JP7381851B2 - Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet - Google Patents

Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet Download PDF

Info

Publication number
JP7381851B2
JP7381851B2 JP2019180589A JP2019180589A JP7381851B2 JP 7381851 B2 JP7381851 B2 JP 7381851B2 JP 2019180589 A JP2019180589 A JP 2019180589A JP 2019180589 A JP2019180589 A JP 2019180589A JP 7381851 B2 JP7381851 B2 JP 7381851B2
Authority
JP
Japan
Prior art keywords
bonded magnet
less
magnet
cylindrical
shaped flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180589A
Other languages
Japanese (ja)
Other versions
JP2021057488A (en
Inventor
理恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2019180589A priority Critical patent/JP7381851B2/en
Publication of JP2021057488A publication Critical patent/JP2021057488A/en
Application granted granted Critical
Publication of JP7381851B2 publication Critical patent/JP7381851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円筒状ボンド磁石の製造方法、円筒状ボンド磁石成形用金型、および円筒状ボンド磁石に関する。 The present invention relates to a method for manufacturing a cylindrical bonded magnet, a mold for forming a cylindrical bonded magnet, and a cylindrical bonded magnet.

モーター等の動力用に、円筒状の多極ボンド磁石が用いられる。このような円筒状ボンド磁石は、配向用磁石を備えた金型にボンド磁石用組成物を注入して射出成形することにより製造される。円筒状ボンド磁石の磁極間の表面磁束密度の変化が急峻であると、モーターに適用したときにコギングを生じる原因となるため、円筒状ボンド磁石は正弦波曲線に近い表面磁束密度を有することが求められる。また、大型モーターに対応するために、円筒状ボンド磁石を大径化することも求められている。 Cylindrical multipolar bonded magnets are used to power motors and the like. Such a cylindrical bonded magnet is manufactured by injecting a bonded magnet composition into a mold equipped with an orientation magnet and performing injection molding. If the change in surface magnetic flux density between the magnetic poles of a cylindrical bonded magnet is steep, it will cause cogging when applied to a motor, so a cylindrical bonded magnet should have a surface magnetic flux density close to a sinusoidal curve. Desired. Furthermore, in order to accommodate large motors, it is also required to increase the diameter of cylindrical bonded magnets.

特許文献1は、円筒状キャビティの外側に配向用磁石を配置した金型を用いて、射出成形によりリング状ボンド磁石を製造している。製造されたボンド磁石は、外周径が16mm程度と小型である。 In Patent Document 1, a ring-shaped bonded magnet is manufactured by injection molding using a mold in which an orientation magnet is arranged outside a cylindrical cavity. The manufactured bonded magnet is small with an outer diameter of about 16 mm.

特許文献2~3は、円筒状キャビティの内側に、複数の配向用磁石をそれぞれの磁場が円周方向に互いに反発するように配置した金型を用いて、射出成形により円筒状ボンド磁石を製造している。製造されたボンド磁石は外周径が大きいものでも42mm程度である。特許文献3では配向用磁石とボンド磁石成形体との間に厚さ0.5mmのスリーブを配置して磁場配向しているが、この条件では配向用磁石との距離が近すぎるために、ボンド磁石成形体の磁極間の表面磁束密度の変化が急峻となる傾向がある。 Patent Documents 2 and 3 disclose cylindrical bonded magnets manufactured by injection molding using a mold in which a plurality of orientation magnets are arranged inside a cylindrical cavity so that their respective magnetic fields repel each other in the circumferential direction. are doing. The manufactured bonded magnet has a large outer diameter of about 42 mm. In Patent Document 3, a sleeve with a thickness of 0.5 mm is placed between the orientation magnet and the bonded magnet molded body for magnetic field orientation, but under this condition, the distance to the orientation magnet is too short, so the bond The change in surface magnetic flux density between the magnetic poles of a molded magnet tends to be steep.

特開2017-212863号公報JP2017-212863A 特開平5-90053号公報Japanese Patent Application Publication No. 5-90053 特開2005-223233号公報Japanese Patent Application Publication No. 2005-223233

本発明は、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石の製造方法、その製造方法に用いる金型、および円筒状ボンド磁石を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a cylindrical bonded magnet having a large diameter and a sinusoidal curve or a surface magnetic flux density similar to the sinusoidal curve, a mold used in the manufacturing method, and a cylindrical bonded magnet.

