JPH1167568A - Manufacture of bonded magnet - Google Patents

Manufacture of bonded magnet

Info

Publication number
JPH1167568A
JPH1167568A JP9217641A JP21764197A JPH1167568A JP H1167568 A JPH1167568 A JP H1167568A JP 9217641 A JP9217641 A JP 9217641A JP 21764197 A JP21764197 A JP 21764197A JP H1167568 A JPH1167568 A JP H1167568A
Authority
JP
Japan
Prior art keywords
magnetic field
powder
magnetic
orientation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9217641A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hashimasa
好行 橋正
Masakazu Okita
雅一 大北
Nobutsugu Mino
修嗣 三野
Naoyuki Ishigaki
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9217641A priority Critical patent/JPH1167568A/en
Publication of JPH1167568A publication Critical patent/JPH1167568A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Abstract

PROBLEM TO BE SOLVED: To enhance the orientational degree of magnetic anisotropy, magnetic powder in a short molding time by a method wherein a pulsed magnetic field, whose magnetic field directions are alternately inverted, is applied to the magnetic powder a plurality of times and thereafter, an electrode magnetic field is applied to the magnetic powder and while the orientational degree of the magnetic powder is held, the powder is press-molded. SOLUTION: A pulsed magnetic field (an inverting pulsed magnetic field), whose magnetic field directions are alternately inverted, is applied to magnetic anisotropy magnetic powder, which is a raw material filled in a mold cavity, a plurality of times. The number of times of the application of the inverting pulsed magnetic field is set at two times or more and is set at about two to five times. After that, while an electrostatic magnetic field is applied to the raw powder, an upper punch is pushed down to press mold the raw powder in the mold cavity. At this time, the direction of the electrostatic magnetic field is made equal with the direction of the last pulsed magnetic field of the plurality of times of the inverting pulsed magnetic fields. After the press molding, the raw powder is cooled at a proper temperature, a current in the opposite direction to the orientational direction of the pulsed magnetic field is made to flow through a magnetic field coil for electrostatic magnetic field generation use, the raw powder is demagnetized and a molded material is demolded. Thereby, a magnetic anisotropy bonded magnet having a high orientational degree is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁場中プレス成形
による磁気異方性ボンド磁石の製造方法に関し、磁気異
方性磁性粉末の配向度が向上し、従って磁気特性が改善
されたボンド磁石の製造が可能な方法を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetically anisotropic bonded magnet by press molding in a magnetic field, and more particularly to a bonded magnet having an improved degree of orientation of a magnetic anisotropic magnetic powder and thus improved magnetic properties. It provides a method that can be manufactured.

【0002】[0002]

【従来の技術】磁性粉末 (以下、磁粉ともいう) を樹脂
で結合したボンド磁石は、磁粉を焼結して製造される従
来の焼結磁石に比べ、磁性を発現しない樹脂分を含むた
め磁気特性はやや劣る。しかし、焼結による収縮がない
ため寸法精度が良く、種々の形状の磁石が簡単に得られ
る上、焼結磁石の硬くて脆く、欠け易いという欠点が解
消され、耐薬品性や耐候性にも優れている。そのため、
ボンド磁石は一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器に至るまで広く応用されており、
特にスピンドルモーター、ステッピングモーター等の小
型モーターに近年多く用いられている。
2. Description of the Related Art A bonded magnet in which magnetic powder (hereinafter, also referred to as magnetic powder) is bonded with a resin contains a resin component that does not exhibit magnetism as compared with a conventional sintered magnet manufactured by sintering magnetic powder. Characteristics are somewhat inferior. However, since there is no shrinkage due to sintering, dimensional accuracy is good, magnets of various shapes can be easily obtained, and the disadvantages of sintered magnets that are hard, brittle and easily chipped are eliminated, and chemical resistance and weather resistance are also improved. Are better. for that reason,
Bond magnets are widely applied from various home appliances to peripheral devices for large computers.
In particular, it has recently been widely used for small motors such as spindle motors and stepping motors.

【0003】ボンド磁石は、永久磁石材料となるハード
フェライトや希土類合金などの磁粉を、エポキシ樹脂、
フェノール樹脂、ポリエステル樹脂などの熱硬化性樹
脂、またはポリアミド樹脂、ポリプロピレン樹脂、ポリ
フェニレンサルファイド樹脂などの熱可塑性樹脂をバイ
ンダーとして成形することにより製造される。
[0003] A bonded magnet is made by using magnetic powder such as hard ferrite or a rare earth alloy as a permanent magnet material with an epoxy resin,
It is manufactured by molding a thermosetting resin such as a phenol resin or a polyester resin, or a thermoplastic resin such as a polyamide resin, a polypropylene resin, or a polyphenylene sulfide resin as a binder.

【0004】成形方法としては、射出成形、押出成形、
プレス成形などが可能である。このうち、射出成形と押
出成形は、高い流動性が必要なため、バインダーには一
般に熱可塑性樹脂が使用される。成形温度はバインダー
の種類により異なるが、ポリプロピレン樹脂の場合で 2
00〜300 ℃、ポリアミド樹脂の場合では 250〜300 ℃と
高くなる。
[0004] Molding methods include injection molding, extrusion molding,
Press molding and the like are possible. Of these, injection molding and extrusion molding require high fluidity, so that a thermoplastic resin is generally used for the binder. The molding temperature depends on the type of binder, but it is 2
It is as high as 00 to 300 ° C and 250 to 300 ° C for polyamide resin.

【0005】プレス成形 (圧縮成形、加圧成形ともい
う) には、主に熱硬化性樹脂がバインダーとして用いら
れる。通常、予め磁粉とバインダーとを複合化させた原
料粉末(「コンパウンド」と呼ばれる) を作製し、それ
を金型内に投入して、パンチで加圧することによりプレ
ス成形を行う。得られた成形体 (圧粉体とも呼ばれる)
を次いで加熱して、バインダーの熱硬化性樹脂を硬化さ
せる。
In press molding (also referred to as compression molding or pressure molding), a thermosetting resin is mainly used as a binder. Usually, a raw material powder (referred to as “compound”) in which a magnetic powder and a binder are compounded in advance is prepared, put into a mold, and press-formed by pressing with a punch. Obtained compact (also called green compact)
Is then heated to cure the thermosetting resin of the binder.

【0006】ボンド磁石の最終強度はこの熱硬化時に付
与されるので、硬化前の成形体の強度は、加熱設備への
搬入に必要なハンドリングが可能な程度であればよい。
そのため、プレス成形の温度は通常は室温である。プレ
ス成形は、射出および押出成形に比べ、樹脂量が少なく
てすみ、従って磁粉の充填率が大きくなるので、より優
れた磁気特性を持つボンド磁石の製造が可能である。
[0006] Since the final strength of the bonded magnet is given at the time of this heat curing, the strength of the molded body before the curing is sufficient as long as the handling required for carrying into the heating equipment is possible.
Therefore, the temperature for press molding is usually room temperature. Press molding requires a smaller amount of resin than injection and extrusion molding, and thus increases the filling ratio of magnetic powder, so that a bonded magnet having better magnetic properties can be manufactured.

【0007】磁粉それ自体の磁気特性向上についても研
究が進み、Sm2Co17 合金系やNd−Fe−B合金系の磁粉で
は、従来のどの方向に磁化しても同じ磁気特性を示す等
方性の磁粉に比べてより優れた磁気特性を示すことがで
きる、磁気異方性の磁粉が開発されている。
Researches have also been conducted on improving the magnetic properties of the magnetic powder itself. In the case of Sm 2 Co 17 alloy-based or Nd-Fe-B alloy-based magnetic powders, the same magnetic properties are exhibited even when magnetized in any conventional direction. Magnetic anisotropic magnetic powder has been developed which can exhibit more excellent magnetic properties as compared with non-conductive magnetic powder.

