, It is preferable that it is 0.2 to 0.8 at%, more preferably 0.3 to 0.7 at%. Moreover, when the whole diffusion treated particle is 100 at%, Al is preferably 0.1 to 5 at%, and more preferably 0.5 to 3.0 at%.

(4)基本磁石粒子は、保磁力等の改質元素として、TMであるチタン(Ti)、バナジウム(V)、ジルコニウム(Zr)、ニオブ(Nb)、ニッケル(Ni)、クロム(Cr)、マンガン(Mn)、モリブデン(Mo)、ハフニウム(Hf)、タングステン(W)、タンタル(Ta)などの他、アルミニウム(Al)、ガリウム(Ga)、ケイ素(Si)、亜鉛(Zn)、スズ(Sn)などを含んでもよい。これら改質元素は、基本磁石粒子全体を100at%としたとき、合計で3at%以下であると好ましい。 (4) The basic magnet particles are titanium (Ti), vanadium (V), zirconium (Zr), niobium (Nb), nickel (Ni), chromium (Cr), which are TM as modifying elements such as coercive force, In addition to manganese (Mn), molybdenum (Mo), hafnium (Hf), tungsten (W), tantalum (Ta), etc., aluminum (Al), gallium (Ga), silicon (Si), zinc (Zn), tin ( Sn) or the like may be included. These modifying elements are preferably 3 at% or less in total when the entire basic magnet particle is 100 at%.

改質元素の中でもGaは、保磁力の向上に特に効果的な元素であるので、基本磁石粒子全体を100at%としたときに0.05〜1at%のGaが含まれてもよい。またNbは、残留磁束密度の向上に有効な元素であるので、基本磁石粒子全体を100at%としたときに0.05〜0.6%のNbが含まれてもよい。勿論、両者が同時に含まれると一層好ましい。Coは、磁石粉末または磁石のキュリー点向上ひいてはその耐熱性の向上に有効な元素であるので、基本磁石粒子全体を100at%としたときに0.1〜10at%のCoが含まれてもよい。   Among the modifying elements, Ga is an element that is particularly effective for improving the coercive force, and therefore 0.05 to 1 at% Ga may be included when the entire basic magnet particle is 100 at%. Moreover, since Nb is an element effective in improving the residual magnetic flux density, 0.05 to 0.6% Nb may be included when the entire basic magnet particle is taken as 100 at%. Of course, it is more preferable that both are included at the same time. Co is an element effective for improving the magnetic powder or the Curie point of the magnet, and hence the heat resistance thereof, and therefore 0.1 to 10 at% Co may be included when the entire basic magnet particle is 100 at%. .

《コンパウンドおよびボンド磁石》
(1)本発明の磁石粉末をバインダー樹脂と加熱混練することによりボンド磁石の原料となるコンパウンドが得られる。このコンパウンドを圧縮成形または射出成形すればボンド磁石が得られる。
<Compound and bonded magnet>
(1) A compound as a raw material for a bonded magnet can be obtained by heat-kneading the magnetic powder of the present invention with a binder resin. If this compound is compression molded or injection molded, a bonded magnet can be obtained.

射出成形の場合、バインダー樹脂は、熱可塑性樹脂であるポリフェニレンスルファイド(PPS)、ナイロン等のポリアミド(PA)等が好ましい。圧縮成形の場合、バインダー樹脂は、熱硬化性樹脂であるエポキシ樹脂等をバインダー樹脂等が好ましい。   In the case of injection molding, the binder resin is preferably a thermoplastic resin such as polyphenylene sulfide (PPS) or polyamide (PA) such as nylon. In the case of compression molding, the binder resin is preferably a thermosetting resin, such as an epoxy resin, or a binder resin.