本発明の一態様にかかる円筒状ボンド磁石の製造方法は、円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。 A method for manufacturing a cylindrical bonded magnet according to one aspect of the present invention includes the steps of placing a mold having a cylindrical cavity and in which orientation magnets are arranged in an injection molding machine, and adding a bonded magnet composition to the mold. A method for manufacturing a cylindrical bonded magnet, comprising a step of injecting and injection molding a material, the shortest gap between the inner circumference of the cylindrical cavity and the outer circumference of the orientation magnet being 2 mm or more and 10 mm or less. The cylindrical cavity has an outer diameter of 100 mm or more and 300 mm or less, and a difference between the outer radius and the inner radius of 2 mm or more and 30 mm or less, and the orienting magnet has a plurality of magnets magnetized in the circumferential direction. The fan-shaped flat magnets are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent sector-shaped flat magnets repel each other in the circumferential direction.

本発明の一態様にかかる円筒状ボンド磁石成形用金型は、円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。 A mold for forming a cylindrical bonded magnet according to one aspect of the present invention includes a plurality of sector-shaped flat plate magnets magnetized in the circumferential direction in a direction in which the magnetic field directions of the sector-shaped flat plate magnets repel each other in the circumferential direction. an orienting magnet arranged in the direction of The diameter is 100 mm or more and 300 mm or less, and the difference between the outer radius and the inner radius is 2 mm or more and 30 mm or less.

本発明の一態様にかかる円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。 The cylindrical bonded magnet according to one aspect of the present invention has a surface magnetic flux density on the inner circumferential side that changes periodically, a distortion rate of the surface magnetic flux density with respect to a sine wave curve of 22% or less, and an outer circumferential diameter of 100 mm. The difference between the outer radius and the inner radius is 2 mm or more and 30 mm or less.

本発明の一態様にかかる円筒状ボンド磁石成形用金型によると、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石を製造することができる。 According to the mold for forming a cylindrical bonded magnet according to one aspect of the present invention, it is possible to manufacture a cylindrical bonded magnet that has a large diameter and has a surface magnetic flux density that is or approximates a sinusoidal curve.

実施例1および比較例1で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。FIG. 2 is a schematic diagram of an injection mold and a sector-shaped flat magnet used in Example 1 and Comparative Example 1, viewed from above. 実施例1および比較例1における配向用磁石の外周の配向磁場である。It is an orientation magnetic field of the outer periphery of the orientation magnet in Example 1 and Comparative Example 1. 実施例1および比較例1における円筒状ボンド磁石の内周の表面磁束密度である。It is a surface magnetic flux density of the inner periphery of the cylindrical bonded magnet in Example 1 and Comparative Example 1. 比較例2~4で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。FIG. 2 is a schematic diagram of the injection mold and the sector-shaped flat magnet used in Comparative Examples 2 to 4, viewed from above. 比較例2~4における配向用磁石の外周の配向磁場である。This is the alignment magnetic field around the outer periphery of the alignment magnet in Comparative Examples 2 to 4. 比較例2~4における円筒状ボンド磁石の内周の表面磁束密度である。This is the surface magnetic flux density of the inner periphery of the cylindrical bonded magnets in Comparative Examples 2 to 4. 比較例5で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。FIG. 2 is a schematic diagram of an injection mold and a sector-shaped flat magnet used in Comparative Example 5, viewed from above. 比較例5における配向用磁石の外周の配向磁場である。It is an orientation magnetic field of the outer periphery of the orientation magnet in Comparative Example 5. 比較例5における円筒状ボンド磁石の内周の表面磁束密度である。It is a surface magnetic flux density of the inner periphery of the cylindrical bonded magnet in Comparative Example 5. 比較例6で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。FIG. 6 is a schematic diagram of an injection mold and a sector-shaped flat magnet used in Comparative Example 6, viewed from above. 比較例6における配向用磁石の外周の配向磁場である。It is an orientation magnetic field of the outer periphery of the orientation magnet in Comparative Example 6. 比較例6における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner periphery of the cylindrical bonded magnet in Comparative Example 6. 比較例7で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。FIG. 3 is a schematic diagram of an injection mold and a sector-shaped flat magnet used in Comparative Example 7, viewed from the top. 比較例7における配向用磁石の外周の配向磁場である。It is an alignment magnetic field of the outer periphery of the alignment magnet in Comparative Example 7. 比較例7における円筒状ボンド磁石の内周の表面磁束密度である。It is a surface magnetic flux density of the inner periphery of the cylindrical bonded magnet in Comparative Example 7.