【0008】この異方性の磁粉は、或る一定方向 (磁化
容易方向) にのみ磁気特性が極めて高いので、樹脂で結
合する際に磁粉の磁化容易方向が揃うように、成形を磁
場の作用下に行う。通常は、成形に用いる金型に、磁気
回路を形成するための磁場コイルなどを付設して、粉末
に磁場を作用させることにより粉末を回転させ、異方性
磁粉の磁化容易方向を磁場の方向に揃える (即ち、粉末
を配向させる) 。
This anisotropic magnetic powder has extremely high magnetic properties only in a certain fixed direction (the direction of easy magnetization). Do it below. Usually, a magnetic field coil or the like for forming a magnetic circuit is attached to a mold used for molding, and a magnetic field is applied to the powder to rotate the powder, thereby changing the direction of easy magnetization of the anisotropic magnetic powder to the direction of the magnetic field. (Ie, orient the powder).

【0009】磁粉が同じである場合、ボンド磁石の磁気
特性を向上させるには、磁粉の充填率を高めることと、
異方性磁粉の場合にはその磁気配向度 (磁化容易方向が
揃っている磁粉の割合) を高めることが有効であり、そ
のための工夫が従来より数多く提案されている。
When the magnetic powder is the same, the magnetic properties of the bonded magnet can be improved by increasing the filling rate of the magnetic powder,
In the case of anisotropic magnetic powder, it is effective to increase the degree of magnetic orientation (the ratio of the magnetic powder in which the direction of easy magnetization is uniform), and many devices have been proposed for that purpose.

【0010】例えば、バインダーの熱硬化性樹脂の流動
性を高めるためプレス成形を加熱下に実施すると、磁粉
の充填率が高くなることが特開平1−205403号公報およ
び特開平2−116104号公報に記載されている。
For example, Japanese Patent Application Laid-Open Nos. 1-205403 and 2-116104 show that when press molding is carried out under heating to increase the fluidity of a thermosetting resin as a binder, the filling ratio of magnetic powder becomes high. It is described in.

【0011】一方、磁気配向度の向上についても、磁場
の印加方法により磁気配向度を向上させる手段がいくつ
か提案されている。例えば、特開昭62−262413号公報に
は、配向磁場として0.5 秒以下のパルス磁場のみを使用
する方法が記載されている。
On the other hand, with respect to the improvement of the degree of magnetic orientation, several means for improving the degree of magnetic orientation by applying a magnetic field have been proposed. For example, Japanese Patent Application Laid-Open No. 62-262413 describes a method using only a pulse magnetic field of 0.5 seconds or less as an alignment magnetic field.

【0012】特開昭63−120407号公報には、コンパウン
ドを予め磁化した後、磁場プレス成型機に供給し、静磁
場中で磁場配向プレス成形する方法が開示されている。
また、特開昭60−88418 号公報、特開昭60−10277 号公
報、特開平4−112504号公報には、配向磁場として静磁
場とパルス磁場とを併用するさまざまな方法が提案され
ている。
Japanese Patent Application Laid-Open No. 63-120407 discloses a method in which a compound is magnetized in advance, then supplied to a magnetic field press molding machine, and subjected to magnetic field orientation press molding in a static magnetic field.
Further, Japanese Patent Application Laid-Open Nos. 60-88418, 60-10277, and 4-112504 propose various methods using a static magnetic field and a pulsed magnetic field together as an alignment magnetic field. .

【0013】特開平8−31677 号各公報には、異方性磁
粉と熱硬化性樹脂粉末とを主成分とする原料粉末を温度
と磁界を制御できる金型に充填し、加熱して樹脂が溶融
状態になってから磁界を印加して磁粉を配向させつつ、
次いで加圧して圧縮成形を行う方法が開示されている。
JP-A-8-31677 discloses that a raw material powder containing anisotropic magnetic powder and a thermosetting resin powder as main components is filled in a mold capable of controlling a temperature and a magnetic field, and heated to reduce the resin. While applying a magnetic field after melting, orienting the magnetic powder,
Then, a method of performing compression molding by applying pressure is disclosed.

【0014】特開昭63−153806号公報、特開平1−2455
03号公報、特開平4−28207 号公報には、配向磁場とし
て正逆交番の静磁場を印加する方法が提案されている。
JP-A-63-153806, JP-A-1-2455
Japanese Patent Application Laid-Open No. 03-28207 and Japanese Patent Application Laid-Open No. 4-28207 propose a method of applying a forward / reverse alternating static magnetic field as an orientation magnetic field.

【0015】[0015]

【発明が解決しようとする課題】ボンド磁石の磁場配向
プレス成形において実際に採用されている主流は、配向
磁場として静磁場を使用する方法である。しかし、配向
磁場が静磁場のみでは、異方性磁粉の配向度を増大させ
るために配向磁場強度を大きくすると、コイルの巻き数
が増大し、コイルを付設した金型が大型化する。さら
に、巻き数の多いコイルに大電流を流すので、コイルに
は加熱を防ぐための大型の冷却装置が必要になる。その
ため、設備全体が大型化し、一台のプレス装置で多数個
取りできるような装置の実現は難しい。また、大電流を
持続して流すため電力消費が多く、コストが高くなると
いう問題もある。
The mainstream used in the magnetic field orientation press molding of bonded magnets is a method using a static magnetic field as the orientation magnetic field. However, when the orientation magnetic field is only a static magnetic field, if the intensity of the orientation magnetic field is increased in order to increase the degree of orientation of the anisotropic magnetic powder, the number of windings of the coil increases, and the mold provided with the coil becomes large. Further, since a large current flows through the coil having a large number of turns, a large cooling device for preventing heating is required for the coil. For this reason, it is difficult to realize an apparatus that can increase the size of the entire equipment and can take a large number of pieces with one press apparatus. In addition, there is also a problem that power consumption is large and a cost is increased because a large current is continuously supplied.

【0016】特開昭62−262413号公報に提案のように、
配向磁場としてパルス磁場のみを使用する方法では、パ
ルス磁場の持続時間が通常は数ミリ秒と短く、パルス電
流を発生させるための充電時間に数秒かかることから、
加圧成形中の短い時間しか配向磁場を作用させることが
できない。さらに、パルス磁場を付与するタイミングが
配向度に大きく影響する。以上より、異方性磁粉の配向
性を十分に向上させることができない。
As proposed in JP-A-62-262413,
In the method using only the pulse magnetic field as the orientation magnetic field, the duration of the pulse magnetic field is usually as short as several milliseconds, and the charging time for generating the pulse current takes several seconds,
The orientation magnetic field can be applied only for a short time during the pressing. Furthermore, the timing at which the pulse magnetic field is applied greatly affects the degree of orientation. As described above, the orientation of the anisotropic magnetic powder cannot be sufficiently improved.

【0017】特開昭63−120407号公報に記載のコンパウ
ンドを予め磁化した後、静磁場中で磁場配向プレス成形
する方法では、金型に供給する前に磁化させたコンパウ
ンドが磁力により凝集し易く、金型への給粉性が低下す
るため、充填量のバラツキが生じ易く、その結果、生産
性が低下する。
In the method described in Japanese Patent Application Laid-Open No. 63-120407, in which a compound is magnetized in advance and then subjected to magnetic field orientation press molding in a static magnetic field, the compound magnetized before being supplied to a mold is easily aggregated by magnetic force. In addition, since the powder feeding property to the mold is reduced, a variation in the filling amount is likely to occur, and as a result, the productivity is reduced.

【0018】特開昭60−88418 号公報に記載の方法で
は、高パルス磁場で予め磁粉を着磁させた後、静磁場中
で着磁方向とは異なる方向に配向させながらプレス成形
を行う。この方法は、希土類合金系の異方性磁粉が一般
に不規則形状であるため、プレス成形中に磁粉が回転し
にくく、高配向化することは困難である。
In the method described in Japanese Patent Application Laid-Open No. 60-88418, after magnetic particles are magnetized in advance with a high pulse magnetic field, press molding is performed in a static magnetic field while orienting in a direction different from the magnetization direction. In this method, since the rare-earth alloy-based anisotropic magnetic powder generally has an irregular shape, it is difficult for the magnetic powder to rotate during press molding, and it is difficult to achieve high orientation.