(2)コンパウンドまたはボンド磁石を構成する磁石粉末は、複数種の磁石粉末を混合した混合磁石粉末であってもよい。例えば本発明の磁石粉末は、平均粒径の粗い磁石粉末(粗粉末)と平均粒径の細かい磁石粉末(微粉末)とを混合した複合希土類磁石粉末でもよい。例えば、粗粉末がR−TM−B系異方性磁石粉末で、微粉末がSm−Fe−N系異方性磁石粉末であると好ましい。 (2) The magnet powder constituting the compound or bonded magnet may be a mixed magnet powder obtained by mixing a plurality of types of magnet powder. For example, the magnet powder of the present invention may be a composite rare earth magnet powder obtained by mixing a magnet powder having a large average particle diameter (coarse powder) and a magnet powder having a small average particle diameter (fine powder). For example, it is preferable that the coarse powder is R-TM-B type anisotropic magnet powder and the fine powder is Sm-Fe-N type anisotropic magnet powder.

《用途》
本発明に係る永久磁石(ボンド磁石等)は、耐環境性に優れ、高磁気特性を安定して発揮し得る。このため、常温域で使用される機器は勿論のこと、高温多湿の厳しい環境下で使用される機器にも適している。
<Application>
The permanent magnet (bonded magnet or the like) according to the present invention is excellent in environmental resistance and can stably exhibit high magnetic properties. For this reason, it is suitable not only for equipment used in a normal temperature range but also for equipment used in a severe environment of high temperature and humidity.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
表1に示す各試料を次のようにして製造した。
The present invention will be described more specifically with reference to examples.
<Production of sample>
Each sample shown in Table 1 was manufactured as follows.

(1)磁石原料
表1に示す磁石原料を次のようにして用意した。表1に示した磁石原料の組成に調製した磁石合金をストリップキャスト(SC)法により得た。この磁石合金を1140℃のArガス雰囲気中に10時間保持して組織を均質化させた(均質化熱処理工程)。これを室温まで冷却した後、水素圧力0.13MPaの水素雰囲気中で水素粉砕して母合金粉末とした。
(1) Magnet raw material The magnetic raw material shown in Table 1 was prepared as follows. Magnet alloys prepared with the composition of the magnet raw materials shown in Table 1 were obtained by the strip cast (SC) method. This magnet alloy was held in an Ar gas atmosphere at 1140 ° C. for 10 hours to homogenize the structure (homogenization heat treatment step). After cooling this to room temperature, hydrogen pulverization was performed in a hydrogen atmosphere at a hydrogen pressure of 0.13 MPa to obtain a mother alloy powder.

この磁石合金粉末に水素化処理(d−HDDR)を施して希土類異方性磁石粉末(磁石原料)を得た。この水素化処理は次のようにして行った。先ず、磁石合金粉末15gを処理炉に入れて、室温×0.1MPaの低温水素雰囲気に1時間さらした(低温水素化工程)。これに続けて780℃×0.03MPaの高温水素雰囲気に、低温水素化工程後の粉末を30分間さらした(高温水素化工程)。この後、5分間かけてその雰囲気を840℃へ昇温し、840℃×0.03MPaの高温水素雰囲気に高温水素化工程の粉末を60分間さらした(組織安定化工程)。こうして反応速度を調整しつつ、三相(α−Fe、RH、FeB)に分解する順変態を生じさせた粉末を得た(不均化工程)。この後、処理炉内から水素を連続的に排気し、処理炉内を840℃×5〜1kPaの雰囲気に90分間して、順変態後の合金内にRTM14型結晶を生成する逆変態を生じさせた(制御排気工程/再結合工程)。 The magnet alloy powder was subjected to hydrogenation (d-HDDR) to obtain a rare earth anisotropic magnet powder (magnet raw material). This hydrogenation treatment was performed as follows. First, 15 g of the magnet alloy powder was placed in a processing furnace and exposed to a room temperature × 0.1 MPa low temperature hydrogen atmosphere for 1 hour (low temperature hydrogenation step). Subsequently, the powder after the low-temperature hydrogenation step was exposed to a high-temperature hydrogen atmosphere of 780 ° C. × 0.03 MPa for 30 minutes (high-temperature hydrogenation step). Thereafter, the atmosphere was heated to 840 ° C. over 5 minutes, and the powder of the high-temperature hydrogenation process was exposed to a high-temperature hydrogen atmosphere of 840 ° C. × 0.03 MPa for 60 minutes (structure stabilization process). Thus while adjusting the reaction rate, to obtain a powder that caused decompose order transformation into a three-phase (α-Fe, RH 2, Fe 2 B) ( disproportionation step). Thereafter, hydrogen is continuously exhausted from the inside of the processing furnace, and the inside of the processing furnace is placed in an atmosphere of 840 ° C. × 5 to 1 kPa for 90 minutes to generate R 2 TM 14 B type 1 crystals in the alloy after forward transformation. The reverse transformation was generated (controlled exhaust process / recombination process).