以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Embodiments of the present invention will be described in detail below. However, the embodiment shown below is an example for embodying the technical idea of the present invention, and the present invention is not limited to the following. Note that in this specification, the term "process" is used not only to refer to an independent process, but also to include a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved. included. Furthermore, a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively. Furthermore, when a plurality of substances corresponding to each component are present in the composition, the content of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified.

<<円筒状ボンド磁石の製造方法>>
本発明の一態様にかかる円筒状ボンド磁石の製造方法は、円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。本発明の一態様によると円筒状キャビティの内周部と配向用磁石の外周部との最短ギャップが2mm以上10mm以下とし、配向用磁石が、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されることにより、キャビティ内に発生する磁場が磁極部で最大となりつつ、かつ磁極間の切り替わりがゆるやかになるため、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石を製造することができると考えられる。
<<Method for manufacturing cylindrical bonded magnet>>
A method for manufacturing a cylindrical bonded magnet according to one aspect of the present invention includes the steps of placing a mold having a cylindrical cavity and in which orientation magnets are arranged in an injection molding machine, and adding a bonded magnet composition to the mold. A method for manufacturing a cylindrical bonded magnet, comprising a step of injecting and injection molding a material, the shortest gap between the inner circumference of the cylindrical cavity and the outer circumference of the orientation magnet being 2 mm or more and 10 mm or less. The cylindrical cavity has an outer diameter of 100 mm or more and 300 mm or less, and a difference between the outer radius and the inner radius of 2 mm or more and 30 mm or less, and the orienting magnet has a plurality of magnets magnetized in the circumferential direction. The fan-shaped flat magnets are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent sector-shaped flat magnets repel each other in the circumferential direction. According to one aspect of the present invention, the shortest gap between the inner periphery of the cylindrical cavity and the outer periphery of the orientation magnet is 2 mm or more and 10 mm or less, and the orientation magnet is composed of a plurality of sector-shaped flat magnets magnetized in the circumferential direction. The fan-shaped flat magnet is arranged in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat magnets repel each other in the circumferential direction, so that the magnetic field generated in the cavity is maximized at the magnetic pole part. , and the switching between the magnetic poles becomes gradual, making it possible to manufacture a cylindrical bonded magnet with a large diameter and a surface magnetic flux density that is or approximates a sinusoidal curve.

<金型>
本発明の一態様で用いる金型は、円筒状キャビティを有する。正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を製造するためには、前記円筒状キャビティは、外周直径(円筒状ボンド磁石の外径)が100mm以上300mm以下であるが、外周直径が150mm以上300mm未満であることが好ましく、200mm以上290mm以下であることが特に好ましい。また、円筒状キャビティの外周半径と内周半径の差(円筒状ボンド磁石の肉厚)は2mm以上30mm以下であるが、肉薄にすることによる軽量化の点から2mmより大きく10mm以下であることが好ましく、2.5mm以上5mm以下が特に好ましい。2mm未満では円筒状ボンド磁石の強度が低下し、30mmより大きくなると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。円筒状キャビティの高さ(円筒状ボンド磁石の高さ)は、5mm以上100mm以下であるが、6mm以上15mm以下が好ましい。5mm未満では外周方向の総磁束量が小さくなり、100mmより大きくすると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。円筒状キャビティの外周半径に対する外周半径と内周半径の差の比は、大径の円筒状ボンド磁石の強度の点から、0.01以上0.8以下が好ましく、0.04以上0.6以下がより好ましい。
<Mold>
The mold used in one aspect of the present invention has a cylindrical cavity. In order to manufacture a large-diameter cylindrical bonded magnet having a sinusoidal curve or a surface magnetic flux density approximating it, the cylindrical cavity has an outer diameter (outer diameter of the cylindrical bonded magnet) of 100 mm or more and 300 mm or less. However, the outer diameter is preferably 150 mm or more and less than 300 mm, particularly preferably 200 mm or more and 290 mm or less. In addition, the difference between the outer radius and inner radius of the cylindrical cavity (thickness of the cylindrical bonded magnet) is 2 mm or more and 30 mm or less, but in order to reduce weight by making the wall thinner, it should be greater than 2 mm and 10 mm or less. is preferable, and 2.5 mm or more and 5 mm or less is particularly preferable. If it is less than 2 mm, the strength of the cylindrical bonded magnet will decrease, and if it is greater than 30 mm, the dimensional accuracy may decrease because the cooling speed of the resin will vary locally during molding. The height of the cylindrical cavity (height of the cylindrical bonded magnet) is 5 mm or more and 100 mm or less, preferably 6 mm or more and 15 mm or less. If it is less than 5 mm, the total amount of magnetic flux in the outer circumferential direction will be small, and if it is larger than 100 mm, the cooling speed of the resin will vary locally during molding, resulting in a decrease in dimensional accuracy. The ratio of the difference between the outer radius and the inner radius of the cylindrical cavity is preferably 0.01 or more and 0.8 or less, and 0.04 or more and 0.6 from the viewpoint of the strength of the large diameter cylindrical bonded magnet. The following are more preferable.