【0019】特開昭60−10277 号公報には、パルス磁場
を印加した後、永久磁石による静磁場を用いて磁粉の配
向方向を保持しておいてプレス成形する方法が開示され
ている。コイルを用いて配向磁場を発生させる方法を取
れば、プレス成形終了直前に電流を反対方向に流し、成
形体を脱磁することができるが、永久磁石を用いる方法
ではこの脱磁ができないため、成形後の成形体の取り扱
いが困難である。
Japanese Patent Application Laid-Open No. 60-10277 discloses a method in which after applying a pulse magnetic field, press molding is performed while maintaining the orientation direction of the magnetic powder using a static magnetic field by a permanent magnet. If a method of generating an orientation magnetic field using a coil is employed, a current can be flowed in the opposite direction immediately before the end of press molding to demagnetize the molded body.However, since a method using a permanent magnet cannot demagnetize the molded body, It is difficult to handle the molded article after molding.

【0020】特開平4−112504号公報には、コンパウン
ドをコイル静磁場中で加圧成形する際に、上パンチによ
る加圧圧縮を複数回に分けて行い、それぞれの加圧圧縮
時にパルス磁場を重畳させて印加する方法が提示されて
いる。この方法は、圧縮回数が多いほど磁気特性が向上
するものの、成形時間が長くなる。また、パルス磁場を
印加するタイミングが成形体の配向度に及ぼす影響が大
きい上、加圧力が増す2回目や3回目のパルス磁場は配
向度の向上に有効に作用しない。
Japanese Patent Application Laid-Open No. 4-112504 discloses that when a compound is pressed and formed in a static magnetic field of a coil, pressurization and compression by an upper punch are performed in a plurality of times, and a pulsed magnetic field is applied at each pressurization and compression. A method of superimposing and applying the voltage is proposed. In this method, the magnetic properties are improved as the number of compressions is increased, but the molding time is increased. In addition, the timing at which the pulse magnetic field is applied greatly affects the degree of orientation of the compact, and the second and third pulse magnetic fields in which the pressing force increases do not effectively work to improve the degree of orientation.

【0021】特開平8−31677 号公報に記載の方法は、
加熱下で磁場配向プレス成形を行うため、プレス成形時
に樹脂が軟化・溶融し、磁粉が動き易くなる。そのた
め、磁粉の充填率と配向度が向上し、磁気特性に優れた
磁気異方性ボンド磁石が得られると説明されている。し
かし、本発明者らが検討した結果、この方法でも異方性
磁粉の配向度は十分に向上せず、なお改良の余地がある
ことが判明した。
The method described in JP-A-8-31677 is
Since the magnetic field orientation press molding is performed under heating, the resin is softened and melted during the press molding, and the magnetic powder becomes easy to move. Therefore, it is described that the filling rate and the degree of orientation of the magnetic powder are improved, and a magnetic anisotropic bonded magnet having excellent magnetic properties is obtained. However, as a result of investigations by the present inventors, it was found that even with this method, the degree of orientation of the anisotropic magnetic powder was not sufficiently improved, and there is still room for improvement.

【0022】配向磁場として正逆交番の静磁場を印加す
る方法は、磁場が静磁場であるため、先に述べたよう
に、異方性磁粉の配向性を上昇するために磁場強度を大
きくするとコイルの巻き数が増大し、金型が大型化し、
1台のプレス成形装置で多数個取りできるような装置の
実現は難しい上、エネルギーコストも高くなる。また、
飽和磁化が高い磁気異方性磁粉では磁粉が充分に磁化さ
れず、配向度が十分に向上しない。
In the method of applying a forward / reverse alternating static magnetic field as the orientation magnetic field, since the magnetic field is a static magnetic field, as described above, if the magnetic field strength is increased to increase the orientation of the anisotropic magnetic powder, The number of turns of the coil increases, the mold becomes larger,
It is difficult to realize an apparatus capable of taking a large number of pieces by one press molding apparatus, and the energy cost increases. Also,
With magnetically anisotropic magnetic powder having high saturation magnetization, the magnetic powder is not sufficiently magnetized, and the degree of orientation is not sufficiently improved.

【0023】本発明は、成形時間を長くせずに、磁気異
方性磁粉の磁場配向プレス成形における磁粉の配向度を
さらに向上させることができ、それにより磁気特性がよ
り向上した磁気異方性ボンド磁石を製造することが可能
な方法を開発することを課題とする。
According to the present invention, it is possible to further improve the degree of orientation of a magnetic anisotropic magnetic powder in a magnetic field orientation press molding without elongating a molding time, thereby improving magnetic properties. It is an object to develop a method capable of manufacturing a bonded magnet.

【0024】[0024]

【課題を解決するための手段】本発明者らは、短い成形
時間で磁気異方性磁粉の配向度が向上する効率の良い配
向磁場条件と成形条件について鋭意検討した結果、磁場
方向が交互に反転するパルス磁場 (以下、反転パルス磁
場ともいう) を複数回印加すると異方性磁粉の配向度が
大きく向上すること、この向上した配向度をその後に静
磁場を印加して保持しながらプレス成形を行うことによ
り、配向度が著しく向上し、従って磁気特性に優れたボ
ンド磁石を製造できることを見いだし、本発明に到達し
た。
Means for Solving the Problems The present inventors have conducted intensive studies on efficient orientation magnetic field conditions and molding conditions that improve the degree of orientation of magnetically anisotropic magnetic powder in a short molding time. Applying a reversing pulse magnetic field (hereinafter, also referred to as a reversing pulse magnetic field) a plurality of times greatly improves the degree of orientation of the anisotropic magnetic powder. Press molding is performed while maintaining the improved degree of orientation by applying a static magnetic field. It has been found that by carrying out, the degree of orientation is remarkably improved, and thus a bonded magnet having excellent magnetic properties can be produced, and the present invention has been achieved.

【0025】ここに、本発明は、磁気異方性の磁性粉末
と熱硬化性樹脂とからなる原料粉末を金型に充填し、磁
場中でプレス成形した後、成形体を加熱して樹脂を硬化
させることからなるボンド磁石の製造方法であって、金
型に充填した原料粉末を、まず磁場方向が交互に反転す
るパルス磁場を複数回印加した後、静磁場を印加しなが
らプレス成形を行い、その際に静磁場の方向と、静磁場
を印加する直前のパルス磁場の方向が同じであることを
特徴とする、ボンド磁石の製造方法である。
Here, the present invention provides a method in which a raw material powder composed of a magnetic anisotropic magnetic powder and a thermosetting resin is filled in a mold, press-molded in a magnetic field, and the molded body is heated to form a resin. A method for manufacturing a bonded magnet, comprising curing a raw material powder filled in a mold, first applying a pulse magnetic field in which the magnetic field direction is alternately reversed a plurality of times, and then performing press molding while applying a static magnetic field. A method of manufacturing a bonded magnet, wherein the direction of the static magnetic field is the same as the direction of the pulse magnetic field immediately before the application of the static magnetic field.

【0026】好適態様にあっては、金型に充填した原料
粉末を、該熱硬化性樹脂の溶融温度以上に加熱した状態
で、パルス磁場の印加および静磁場の印加下でのプレス
成形を行う。
In a preferred embodiment, press molding under application of a pulse magnetic field and a static magnetic field is performed while the raw material powder filled in the mold is heated to a temperature not lower than the melting temperature of the thermosetting resin. .