こうして得た粉末を急冷した(第1冷却工程)。この粉末を不活性ガス雰囲気中で乳鉢で解砕後、粒度調整して、平均粒径が122μmの磁石原料(水素処理粒子からなる粉末)を得た。   The powder thus obtained was quenched (first cooling step). This powder was crushed in an inert gas atmosphere in a mortar and then adjusted in particle size to obtain a magnet raw material (powder composed of hydrogen-treated particles) having an average particle size of 122 μm.

(2)拡散原料
表1に示す組成の拡散原料を次のようにして用意した。表1に示す拡散原料の組成に調製した原料合金(鋳塊)をブックモールド法により得た。この原料合金を水素粉砕した後、さらに乾式のボールミルで粉砕して平均粒経6μmの粉末状の拡散原料(水素化物粉末)を得た。
(2) Diffusion Raw Material A diffusion raw material having the composition shown in Table 1 was prepared as follows. A raw material alloy (ingot) prepared to the composition of the diffusion raw material shown in Table 1 was obtained by a book mold method. This raw material alloy was pulverized with hydrogen and further pulverized with a dry ball mill to obtain a powdery diffusion raw material (hydride powder) having an average particle size of 6 μm.

(3)拡散処理
磁石原料に拡散原料を加え、不活性ガス雰囲気中で混合して混合原料を得た(混合工程)。表1に示した混合割合は、混合原料全体を100質量%としたときにおける拡散原料の質量割合である。この混合原料を10−1Paの真空雰囲気中で800℃×1時間加熱した(拡散工程)。これに続けて混合原料を急冷した(第2冷却工程)。こうして拡散磁石粉末(拡散処理粒子からなる粉末)を得た。本実施例の場合、この拡散処理粒子が本発明でいう基本磁石粒子に相当し、その拡散磁石粉末が被処理粉末となる。
(3) Diffusion treatment A diffusion raw material was added to the magnet raw material and mixed in an inert gas atmosphere to obtain a mixed raw material (mixing step). The mixing ratio shown in Table 1 is the mass ratio of the diffusion raw material when the entire mixed raw material is 100 mass%. This mixed raw material was heated in a vacuum atmosphere of 10 −1 Pa at 800 ° C. for 1 hour (diffusion process). Following this, the mixed raw material was rapidly cooled (second cooling step). In this way, diffusion magnet powder (powder composed of diffusion treated particles) was obtained. In the case of this example, the diffusion treated particles correspond to the basic magnet particles in the present invention, and the diffusion magnet powder becomes the powder to be treated.

(4)樹脂コーティング(熱硬化樹脂被膜の形成)
ヘキサン0.65g中へチタネート系カップリング剤0.33gを均一に分散させたカップリング液を調製した。このカップリング液と拡散磁石粉末130gとを混合した後、真空排気して、乾燥させた(カップリング処理工程)。これにより、カップリング剤で被覆された粒子からなる粉末を得た。
(4) Resin coating (formation of thermosetting resin film)
A coupling solution in which 0.33 g of titanate coupling agent was uniformly dispersed in 0.65 g of hexane was prepared. The coupling liquid and 130 g of the diffusion magnet powder were mixed, then evacuated and dried (coupling process step). Thereby, a powder composed of particles coated with a coupling agent was obtained.