前記寸法の円筒状キャビティにより、大径の円筒状ボンド磁石を製造できる。特に円筒状ボンド磁石を大径で肉薄とすると、軽量でかつ10000rpm以上の高速回転にも耐えうるモーター用の磁石を提供できる。 A cylindrical cavity of the above dimensions allows production of a large diameter cylindrical bonded magnet. In particular, if the cylindrical bonded magnet is made large in diameter and thin, it is possible to provide a magnet for a motor that is lightweight and can withstand high speed rotation of 10,000 rpm or more.

金型は、円筒状キャビティで形成されるボンド磁石に配向磁場を印加できるように、円筒状キャビティの内側に配向用磁石を有する。配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成される。扇形平板磁石としては永久磁石、電磁石が挙げられるが、回路が不要であることから永久磁石が好ましい。扇形平板磁石の表面磁束密度は特に限定されず、円筒状ボンド磁石の配向に必要な磁場により適宜決定できるが、通常0.5T以上2T以下である。 The mold has an orientation magnet inside the cylindrical cavity so that an orientation magnetic field can be applied to the bonded magnet formed in the cylindrical cavity. The orientation magnet is composed of a plurality of sector-shaped flat magnets magnetized in the circumferential direction. Examples of the fan-shaped flat magnet include permanent magnets and electromagnets, but permanent magnets are preferable because they do not require a circuit. The surface magnetic flux density of the sector-shaped flat magnet is not particularly limited, and can be appropriately determined depending on the magnetic field required for orientation of the cylindrical bonded magnet, but is usually 0.5 T or more and 2 T or less.

円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップ(スリーブ厚さ)は2mm以上10mm以下であり、3mm以上9mm以下が好ましく、4mm以上8mm以下がより好ましい。前述の円筒状キャビティの寸法に対して、円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップを2mm以上10mm以下とすることで、正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を得ることができる。 The shortest gap (sleeve thickness) between the inner peripheral part of the cylindrical cavity and the outer peripheral part of the orientation magnet is 2 mm or more and 10 mm or less, preferably 3 mm or more and 9 mm or less, and more preferably 4 mm or more and 8 mm or less. With respect to the dimensions of the cylindrical cavity described above, by setting the shortest gap between the inner circumference of the cylindrical cavity and the outer circumference of the orientation magnet to 2 mm or more and 10 mm or less, a surface magnetic flux density that is a sine wave curve or close to it can be obtained. A large diameter cylindrical bonded magnet can be obtained.