【0027】本発明の方法により配向度が著しく向上し
たボンド磁石が製造できる理由としては、次のように考
えられる。磁場強度の大きいパルス磁場を印加すること
で飽和磁化の大きい磁気異方性磁粉が大きく磁化される
とともに、このパルス磁場の方向を交互に反転させて複
数回印加することで、特に不規則形状を有する磁気異方
性磁粉にもパルス磁場による回転トルクが有効に作用
し、配向度が向上する。そして、最後のパルス磁場方向
と同一方向の静磁場を印加しながらプレス成形を行うこ
とにより、パルス磁場により得られた高い磁粉の配向度
がプレス成形中も保持されるため、配向度の著しい向上
が得られる。さらに、上記の磁場配向をコンパウンドの
樹脂の溶融温度以上の温間で実施すると、樹脂の溶融に
より磁性粉末間の摩擦力が低減し、パルス磁場による磁
気力による回転トルクが磁気異方性磁粉の配向により有
効に作用し、配向度の一層の向上が得られる。
The reason why a bonded magnet with a significantly improved degree of orientation can be produced by the method of the present invention is considered as follows. By applying a pulse magnetic field having a large magnetic field strength, the magnetic anisotropic magnetic powder having a large saturation magnetization is greatly magnetized, and by applying the pulse magnetic field alternately and applying a plurality of times, the irregular shape is particularly reduced. The rotating torque due to the pulsed magnetic field effectively acts on the magnetic anisotropic magnetic powder, thereby improving the degree of orientation. Press molding is performed while applying a static magnetic field in the same direction as the last pulse magnetic field direction, so that the high degree of orientation of the magnetic powder obtained by the pulse magnetic field is maintained during press molding, so that the degree of orientation is significantly improved. Is obtained. Furthermore, when the above-described magnetic field orientation is performed at a temperature higher than the melting temperature of the resin of the compound, the frictional force between the magnetic powders is reduced due to the melting of the resin, and the rotational torque due to the magnetic force due to the pulsed magnetic field causes the magnetic anisotropic magnetic powder It works effectively by the orientation and further improves the degree of orientation.

【0028】[0028]

【発明の実施の形態】本発明のボンド磁石の製造方法に
用いる原料粉末は、従来のプレス成形用のコンパウンド
と同様に、磁粉とバインダーの熱硬化性樹脂とからな
る。原料粉末は、磁粉と熱硬化性樹脂粉末との混合物で
もよいが、磁粉を熱硬化性樹脂で被覆したものの方が樹
脂が磁粉に対してより均一に分布しているため好まし
い。熱硬化性樹脂による磁粉の被覆は、押出機等を用い
て熱硬化性樹脂をその溶融温度以上で硬化温度より低温
にて磁粉と溶融混練するか、または熱硬化性樹脂の溶液
を磁粉と混合した後、溶媒を蒸発させるといった慣用法
により実施できる。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material powder used in the method for producing a bonded magnet of the present invention comprises a magnetic powder and a thermosetting resin as a binder, similarly to a conventional compound for press molding. The raw material powder may be a mixture of a magnetic powder and a thermosetting resin powder, but a material obtained by coating the magnetic powder with a thermosetting resin is preferable because the resin is more uniformly distributed with respect to the magnetic powder. The coating of the magnetic powder with the thermosetting resin is performed by melting and kneading the thermosetting resin with the magnetic powder at a temperature higher than its melting temperature and lower than the curing temperature using an extruder, or mixing the solution of the thermosetting resin with the magnetic powder. After that, it can be carried out by a conventional method such as evaporating the solvent.

【0029】磁粉は磁気異方性のものを利用する。磁粉
の種類は特に制限されないが、通常はSm2Co17 系、Sm−
Fe−N系、Nd−Fe−B系等の希土類合金からなる。磁気
異方性磁粉は、急冷凝固法により製造した磁粉を熱間静
水圧プレスし、成形体を塑性加工後に粉砕する方法、水
素処理 (HDDR) 法などの従来法により製造したものでよ
い。希土類合金系の磁気異方性の磁粉は一般に不規則形
状の粉末であるため、配向度が低くなるが、本発明はこ
のような粉末に適用した時に配向度の向上効果が大き
い。好ましい磁粉は、Nd−Fe−B系、Sm−Fe−N系など
を含む希土類鉄系合金の粉末である。
The magnetic powder uses magnetic anisotropy. The type of the magnetic powder is not particularly limited, but is usually Sm 2 Co 17 type, Sm−
It is made of a rare earth alloy such as Fe-N-based or Nd-Fe-B-based. The magnetic anisotropic magnetic powder may be produced by a conventional method such as a method of hot isostatic pressing magnetic powder produced by a rapid solidification method, pulverizing the compact after plastic working, or a hydrogen treatment (HDDR) method. Rare earth alloy-based magnetic anisotropic magnetic powders are generally irregular shaped powders, and therefore have a low degree of orientation. However, the present invention has a large effect of improving the degree of orientation when applied to such powders. Preferred magnetic powders are rare earth iron-based alloy powders including Nd-Fe-B-based, Sm-Fe-N-based and the like.

【0030】粉末の粒度も広範囲に適用可能であるが、
平均粒径が 0.5〜350 μmの範囲内が好適である。0.5
μm未満であると外部配向磁場により磁粉に作用する回
転トルクが小さく、磁気特性が低下し、350 μmを越え
ると、磁石中の空孔サイズが大きくなり、表面処理に対
して問題になる。より好ましい粒度範囲は、38μm以
上、300 μm未満である。
Although the particle size of the powder is widely applicable,
The average particle size is preferably in the range of 0.5 to 350 μm. 0.5
If it is less than μm, the rotational torque acting on the magnetic powder due to the externally oriented magnetic field is small, and the magnetic properties are degraded. A more preferred particle size range is 38 μm or more and less than 300 μm.

【0031】バインダーとして用いる熱硬化性樹脂も特
に制限されず、従来よりボンド磁石に使用されてきたエ
ポキシ樹脂、フェノール樹脂、ポリエステル樹脂、メラ
ミン樹脂などが使用できる。樹脂の常温での性状は液状
でも固形でもよいが、金型への投入のしやすさからは固
形が望ましい。さらに固形樹脂の溶融温度が45℃〜90℃
の範囲であることが望ましい。
The thermosetting resin used as the binder is not particularly limited, and an epoxy resin, a phenol resin, a polyester resin, a melamine resin and the like which have been conventionally used for a bonded magnet can be used. The properties of the resin at room temperature may be liquid or solid, but solids are desirable from the viewpoint of ease of introduction into a mold. Furthermore, the melting temperature of the solid resin is 45 ° C to 90 ° C
Is desirably within the range.

【0032】溶融温度が45℃未満であると、連続的にプ
レス成形を行う場合、パンチと金型および/または粉末
と金型との摩擦熱により金型温度が上昇する可能性があ
るため、金型への投入時に原料粉末が付着しやすく、投
入しづらくなる。逆に溶融温度が90℃を越えると、樹脂
が溶融するまで金型内の原料粉末を加熱するのに時間を
要するため、生産性が低下する。
When the melting temperature is lower than 45 ° C., when the press molding is performed continuously, the mold temperature may increase due to frictional heat between the punch and the mold and / or the powder and the mold. The raw material powder easily adheres to the mold when it is put into the mold, making it difficult to put it. Conversely, if the melting temperature exceeds 90 ° C., it takes time to heat the raw material powder in the mold until the resin is melted, so that the productivity is reduced.

【0033】磁粉に対するバインダー (熱硬化性樹脂)
の混合比率は1〜20wt%とするのが好ましい。この混合
比率が1wt%未満では、成形されたボンド磁石内の磁粉
間の結合が不十分となり、成形性が悪く、得られた成形
体と最終的に得られるボンド磁石の機械的強度が著しく
低下する。一方、バインダーの混合比率が20wt%を越え
ると、磁粉の割合が低下し、磁気特性が著しく低下す
る。磁粉をバインダー樹脂で被覆する場合には、バイン
ダーの好ましい混合比率は2wt%以上、10wt%以下であ
り、より好ましくは2wt%以上、5wt%以下である。
Binder for magnetic powder (thermosetting resin)
Is preferably 1 to 20% by weight. If the mixing ratio is less than 1% by weight, the bonding between the magnetic powders in the formed bonded magnet becomes insufficient, the formability is deteriorated, and the mechanical strength of the obtained formed body and the finally obtained bonded magnet are significantly reduced. I do. On the other hand, when the mixing ratio of the binder exceeds 20% by weight, the ratio of the magnetic powder is reduced, and the magnetic characteristics are significantly reduced. When the magnetic powder is coated with a binder resin, a preferable mixing ratio of the binder is 2 wt% or more and 10 wt% or less, more preferably 2 wt% or more and 5 wt% or less.