次にエポキシ樹脂0.39gをメチルエチルケトン(MEK)1.56gに溶解させたコーティング液を調製した。ちなみに、そのエポキシ樹脂のガラス転移点(Tg)は約150℃であった。   Next, a coating solution was prepared by dissolving 0.39 g of epoxy resin in 1.56 g of methyl ethyl ketone (MEK). Incidentally, the glass transition point (Tg) of the epoxy resin was about 150 ° C.

このコーティング液を、カップリング処理した拡散磁石粉末(130g)へ加えて混合した後、真空排気して乾燥させた。拡散磁石粉末へ加えるコーティング液量は、拡散磁石粉末量とエポキシ樹脂量の総和に対してエポキシ樹脂量が表1に示す「被膜樹脂量」となるように調整した。   This coating solution was added to the coupled diffusion magnet powder (130 g), mixed, and then evacuated and dried. The amount of the coating liquid added to the diffusion magnet powder was adjusted so that the amount of the epoxy resin became the “amount of coating resin” shown in Table 1 with respect to the total amount of the diffusion magnet powder and the amount of the epoxy resin.

この乾燥後の粉末を、さらに真空中で100℃×2時間加熱した。こうして熱硬化したエポキシ樹脂の被膜(熱硬化樹脂被膜)により表面が均一にコーティングされた拡散処理粒子(被覆磁石粒子)からなる粉末(第一磁石粉末)を得た(試料No.1−1〜1−7)。この粉末が本発明でいう希土類(異方性)磁石粉末に相当する。   The dried powder was further heated in vacuum at 100 ° C. for 2 hours. Thus, a powder (first magnet powder) made of diffusion-treated particles (coated magnet particles) whose surface was uniformly coated with a thermally cured epoxy resin coating (thermosetting resin coating) was obtained (Sample No. 1-1 to 1-1). 1-7). This powder corresponds to the rare earth (anisotropic) magnet powder in the present invention.

また比較のため、コーティングしたエポキシ樹脂を熱硬化させない粉末(つまり未硬化樹脂被膜で被覆された拡散処理粒子からなる粉末)も用意した(試料No.2−1〜2−6)。   For comparison, a powder that does not thermally cure the coated epoxy resin (that is, a powder made of diffusion-treated particles coated with an uncured resin film) was also prepared (Sample Nos. 2-1 to 2-6).

なお表1中で、被膜樹脂量が零の磁石粉末は、樹脂コーティングを施さなかった試料である。便宜上、被膜樹脂量が零の粉末および被膜樹脂が未硬化の粉末も第一磁石粉末と呼ぶ。   In Table 1, the magnet powder having a coating resin amount of zero is a sample not subjected to resin coating. For convenience, a powder having a coating resin amount of zero and a powder in which the coating resin is uncured are also referred to as a first magnet powder.

《コンパウンドの製造》
第一磁石粉末124gとSmFeNからなる希土類磁石粉末(第二磁石粉末)21.9gとエポキシ(固形)樹脂4.1gとを、小型ロッキングミキサにより混合し、
得られた混合物をラボプラストミル(東洋精機製)で10分間加圧加熱混練(110 ℃ )した。これを室温まで冷却した後、粒度調整してコンパウンドを得た。
<Production of compound>
124 g of first magnet powder, 21.9 g of rare earth magnet powder (second magnet powder) made of SmFeN and 4.1 g of epoxy (solid) resin are mixed by a small rocking mixer,
The obtained mixture was pressure-heated and kneaded (110 ° C.) for 10 minutes with a Laboplast mill (manufactured by Toyo Seiki). After cooling to room temperature, the particle size was adjusted to obtain a compound.