円筒状ボンド磁石に磁極を均等に形成させるために、配向用磁石は複数の同一形状の扇形平板磁石から構成されることが好ましい。配向用磁石を構成する扇形平板磁石の個数は、4個以上56個以下とすることができ、6個以上30個以下が好ましい。配向用磁石は扇形平板磁石のみから構成されてもよいが、扇形平板磁石に加えて、磁性スペーサーや、非磁性スペーサーを有していてもよい。磁性スペーサーや非磁性スペーサーを扇形平板磁石と交互に配置することにより、配向用磁石を容易に配置することができる。磁性スペーサーや、非磁性スペーサーは、扇形平板磁石と同一形状であることが好ましい。磁性スペーサーの飽和磁束密度は1.2T以上が好ましい。 In order to uniformly form magnetic poles on the cylindrical bonded magnet, it is preferable that the orientation magnet is composed of a plurality of sector-shaped flat magnets having the same shape. The number of sector-shaped flat magnets constituting the orientation magnet can be 4 or more and 56 or less, preferably 6 or more and 30 or less. The orientation magnet may be composed only of fan-shaped flat magnets, but may also include magnetic spacers or non-magnetic spacers in addition to the fan-shaped flat magnets. By arranging magnetic spacers and non-magnetic spacers alternately with sector-shaped flat magnets, the orientation magnets can be easily arranged. It is preferable that the magnetic spacer and the non-magnetic spacer have the same shape as the sector-shaped flat magnet. The saturation magnetic flux density of the magnetic spacer is preferably 1.2T or more.

配向用磁石を構成する扇形平板磁石の中心角は10°以上90°以下とすることができ、20°以上60°以下が好ましい。また、この扇形平板磁石を構成するうえで、2本の辺にて構成する扇形の1辺の長さは、円筒状キャビティの外周直径から円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップを引いた値の二分の一以下とすることができる。 The central angle of the sector-shaped flat magnet constituting the orientation magnet can be 10° or more and 90° or less, preferably 20° or more and 60° or less. In addition, when constructing this fan-shaped flat magnet, the length of one side of the fan shape composed of two sides is determined from the outer circumference diameter of the cylindrical cavity to the inner circumference of the cylindrical cavity and the outer circumference of the orientation magnet. It can be set to one-half or less of the value obtained by subtracting the shortest gap between the two parts.

扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。なお、上述のように磁性スペーサ―や非磁性スペーサーを用いる場合、隣り合う扇形平板磁石とは、磁性スペーサ―や非磁性スペーサーで隔てられた扇形平板磁石のことをいう。磁場方向が円周方向に反発することにより、扇形平板磁石のS極同士が相対する部分では配向用磁石の中心に向かう磁場回路が形成され、扇形平板磁石のN極同士が相対する部分では配向用磁石の外側に向かう磁場回路が形成される。扇形平板磁石の磁場方向の模式図を、図1Aに示す。 The sector-shaped flat magnets are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent sector-shaped flat magnets repel each other in the circumferential direction. Note that when magnetic spacers or non-magnetic spacers are used as described above, adjacent sector-shaped flat magnets refer to sector-shaped flat magnets separated by magnetic spacers or non-magnetic spacers. Due to the repulsion of the magnetic field direction in the circumferential direction, a magnetic field circuit directed toward the center of the orientation magnet is formed in the part where the S poles of the fan-shaped flat magnets face each other, and a magnetic field circuit that goes toward the center of the orientation magnet is formed in the part where the N poles of the fan-shaped flat magnets face each other. A magnetic field circuit is formed towards the outside of the magnet. A schematic diagram of the magnetic field direction of a sector-shaped flat magnet is shown in FIG. 1A.

<射出成形>
上述の金型を射出成形機に配置し、ボンド磁石用組成物を金型に注入して射出成形することにより、円筒状ボンド磁石が得られる。熱処理しながら配向磁場を印加することによりボンド磁石の磁化容易軸を揃えることができる。射出成形の条件は特に限定されず、使用するボンド磁石用組成物に応じて適宜決定する。配向工程における配向磁場の大きさは、例えば極中心で0.1T以上、好ましくは、0.2T以上である。配向後、極数に応じた着磁ヨークを用い、着磁することにより、ボンド磁石を得ることができる。着磁工程における着磁磁場の大きさは、例えば1.5T以上あることが望ましい。
<Injection molding>
A cylindrical bonded magnet is obtained by placing the above mold in an injection molding machine, injecting a bonded magnet composition into the mold, and performing injection molding. By applying an orienting magnetic field during heat treatment, the easy axis of magnetization of the bonded magnet can be aligned. The injection molding conditions are not particularly limited and are appropriately determined depending on the bonded magnet composition used. The magnitude of the orientation magnetic field in the orientation step is, for example, 0.1 T or more at the pole center, preferably 0.2 T or more. After orientation, a bonded magnet can be obtained by magnetizing using a magnetizing yoke corresponding to the number of poles. It is desirable that the magnitude of the magnetizing magnetic field in the magnetizing step is, for example, 1.5 T or more.