【0034】原料粉末には、熱硬化性樹脂と磁粉の他
に、必要に応じて、カップリング剤、潤滑剤等の従来よ
り用いられてきた各種の添加剤を少量であれば添加でき
る。また、熱硬化性樹脂による被覆を異なる樹脂で2層
以上施すこともできる。
[0034] In addition to the thermosetting resin and the magnetic powder, various additives conventionally used such as a coupling agent and a lubricant can be added to the raw material powder if necessary in a small amount. Further, two or more layers of the thermosetting resin can be coated with different resins.

【0035】この原料粉末を金型に給粉して磁場中プレ
ス成形を行う。本発明では、磁場配向を反転パルス磁場
を印加した後、静磁場中でプレス成形を行う。また、プ
レス成形温度は、常温でもよいが、好ましくはバインダ
ーの熱硬化性樹脂が溶融する温間で行う。バインダーの
溶融により磁粉間の摩擦力が低下するので、配向磁場に
より磁粉に作用する回転トルクが配向により有効に作用
し、異方性磁粉の配向度が著しく向上した成形体が得ら
れる。
The raw material powder is fed into a mold and press-formed in a magnetic field. In the present invention, press molding is performed in a static magnetic field after applying a reversing pulse magnetic field to the magnetic field orientation. The press molding temperature may be room temperature, but is preferably performed at a temperature at which the thermosetting resin of the binder is melted. Since the frictional force between the magnetic powders is reduced by the melting of the binder, the rotational torque acting on the magnetic powders due to the orientation magnetic field is more effectively applied to the orientations, thereby obtaining a molded article in which the degree of orientation of the anisotropic magnetic powders is significantly improved.

【0036】従って、使用するプレス成形機は、電磁石
等のパルス磁場および静磁場の印加手段と、好ましくは
金型の加熱手段とを備えている。パルス磁場は、静磁場
発生用と同じコイルを利用して印加することもできる
が、発生可能なパルス磁場強度が制限されるので、静磁
場発生用の電磁石とは別に、パルス磁場発生用空心コイ
ルを設置することが好ましい。
Therefore, the press molding machine to be used is provided with means for applying a pulse magnetic field and a static magnetic field such as an electromagnet, and preferably means for heating a mold. The pulse magnetic field can be applied using the same coil as that used for generating the static magnetic field, but the pulse magnetic field strength that can be generated is limited, so apart from the electromagnet for generating the static magnetic field, the air-core coil for generating the pulse magnetic field can be used. Is preferably installed.

【0037】温間プレス成形する場合の加熱温度 (原料
粉末の加熱は金型を通じて行われるので、実際には金型
の加熱温度) は、原料粉末に用いた熱硬化性樹脂の溶融
温度以上とすることが好ましい。もちろん、この温度は
この熱硬化性樹脂の硬化温度以上に高くしてはならな
い。好ましい加熱温度は、熱硬化性樹脂の溶融温度以上
で、溶融温度+50℃以下、より好ましくは溶融温度+30
℃以下、特に好ましくは溶融温度+20℃以下である。
The heating temperature for warm press molding (the heating temperature of the mold is actually higher than the melting temperature of the thermosetting resin used for the raw material powder) because the heating of the raw material powder is performed through a mold. Is preferred. Of course, this temperature must not be higher than the curing temperature of the thermosetting resin. The preferred heating temperature is not lower than the melting temperature of the thermosetting resin and not higher than the melting temperature + 50 ° C, more preferably the melting temperature +30.
° C or lower, particularly preferably a melting temperature + 20 ° C or lower.

【0038】配向磁場の強さは、静磁場は好ましくは8
kOe 以上、より好ましくは10 kOe以上であり、パルス磁
場は好ましくは10 kOe以上、より好ましくは25 kOe以上
である。静磁場が8kOe 未満、またはパルス磁場が10 k
Oe未満であると、得られたボンド磁石の配向度がかなり
低下する。配向磁場の強さの上限は特に限定されず、磁
場が強いほど磁粉の配向度が向上する傾向があるが、上
記のより好ましい磁場の強さを超えた場合の配向度の向
上はそれほど大きくない。磁場強さを過大にするとエネ
ルギーコストや装置が大型化するので、通常は静磁場で
15 kOe以下、パルス磁場で40 kOe以下、特に35 kOe以下
で十分である。パルス磁場の1波形の時間 (パルス時
間) は、好ましくは1マイクロ秒〜1秒、より好ましく
は5マイクロ秒〜100 ミリ秒である。
The strength of the alignment magnetic field is preferably such that the static magnetic field is 8
It is at least kOe, more preferably at least 10 kOe, and the pulse magnetic field is preferably at least 10 kOe, more preferably at least 25 kOe. Static magnetic field less than 8kOe or pulsed magnetic field of 10k
When it is less than Oe, the degree of orientation of the obtained bonded magnet is considerably reduced. The upper limit of the intensity of the alignment magnetic field is not particularly limited, and the degree of orientation of the magnetic powder tends to improve as the magnetic field increases, but the degree of improvement in the degree of orientation when the strength of the more preferable magnetic field is exceeded is not so large. . Excessive magnetic field strength increases energy costs and equipment, so a static magnetic field is usually
A pressure of 15 kOe or less and a pulse magnetic field of 40 kOe or less, especially 35 kOe or less are sufficient. The time (pulse time) of one waveform of the pulsed magnetic field is preferably 1 microsecond to 1 second, more preferably 5 microseconds to 100 milliseconds.

【0039】プレス成形は、従来と同様に、下パンチで
底面が形成された金型キャビティ内に原料粉末を給粉
し、上パンチを押し下げて加圧することにより実施で
き。加圧力は特に制限されず、従来と同様でよいが、好
ましくは8〜10 ton/cm2、より好ましくは6〜8ton/cm
2 の範囲内である。加圧保持時間は通常は1〜3秒程度
で十分である。
Press molding can be carried out by feeding raw material powder into a mold cavity having a bottom surface formed by a lower punch and pressing down an upper punch as in the prior art. The pressing force is not particularly limited, and may be the same as that in the related art, preferably 8 to 10 ton / cm 2 , more preferably 6 to 8 ton / cm 2 .
It is within the range of 2 . The pressure holding time is usually about 1 to 3 seconds.

【0040】金型キャビティに充填した原料粉末を上記
のように加圧する前に、まず反転パルス磁場を複数回印
加する。特に不規則形状の磁気異方性の磁粉は静磁場で
は回転しにくく、従来は配向度を十分に高くすることが
困難であった。本発明により高い磁場強度のパルス磁場
を磁場方向を交互に反転させて複数回印加することによ
り、同一方向のパルス磁場を複数回印加するよりも、こ
のような不規則形状の磁気異方性磁粉が配向しやすくな
る。反転パルス磁場の印加回数は2回以上であれば制限
されないが、通常は2〜5回、特に2〜4回で十分であ
る。印加回数をそれ以上増やしても、配向度の向上効果
は飽和し、成形時間が長くなる。
Before the raw material powder filled in the mold cavity is pressurized as described above, a reversal pulse magnetic field is first applied a plurality of times. In particular, irregularly shaped magnetic anisotropic magnetic powder is hard to rotate in a static magnetic field, and it has conventionally been difficult to sufficiently increase the degree of orientation. According to the present invention, a pulse magnetic field having a high magnetic field strength is applied a plurality of times by alternately inverting the direction of the magnetic field. Are easily oriented. The number of application of the inversion pulse magnetic field is not limited as long as it is two or more, but usually 2 to 5 times, particularly 2 to 4 times is sufficient. Even if the number of times of application is further increased, the effect of improving the degree of orientation is saturated, and the molding time becomes longer.