ここで用いたエポキシ樹脂(バインダー樹脂)のガラス転移点(Tg)は約200℃であった。なお、本実施例におけるバインダー樹脂量(エポキシ樹脂量)は、コンパウンド全体を100質量%としたときに2.75質量%とした。   The glass transition point (Tg) of the epoxy resin (binder resin) used here was about 200 ° C. The amount of the binder resin (epoxy resin amount) in this example was 2.75% by mass when the entire compound was 100% by mass.

また被膜樹脂とは異なり、バインダー樹脂には少量のステアリン酸亜鉛を添加した。これはコンパウンドを圧縮成形してボンド磁石を製造する際に、ボンド磁石と成形型の内壁との間に生じる抜出力(ノックアウト荷重)を低減するためである。   Unlike the coating resin, a small amount of zinc stearate was added to the binder resin. This is for reducing the output force (knockout load) generated between the bond magnet and the inner wall of the mold when the compound is compression molded to produce the bond magnet.

《ボンド磁石の製造》
コンパウンドを大気中で成形型のキャビティへ投入し、配向磁場中(1.5T)で温間圧縮成形(120℃×1t/cm (98MPa)×10秒)した。これにより14mm角の立方体状の成形体を得た。この成形体をArガス中で150℃×1時間加熱して(キュア処理)、バインダー樹脂であるエポキシ樹脂を熱硬化させた。これを4.5Tのパルス磁場中で着磁してボンド磁石を得た。
<Manufacture of bonded magnets>
The compound was placed in the mold cavity in the atmosphere and warm compression molded (120 ° C. × 1 t / cm 2 (98 MPa) × 10 seconds) in an oriented magnetic field (1.5 T). As a result, a 14 mm square cubic compact was obtained. The molded body was heated in an Ar gas at 150 ° C. for 1 hour (curing treatment) to thermally cure the epoxy resin as a binder resin. This was magnetized in a 4.5 T pulse magnetic field to obtain a bonded magnet.

《表面観察》
試料No.1−3の磁石粉末からなるボンド磁石の表面をSEM観察した写真を図1A〜図1Cに示した。なお、SEM観察に際して、観察面には予めアルゴンシャワーの前処理を施した。写真中、黒色部分がバインダー樹脂部であり、灰色部分が被覆磁石粒子または基本磁石粒子である。その粒子の表面近傍を拡大した図1Cを観ると、粒子表面とバインダー樹脂との間に白色〜灰色をした薄層が明確に確認できる。この粒子表面上に密着し、緻密に形成された白色系の薄層が本発明でいう熱硬化樹脂被膜に相当する。
<< Surface observation >>
Sample No. The photograph which observed the surface of the bonded magnet which consists of 1-3 magnet powder by SEM was shown to FIG. 1A-FIG. 1C. In the SEM observation, the observation surface was pretreated with an argon shower in advance. In the photograph, the black part is the binder resin part, and the gray part is the coated magnet particle or the basic magnet particle. When FIG. 1C in which the vicinity of the surface of the particle is enlarged is observed, a white to gray thin layer can be clearly confirmed between the particle surface and the binder resin. The white thin layer formed in close contact with the particle surface and densely corresponds to the thermosetting resin film referred to in the present invention.

《測定》
(1)磁気特性
各第一磁石粉末の残留磁束密度(Br)をパルスBHトレーサを用いて測定した。この結果を表1に示した。
<Measurement>
(1) Magnetic characteristics The residual magnetic flux density (Br) of each first magnet powder was measured using a pulse BH tracer. The results are shown in Table 1.