【0041】この反転パルス磁場の印加は、金型キャビ
ティ内の磁粉をごく軽く加圧してから実施してもよい。
この軽加圧の目安は、充填された磁粉の嵩密度 (金型の
キャビティ内に充填されている樹脂被覆磁粉の重量を金
型キャビティの体積で除した値) が、タッピングで得ら
れる最大嵩密度 (タップ密度) の85%以下にとどまる程
度である。それ以上に加圧してから反転パルス磁場を印
加しても、磁粉の周囲の空隙が少ないため、磁粉が回転
しにくくなり、反転パルス磁場による配向度の向上効果
が小さくなる。
The application of the reversal pulse magnetic field may be performed after the magnetic powder in the mold cavity is lightly pressed.
The guideline for this light pressing is that the bulk density of the filled magnetic powder (the value obtained by dividing the weight of the resin-coated magnetic powder filled in the mold cavity by the volume of the mold cavity) is the maximum bulk obtained by tapping. It is less than 85% of the density (tap density). Even if the reversal pulse magnetic field is applied after further pressurization, the magnetic powder is less likely to rotate due to the small gap around the magnetic powder, and the effect of improving the degree of orientation by the reversal pulse magnetic field is reduced.

【0042】その後、静磁場を印加しながら、上パンチ
を押出下げて金型キャビティ内の原料粉末をプレス成形
する。静磁場の方向は複数回の反転パルス磁場の最後の
パルス磁場の方向と同一にする。反転パルス磁場の初回
の磁場方向を静磁場方向と同方向にした場合、反転パル
ス磁場の印加回数が奇数であれば、その最後のパルス磁
場方向が静磁場の方向と同じになり、偶数であれば最後
のパルス磁場方向が静磁場方向と逆向きになる。逆に、
反転パルス磁場の初回の磁場方向が静磁場方向と逆方向
であった場合には、反転パルス磁場の印加回数が偶数で
あれば、その最後のパルス磁場方向が静磁場方向と同じ
になり、奇数であれば最後のパルス磁場方向が静磁場の
方向と逆向きになる。
Thereafter, while applying a static magnetic field, the upper punch is pushed down to press-mold the raw material powder in the mold cavity. The direction of the static magnetic field is the same as the direction of the last pulse magnetic field of the multiple inversion pulse magnetic fields. When the initial magnetic field direction of the inversion pulse magnetic field is set to the same direction as the static magnetic field direction, if the number of application of the inversion pulse magnetic field is an odd number, the last pulse magnetic field direction becomes the same as the static magnetic field direction, and it may be even. In this case, the direction of the last pulse magnetic field is opposite to the direction of the static magnetic field. vice versa,
When the initial magnetic field direction of the inversion pulse magnetic field is opposite to the static magnetic field direction, if the number of application of the inversion pulse magnetic field is even, the last pulse magnetic field direction becomes the same as the static magnetic field direction, and the odd number Then, the direction of the last pulse magnetic field is opposite to the direction of the static magnetic field.

【0043】静磁場の方向が複数回の反転パルス磁場の
最後のパルス磁場方向と逆方向になると、反転パルス磁
場の印加により付与されて磁粉の高度の配向性が、プレ
ス成形中の圧下による磁粉の回転/移動による乱れに加
えて、逆向きの静磁場によっても乱され、成形体の磁粉
の配向度が低下し、最終的にボンド磁石の磁気特性が低
下する。
When the direction of the static magnetic field is opposite to the direction of the last pulse magnetic field of a plurality of reversal pulse magnetic fields, the orientation of the magnetic powder is imparted by application of the reversal pulse magnetic field, and the high degree of orientation of the magnetic powder is reduced by the pressing during press molding. In addition to the disturbance caused by the rotation / movement of the compact, the disturbance is also caused by the static magnetic field in the opposite direction, the degree of orientation of the magnetic powder of the compact decreases, and finally the magnetic properties of the bonded magnet deteriorate.

【0044】これに対し、静磁場方向を反転パルス磁場
の最後のパルス磁場方向と同一にすると、複数回の反転
パルス磁場で付与された高度の磁粉の配向性を静磁場が
保持するように作用し、プレス成形中の圧下による磁粉
の回転/移動により乱れが静磁場により妨げられるた
め、高度に異方性磁粉が配向した成形体が得られ、最終
的に高い磁気特性のボンド磁石が製造される。静磁場は
この磁性粉末の配向状態を維持するために、プレス成形
中、特にその加圧中はずっと印加しておくことが好まし
い。
On the other hand, if the direction of the static magnetic field is the same as the direction of the last pulse magnetic field of the inversion pulse magnetic field, the static magnetic field acts so as to maintain the orientation of the high magnetic powder given by the plurality of inversion pulse magnetic fields. However, since the turbulence is hindered by the static magnetic field due to the rotation / movement of the magnetic powder due to the reduction during press molding, a molded body in which highly anisotropic magnetic powder is oriented is obtained, and finally a bonded magnet having high magnetic properties is manufactured. You. In order to maintain the orientation state of the magnetic powder, it is preferable to apply a static magnetic field during press molding, particularly during pressurization.

【0045】プレス成形中に、静磁場と同一方向のパル
ス磁場を静磁場に重畳させるように印加してもよい。こ
のパルス磁場はやはり、静磁場より強度が大きいのでプ
レス成形中の配向度の低下を防止する作用をする。この
パルス磁場の強度は、反転パルス磁場の強度と同様でよ
い。
During the press molding, a pulse magnetic field in the same direction as the static magnetic field may be applied so as to be superimposed on the static magnetic field. Since this pulse magnetic field is still stronger than the static magnetic field, it acts to prevent a decrease in the degree of orientation during press molding. The intensity of this pulse magnetic field may be the same as the intensity of the inversion pulse magnetic field.

【0046】プレス成形後、好ましくは適当な冷却手段
により金型内の成形体を樹脂の溶融温度より低温に冷却
し、静磁場発生用の磁場コイルに配向方向 (静磁場の方
向)と逆向きの電流を流して脱磁し、金型を加熱した場
合には、冷却後に成形体を脱型する。
After press molding, preferably, the molded body in the mold is cooled to a temperature lower than the melting temperature of the resin by a suitable cooling means, and the magnetic field coil for generating a static magnetic field is oriented in the direction opposite to the orientation direction (the direction of the static magnetic field). In the case where the current is passed to demagnetize and the mold is heated, the molded body is demolded after cooling.

【0047】プレス成形で得られた成形体は、従来と同
様に、適当な加熱炉に移してバインダーの熱硬化性樹脂
の硬化に必要な温度に加熱すると、磁粉が熱硬化性樹脂
で結合されたボンド磁石が得られる。その後、必要に応
じて、機械加工、表面処理等の処理を施してもよい。
The molded body obtained by press molding is transferred to an appropriate heating furnace and heated to a temperature necessary for curing the thermosetting resin of the binder, as in the prior art, and the magnetic powder is bound by the thermosetting resin. The resulting bonded magnet is obtained. Thereafter, processing such as machining and surface treatment may be performed as necessary.

【0048】[0048]

【実施例】水素処理法で得た不規則形状の磁気異方性Nd
−Fe−B系磁粉 (平均粒径150 μm) に、バインダーと
して磁粉重量に対して3wt%のエポキシ樹脂 (硬化剤と
硬化促進剤を含有、溶融温度60℃) を混合し、60℃で溶
融混練して、磁粉がエポキシ樹脂で被覆された原料粉末
(コンパウンド) を得た。
[Example] Irregular magnetic anisotropy Nd obtained by hydrotreatment
-Mix Fe-B based magnetic powder (average particle size 150 μm) with 3 wt% epoxy resin (containing a hardener and a hardening accelerator, melting temperature 60 ° C) based on the weight of the magnetic powder as a binder and melt at 60 ° C. Raw material powder kneaded and magnetic powder coated with epoxy resin
(Compound).