(2)磁気特性の経時劣化
各ボンド磁石の磁束の経時変化をフラックスメータを用いて測定した。具体的には、先ず、ボンド磁石の初期磁束量(フラックス)φ0を測定した。次に、そのボンド磁石を80℃、湿度95%の恒温恒湿状態に1000時間おいた後に室温まで冷却して、ボンド磁
石の磁束量φtを再度測定した。その減磁分(φ0−φt)の初期磁束量φ0に対する割合((φ0−φt)/φ0)を百分率で表し、1000時間経過後の減磁率(Flux−loss:%)とした。各種ボンド磁石の減磁率を表1に併せて示した。
(2) Deterioration with time of magnetic characteristics The change with time in the magnetic flux of each bonded magnet was measured using a flux meter. Specifically, first, an initial magnetic flux amount (flux) φ0 of the bonded magnet was measured. Next, the bonded magnet was placed in a constant temperature and humidity state of 80 ° C. and 95% humidity for 1000 hours and then cooled to room temperature, and the magnetic flux amount φt of the bonded magnet was measured again. The ratio ((φ0−φt) / φ0) of the demagnetization amount (φ0−φt) to the initial magnetic flux amount φ0 is expressed as a percentage, and is defined as the demagnetization rate (Flux-loss:%) after 1000 hours. Table 1 also shows the demagnetization rates of various bonded magnets.

さらに、120℃の大気雰囲気中に1000時間おいた後のボンド磁石の減磁率も同様に測定し、その結果を表1に併せて示した。   Further, the demagnetization rate of the bonded magnet after 1000 hours in an air atmosphere at 120 ° C. was measured in the same manner, and the results are also shown in Table 1.

《評価》
(1)熱硬化樹脂被膜
表1に示した試料No.1−1と試料No.1−2〜1−7とを比較すると明らかなように、熱硬化樹脂被膜で被覆された磁石粒子からなる磁石粉末を用いると、ボンド磁石の減磁率が急激に改善され、耐候性が向上することがわかる。しかも、減磁率の改善は被膜樹脂量が0.1質量%程度で十分であった。逆に被膜樹脂量が増加しても、減磁率の向上はあまり望めず、残留磁束密度(Br)が低下した。特に被膜樹脂量が一定以上(例えば1質量%以上)になると、残留磁束密度(Br)の低下が急になった。従って、被膜樹脂量は、被処理粉末100質量%に対して0.1〜1質量%さらには0.2〜0.8質量%であると好ましいことがわかった。
<Evaluation>
(1) Thermosetting resin film Sample No. shown in Table 1 1-1 and Sample No. As is clear from comparison with 1-2 to 1-7, when a magnet powder made of magnet particles coated with a thermosetting resin film is used, the demagnetization rate of the bonded magnet is drastically improved and the weather resistance is improved. I understand that. In addition, the amount of the coating resin was about 0.1% by mass for improving the demagnetization rate. On the contrary, even if the amount of the coating resin increased, the improvement of the demagnetization rate could not be expected so much and the residual magnetic flux density (Br) decreased. In particular, when the amount of the coating resin was a certain value (for example, 1% by mass or more), the residual magnetic flux density (Br) was suddenly lowered. Therefore, it was found that the amount of the coating resin was preferably 0.1 to 1% by mass, and more preferably 0.2 to 0.8% by mass with respect to 100% by mass of the powder to be treated.

なお、熱硬化樹脂被膜による減磁率の改善は、120℃のときよりも、80℃×95%RHのときの方が著しく大きかった。この理由として、本発明に係る熱硬化樹脂被膜は、単に酸素遮蔽性が高いのみならず、吸水率が非常に低いためと考えられる。従って、熱硬化樹脂被膜で被覆された磁石粉末を用いることにより、高温環境下のみならず、過酷な高湿環境下においても、優れた耐候性のボンド磁石が得られることがわかる。
(2)未硬化樹脂被膜
表1に示した試料No.2−1〜2−6と試料No.1−1〜1−7と比較すると明らかなように、樹脂被膜が熱硬化していない磁石粉末からなるボンド磁石の減磁率は、樹脂被膜を設けない場合と同レベルで、その改善はごく僅かであった。この傾向は、被膜樹脂量が増加しても、また試験環境が異なっても、同様であった。
In addition, the improvement of the demagnetization factor by the thermosetting resin film was significantly larger at 80 ° C. × 95% RH than at 120 ° C. The reason is considered that the thermosetting resin film according to the present invention not only has a high oxygen shielding property but also has a very low water absorption rate. Therefore, it can be seen that by using the magnet powder coated with the thermosetting resin film, an excellent weather-resistant bonded magnet can be obtained not only in a high temperature environment but also in a severe high humidity environment.
(2) Uncured resin film Sample No. shown in Table 1 2-1 to 2-6 and Sample No. As is clear from comparison with 1-1 to 1-7, the demagnetization rate of the bonded magnet made of the magnet powder whose resin film is not thermally cured is the same level as the case where the resin film is not provided, and the improvement is very slight. Met. This tendency was the same even when the amount of the coating resin increased and the test environment was different.