【0049】この原料粉末を、磁場中プレス成形機を用
いて、断面積が9×11mmの成形体を得るようにプレス成
形した。このプレス成形機は、温度調節装置を取り付け
た金型を備えており、金型温度を一定に保持できる。さ
らに、金型には、圧下方向に垂直な方向 (横磁場) の静
磁場および/またはパルス磁場を印加できる磁化コイル
も付設されている。
The raw material powder was press-formed using a press-forming machine in a magnetic field so as to obtain a formed body having a cross-sectional area of 9 × 11 mm. This press molding machine is provided with a mold to which a temperature control device is attached, and can keep the mold temperature constant. Further, the mold is also provided with a magnetizing coil to which a static magnetic field and / or a pulse magnetic field in a direction (transverse magnetic field) perpendicular to the rolling-down direction can be applied.

【0050】原料粉末を20℃または80℃に保持された金
型内に投入した後、80℃の場合には原料粉末の樹脂が溶
融したことを確認してから、25 kOeの反転パルス磁場を
所定回数印加し、次いで10 kOeの静磁場を配向磁場とし
て印加しながらプレス成形を行った (加圧力6ton/cm
2 、加圧保持時間1秒) 。なお、後述するの方法を除
いて、反転パルス磁場の初回のパルス磁場の方向を静磁
場の方向と同一にした。従って、反転パルス磁場の印加
回数が奇数であると、最後のパルス磁場の方向が静磁場
方向と同じになり、偶数では最後のパルス磁場方向は静
磁場方向と逆向きになった。の方法では、逆に反転パ
ルス磁場の初回のパルス磁場の方向を静磁場の方向と反
対にしたので、反転パルス磁場の印加回数が偶数の時
に、最後のパルス磁場の方向が静磁場方向と同じにな
る。
After the raw material powder is put into a mold maintained at 20 ° C. or 80 ° C., at 80 ° C., after confirming that the resin of the raw material powder has melted, a reverse pulse magnetic field of 25 kOe is applied. Press molding was performed while applying a predetermined number of times, and then applying a static magnetic field of 10 kOe as an orientation magnetic field (pressure 6 ton / cm).
2 , pressurization holding time 1 second). The direction of the first pulse magnetic field of the inversion pulse magnetic field was the same as the direction of the static magnetic field, except for the method described later. Therefore, when the number of times of application of the inversion pulse magnetic field was odd, the direction of the last pulse magnetic field was the same as the direction of the static magnetic field, and when the number was even, the direction of the last pulse magnetic field was opposite to the direction of the static magnetic field. In the method, the direction of the first pulse magnetic field of the reversing pulse magnetic field is opposite to the direction of the static magnetic field. become.

【0051】その後、静磁場発生用コイルに逆向きの電
流を流して脱磁させ、金型温度が80℃の場合には温度調
節装置により金型を冷却してから、脱型して成形体を得
た。この成形体をArガス雰囲気中で120 ℃に60分間加熱
してバインダーを硬化させ、ボンド磁石を得た。
Thereafter, a reverse current is applied to the static magnetic field generating coil to demagnetize the coil, and when the mold temperature is 80 ° C., the mold is cooled by a temperature controller, and then the mold is removed to form a molded body. I got The molded body was heated at 120 ° C. for 60 minutes in an Ar gas atmosphere to cure the binder, thereby obtaining a bonded magnet.

【0052】従来例として、プレス成形前の反転パルス
磁場の印加を行わずに、静磁場(10kOe)のみを、または
静磁場の方向を交互に反転させた反転静磁場(10 kOe)を
印加しながらプレス成形を行った。
As a conventional example, only a static magnetic field (10 kOe) or an inverted static magnetic field (10 kOe) in which the direction of the static magnetic field is alternately inverted is applied without applying an inverted pulse magnetic field before press molding. Press molding was performed while performing.

【0053】比較例として、静磁場の方向と同一方向に
(パルス方向を反転させずに) パルス磁場を複数回印加
した後、静磁場(10 kOe)を配向磁場として印加しながら
プレス成形してボンド磁石を作製した。
As a comparative example, in the same direction as the direction of the static magnetic field.
After applying a pulse magnetic field a plurality of times (without reversing the pulse direction), press molding was performed while applying a static magnetic field (10 kOe) as an orientation magnetic field, to produce a bond magnet.

【0054】得られたボンド磁石について、下記の方法
により、磁気特性を測定した。試験結果も表1に併せて
示す。
The magnetic properties of the obtained bonded magnet were measured by the following method. The test results are also shown in Table 1.

【0055】(1) 磁気特性 得られたボンド磁石の磁気特性を、BHトレーサーによ
り測定した。また、原料磁粉のVSM測定を行い、成形
体残留磁束密度と原料磁粉の残留磁束密度との比により
配向度を以下の計算式で算出した。
(1) Magnetic Properties The magnetic properties of the obtained bonded magnet were measured with a BH tracer. In addition, VSM measurement of the raw material magnetic powder was performed, and the degree of orientation was calculated from the ratio of the residual magnetic flux density of the compact to the residual magnetic flux density of the raw material magnetic powder by the following formula.

【0056】(ボンド磁石の配向度) = B/B0 /Vf B:ボンド磁石のBr(kG) B0 :原料磁粉のBr(kG) (=12.3) Vf :磁粉の体積充填率 Vf =D×Xm /Dm D:ボンド磁石密度(g/cm3) Xm :磁粉重量分率 (=0.97) Dm :磁粉密度 (=7.6 g/cm3)(Degree of orientation of bonded magnet) = B / B 0 / V f B: Br (kG) of bonded magnet B 0 : Br (kG) of raw material magnetic powder (= 12.3) V f : Volume filling rate of magnetic powder V f = D × X m / D m D: Bonded magnet density (g / cm 3 ) X m : Magnetic powder weight fraction (= 0.97) D m : Magnetic powder density (= 7.6 g / cm 3 )

【0057】[0057]

【表1】 [Table 1]

【0058】表1から明らかなように、表1におよび
として示す本発明の方法によれば、20℃の常温プレス
成形の場合で92〜93%、80℃の温間プレス成形では実に
95%から98.5%前後という、従来にない非常に高い配向
度を持ったボンド磁石が得られた。反転パルス磁場の印
加回数は2回でも効果があるが、3回にした方が特に温
間プレスの場合の配向度向上効果が大きい。この回数を
5回に増やしても配向度の向上は小さいので、3〜4回
で十分である。
As is evident from Table 1, according to the method of the present invention shown in Table 1 and as shown in Table 1, 92-93% in the case of cold press molding at 20 ° C., and indeed in the case of warm press molding at 80 ° C.
Bond magnets with an extremely high degree of orientation, which is unprecedented, ranging from 95% to 98.5%, were obtained. Although the number of times of application of the inversion pulse magnetic field is effective even if it is twice, the effect of improving the degree of orientation in the case of warm pressing is more significant when it is set to three times. Even if this number is increased to five, the improvement in the degree of orientation is small, so three to four times is sufficient.

【0059】これに対し、反転パルス磁場を同様に印加
しても、最後のパルス磁場の方向が静磁場の方向と逆向
きになるの方法では、プレス成形中に静磁場だけを印
加したの方法に比べて、配向度がほとんど向上しなか
った。また、静磁場を反転させるの方法も、に比べ
た配向度の向上効果はほとんどなかった。で反転磁場
の印加回数が1回の例は、磁場中プレス成形前に、静磁
場と同方向にパルス磁場を1回だけ印加した場合であ
る。この場合、配向度の向上効果はあるものの、その効
果は反転磁場を複数回印加する本発明の方法に比べる
と、効果が小さかった。
On the other hand, the method in which the direction of the last pulse magnetic field is opposite to the direction of the static magnetic field even when the reverse pulse magnetic field is applied in the same manner is a method in which only the static magnetic field is applied during press molding. The degree of orientation was hardly improved as compared with. In addition, the method of inverting the static magnetic field has almost no effect of improving the degree of orientation as compared with the method of reversing the static magnetic field. The case where the number of application of the reversal magnetic field is one is a case where the pulse magnetic field is applied only once in the same direction as the static magnetic field before press molding in the magnetic field. In this case, although there is an effect of improving the degree of orientation, the effect was smaller than that of the method of the present invention in which a switching magnetic field was applied a plurality of times.