Claims (7)

希土類元素(以下「R」と表す。)とホウ素(B)と遷移元素(以下「TM」と表す。)との正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子と、
該基本磁石粒子の表面を被覆する熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜と、
により構成される被覆磁石粒子からなることを特徴とする希土類磁石粉末。
A basic magnet which is an aggregate of R 2 TM 14 B type 1 crystals which are tetragonal compounds of rare earth elements (hereinafter referred to as “R”), boron (B) and transition elements (hereinafter referred to as “TM”). Particles,
A thermosetting resin film formed by thermosetting a thermosetting resin covering the surfaces of the basic magnet particles;
A rare earth magnet powder comprising coated magnet particles comprising:
前記熱硬化樹脂被膜は、カップリング剤の塗布された前記基本磁石粒子の表面に形成されている請求項1に記載の希土類磁石粉末。   The rare earth magnet powder according to claim 1, wherein the thermosetting resin film is formed on a surface of the basic magnet particle to which a coupling agent is applied. 前記カップリング剤は、チタン(Ti)を含むチタネート系カップリング剤である請求項2に記載の希土類磁石粉末。   The rare earth magnet powder according to claim 2, wherein the coupling agent is a titanate coupling agent containing titanium (Ti). RとBとTMとの正方晶化合物であるRTM14型結晶の集合体である基本磁石粒子の表面にカップリング剤を付着させるカップリング処理工程と、
該カップリング処理工程後の基本磁石粒子の表面に熱硬化性樹脂を付着させる樹脂付着工程と、
該熱硬化性樹脂を加熱して該基本磁石粒子の表面に該熱硬化性樹脂が熱硬化してなる熱硬化樹脂被膜を形成する被膜形成工程とを備え、
請求項1に記載の被覆磁石粒子からなる希土類磁石粉末が得られることを特徴とする希土類磁石粉末の製造方法。
A coupling treatment step of attaching a coupling agent to the surface of the basic magnet particles that are aggregates of R 2 TM 14 B type 1 crystals, which are tetragonal compounds of R, B, and TM;
A resin attachment step of attaching a thermosetting resin to the surface of the basic magnet particles after the coupling treatment step;
A film forming step of heating the thermosetting resin to form a thermosetting resin film formed by thermosetting the thermosetting resin on the surfaces of the basic magnet particles;
A rare earth magnet powder comprising the coated magnet particles according to claim 1 is obtained.
請求項1〜3のいずれかに記載の希土類磁石粉末と、
該希土類磁石粉末を結着させ得るバインダー樹脂と、
からなることを特徴とする希土類ボンド磁石用コンパウンド。
The rare earth magnet powder according to any one of claims 1 to 3,
A binder resin capable of binding the rare earth magnet powder;
A rare earth bonded magnet compound characterized by comprising:
請求項1〜3のいずれかに記載の希土類磁石粉末と、
該希土類磁石粉末を結着させたバインダー樹脂と、
からなることを特徴とする希土類ボンド磁石。
The rare earth magnet powder according to any one of claims 1 to 3,
A binder resin to which the rare earth magnet powder is bound;
A rare earth bonded magnet characterized by comprising:
前記希土類磁石粉末は、平均粒径の異なる2種以上からなる複合希土類磁石粉末である請求項6に記載の希土類ボンド磁石。   The rare earth bonded magnet according to claim 6, wherein the rare earth magnet powder is a composite rare earth magnet powder composed of two or more kinds having different average particle diameters.
JP2011063662A 2011-03-23 2011-03-23 Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet Pending JP2012199462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063662A JP2012199462A (en) 2011-03-23 2011-03-23 Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063662A JP2012199462A (en) 2011-03-23 2011-03-23 Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet

Publications (1)

Publication Number Publication Date
JP2012199462A true JP2012199462A (en) 2012-10-18

Family

ID=47181371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063662A Pending JP2012199462A (en) 2011-03-23 2011-03-23 Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet

Country Status (1)

Country Link
JP (1) JP2012199462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783134A (en) * 2017-01-18 2017-05-31 安徽大地熊新材料股份有限公司 A kind of surface is coated with the preparation method of the viscose glue magnet assembly of protective coating
JP2020072245A (en) * 2018-01-22 2020-05-07 日亜化学工業株式会社 Method of producing bonded magnet and compound for bonded magnet
WO2020184724A1 (en) 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464202A (en) * 1990-07-04 1992-02-28 Hitachi Metals Ltd Bonded magnet and manufacture thereof
JPH05315116A (en) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd Rare earth magnetic material resin composite material
JPH06302418A (en) * 1993-02-19 1994-10-28 Sumitomo Metal Ind Ltd Bond-type permanent magnet and its manufacture
JPH08167512A (en) * 1994-12-12 1996-06-25 Sumitomo Metal Mining Co Ltd Resin bound magnet and magnetic raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464202A (en) * 1990-07-04 1992-02-28 Hitachi Metals Ltd Bonded magnet and manufacture thereof
JPH05315116A (en) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd Rare earth magnetic material resin composite material
JPH06302418A (en) * 1993-02-19 1994-10-28 Sumitomo Metal Ind Ltd Bond-type permanent magnet and its manufacture
JPH08167512A (en) * 1994-12-12 1996-06-25 Sumitomo Metal Mining Co Ltd Resin bound magnet and magnetic raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783134A (en) * 2017-01-18 2017-05-31 安徽大地熊新材料股份有限公司 A kind of surface is coated with the preparation method of the viscose glue magnet assembly of protective coating
JP2020072245A (en) * 2018-01-22 2020-05-07 日亜化学工業株式会社 Method of producing bonded magnet and compound for bonded magnet
JP2020205455A (en) * 2018-01-22 2020-12-24 日亜化学工業株式会社 Method of producing bonded magnet and compound for bonded magnet
WO2020184724A1 (en) 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same

Similar Documents

Publication Publication Date Title
US20150187494A1 (en) Process for preparing rare earth magnets
JP6439876B2 (en) Magnet particle and magnet molded body using the same
JP4623232B2 (en) Rare earth bonded magnet
US20180122570A1 (en) Bonded permanent magnets produced by big area additive manufacturing
EP2484464A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP2008282832A (en) Rare-earth magnet
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
JP4865097B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2018090892A (en) Rare-earth-iron-nitrogen-based magnetic powder and method for producing the same
WO2012128371A1 (en) Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
WO2011125588A1 (en) Permanent magnet and manufacturing method for permanent magnet
JP2005325450A (en) Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
JP4084007B2 (en) Manufacturing method of magnetic material
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP2015008232A (en) Rare earth magnet and method for manufacturing the same
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
JP2018174314A (en) R-T-B based sintered magnet
JP2018160669A (en) R-t-b based rare earth magnet
WO2007138853A1 (en) Soft magnetic material and dust core
JP4784173B2 (en) Rare earth magnet and manufacturing method thereof
JP2006028602A (en) Rare-earth anisotropic magnet powder
JP2015008233A (en) Method for manufacturing rare earth magnet
Mitarai et al. Development of compound for anisotropic bonded Nd magnets using d-HDDR magnet powder
JP2015008231A (en) Rare earth magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331