【0060】また、静磁場と同一方向のパルス磁場を複
数回印加した後に静磁場中でプレス成形するの方法
も、に比べれば配向度の向上効果はあるが、このパル
ス磁場を1回だけ印加した場合 (即ち、でパルス磁場
の印加回数が1回の場合) との効果が同程度であった。
即ち、パルス磁場が同一方向であると、印加回数を1回
から複数回に増やしても、配向度の向上はほとんど得ら
れない。静磁場プレス成形中に反転パルス磁場を複数回
印加したの方法は、の方法より配向度が低く、静磁
場プレス成形中の反転パルス磁場の印加は、静磁場中で
の配向にかえって悪影響があることがわかる。
A method of applying a pulse magnetic field in the same direction as the static magnetic field a plurality of times and then press-forming in the static magnetic field has an effect of improving the degree of orientation as compared with the method of applying the pulse magnetic field, but this pulse magnetic field is applied only once. (That is, the number of application of the pulse magnetic field is one), the effect was almost the same.
That is, if the pulse magnetic field is in the same direction, even if the number of times of application is increased from once to a plurality of times, the degree of orientation is hardly improved. The method in which the inversion pulse magnetic field is applied a plurality of times during the static magnetic field press molding has a lower degree of orientation than the method described above, and the application of the inversion pulse magnetic field during the static magnetic field press molding has an adverse effect on the orientation in the static magnetic field You can see that.

【0061】[0061]

【発明の効果】本発明により、次のような効果を得るこ
とができる。
According to the present invention, the following effects can be obtained.

【0062】(1) 従来にない高い配向度を持った磁気異
方性のボンド磁石を製造でき、特にプレス成形を温間で
行うと、配向度は98%以上に達する。また、磁粉を熱硬
化性樹脂で被覆した原料粉末をプレス成形することで、
磁粉の充填率も高まる。これらの効果があいまって、磁
気異方性の磁粉の高い磁気特性を十分にいかした、磁気
特性に非常に優れたボンド磁石を得ることができる。
(1) It is possible to produce a bonded magnet having a magnetic anisotropy with an unprecedentedly high degree of orientation. In particular, when press molding is performed warmly, the degree of orientation reaches 98% or more. In addition, by pressing the raw material powder obtained by coating the magnetic powder with a thermosetting resin,
The filling rate of the magnetic powder also increases. In combination with these effects, it is possible to obtain a bonded magnet having excellent magnetic properties, making full use of the high magnetic properties of magnetic anisotropic magnetic powder.

【0063】(2) 加圧中に上パンチを止めてパルス磁場
を印加する必要がなく、金型内部で磁粉を充分に磁化配
向させてからプレス成形するので、パンチ速度を増大さ
せることができ、さらに金型内部で成形体を脱磁できる
ので、プレス成形の時間が短縮でき、生産性が改善され
る。
(2) It is not necessary to stop the upper punch during pressurization and apply a pulsed magnetic field, and press-mold after sufficiently magnetizing and orienting the magnetic powder inside the mold, so that the punch speed can be increased. Furthermore, since the molded body can be demagnetized inside the mold, the time for press molding can be shortened, and the productivity can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三野 修嗣 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 (72)発明者 石垣 尚幸 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shuji Mino 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Inside Yamazaki Works, Sumitomo Special Metals Co., Ltd. (72) Inventor Naoyuki Ishigaki 2 Egawa, Shimamoto-cho, Mishima-gun, Osaka Chome 15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気異方性の磁性粉末と熱硬化性樹脂と
からなる原料粉末を金型に充填し、磁場中でプレス成形
した後、成形体を加熱して樹脂を硬化させることからな
るボンド磁石の製造方法であって、金型に充填した原料
粉末を、まず磁場方向が交互に反転するパルス磁場を複
数回印加した後、静磁場を印加しながらプレス成形を行
い、その際に静磁場の方向と、静磁場を印加する直前の
パルス磁場の方向が同じであることを特徴とする、ボン
ド磁石の製造方法。
1. A method comprising filling a mold with raw material powder composed of magnetic powder having magnetic anisotropy and a thermosetting resin, press-molding in a magnetic field, and then heating the molded body to cure the resin. In a method for manufacturing a bonded magnet, a raw material powder filled in a mold is subjected to press molding while applying a static magnetic field after applying a pulse magnetic field in which the magnetic field direction is alternately reversed a plurality of times. A method of manufacturing a bonded magnet, wherein the direction of a magnetic field is the same as the direction of a pulse magnetic field immediately before applying a static magnetic field.
【請求項2】 金型に充填した原料粉末を、該熱硬化性
樹脂の溶融温度以上に加熱した状態で、パルス磁場の印
加および静磁場の印加下でのプレス成形を行う、請求項
1記載のボンド磁石の製造方法。
2. The press molding under application of a pulse magnetic field and a static magnetic field in a state where the raw material powder filled in a mold is heated to a temperature not lower than the melting temperature of the thermosetting resin. Of manufacturing bonded magnets.
【請求項3】 磁気異方性の磁性粉末が希土類鉄系合金
の粉末である、請求項1または2記載のボンド磁石の製
造方法。
3. The method for producing a bonded magnet according to claim 1, wherein the magnetic powder having magnetic anisotropy is a powder of a rare-earth iron-based alloy.
JP9217641A 1997-08-12 1997-08-12 Manufacture of bonded magnet Pending JPH1167568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9217641A JPH1167568A (en) 1997-08-12 1997-08-12 Manufacture of bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9217641A JPH1167568A (en) 1997-08-12 1997-08-12 Manufacture of bonded magnet

Publications (1)

Publication Number Publication Date
JPH1167568A true JPH1167568A (en) 1999-03-09

Family

ID=16707452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9217641A Pending JPH1167568A (en) 1997-08-12 1997-08-12 Manufacture of bonded magnet

Country Status (1)

Country Link
JP (1) JPH1167568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258460A (en) * 2007-04-06 2008-10-23 Uchiyama Mfg Corp Manufacturing method of annular resin magnet for magnetic encoder
CN115010478A (en) * 2022-07-06 2022-09-06 横店集团东磁股份有限公司 Opposite-sex dry-pressed ferrite and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258460A (en) * 2007-04-06 2008-10-23 Uchiyama Mfg Corp Manufacturing method of annular resin magnet for magnetic encoder
CN115010478A (en) * 2022-07-06 2022-09-06 横店集团东磁股份有限公司 Opposite-sex dry-pressed ferrite and preparation method thereof
CN115010478B (en) * 2022-07-06 2023-09-26 横店集团东磁股份有限公司 Different-polarity dry-pressed ferrite and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
KR101585478B1 (en) Anisotropic Complex Sintered Magnet Comprising MnBi Which Has Improved Magnetic Properties and Method of Preparing the Same
EP3288043B1 (en) Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth
JPH11176682A (en) Manufacturing bond (trade mark) magnet
EP1180772B1 (en) Anisotropic magnet and process of producing the same
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH1167568A (en) Manufacture of bonded magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH1167567A (en) Manufacture for bond magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH0559572B2 (en)
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH104023A (en) Manufacture of bond type permanent magnet
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
JP6666228B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JPH02251111A (en) Manufacture of resin bonded type rare earth magnet
JPS60211909A (en) Extrusion in magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107