<ボンド磁石用組成物>
ボンド磁石用組成物は特に限定されず、例えば、熱可塑性樹脂と磁性粒子から構成される組成物が挙げられる。熱可塑性樹脂と磁性粒子を十分に混練し、得られた混練物を単軸混練機、二軸混練機等の混練機に投入し、冷却後、適当な大きさに切断することで得られる。
<Composition for bonded magnet>
The composition for bonded magnets is not particularly limited, and examples include compositions composed of a thermoplastic resin and magnetic particles. It is obtained by sufficiently kneading the thermoplastic resin and magnetic particles, putting the resulting kneaded product into a kneader such as a single-screw kneader or a twin-screw kneader, and after cooling, cutting it into appropriate sizes.

熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂などが挙げられる。その中でもポリアミド、特にポリアミド12が好ましい。ポリアミド12は、比較的低融点で、吸水率が低く、結晶性樹脂であるため成形性が良い。また、これらを適宜混合して使用することも可能である。 Examples of the thermoplastic resin include polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide, and acrylic resin. Among these, polyamide, particularly polyamide 12, is preferred. Polyamide 12 has a relatively low melting point, low water absorption, and is a crystalline resin, so it has good moldability. It is also possible to use a mixture of these as appropriate.

磁性粒子としては、フェライト系と、希土類系であるNd-Fe-B系、Sm-Co系、Sm-Fe-N系とが挙げられる。中でも、Sm-Fe-N系を用いることが好ましい。Sm-Fe-N系は、一般的にSmFe17で表される。Sm-Fe-N系は、フェライト系に比べると磁力が強く、比較的少ない量でも高磁力を発生することができる。また、Sm-Fe-N系は、Nd-Fe-B系やSm-Co系といった他の希土類系と比べると、粒子径が小さく、母材樹脂へのフィラーとして適していることや、錆びにくいという特長がある。 Examples of magnetic particles include ferrite particles and rare earth particles such as Nd-Fe-B, Sm-Co, and Sm-Fe-N. Among them, it is preferable to use Sm-Fe-N system. The Sm-Fe-N system is generally represented by Sm 2 Fe 17 N 3 . The Sm--Fe--N type has a stronger magnetic force than the ferrite type, and can generate a high magnetic force even with a relatively small amount. In addition, compared to other rare earth systems such as Nd-Fe-B and Sm-Co, the Sm-Fe-N system has a smaller particle size, making it suitable as a filler for the base resin and being less rusty. It has this feature.

磁性粒子は、異方性のもの及び等方性のもののいずれか一方又は両方を用いることができる。より強力な磁気特性を得る観点から、異方性のもの(異方性磁性粒子)が好ましい。具体的には、異方性を有するSm-Fe-N系の磁性粒子(異方性Sm-Fe-N系磁性粒子)が好ましい。磁性粒子としてSm-Fe-N系磁性粒子を用いれば、当該磁性粒子は磁力が強いので、より磁気特性に優れたものとすることができる。 As the magnetic particles, either or both of anisotropic particles and isotropic particles can be used. From the viewpoint of obtaining stronger magnetic properties, anisotropic particles (anisotropic magnetic particles) are preferable. Specifically, Sm-Fe-N magnetic particles having anisotropy (anisotropic Sm-Fe-N magnetic particles) are preferred. If Sm--Fe--N based magnetic particles are used as the magnetic particles, the magnetic particles have a strong magnetic force, so that it is possible to obtain even more excellent magnetic properties.

磁性粒子の平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。10μm以下であれば、製品の表面に凹凸部や亀裂等が発生し難く、外観的に優れたものとすることができ、さらに、低コスト化を図ることができる。平均粒径が10μmよりも大きいと、製品の表面に凹凸部や亀裂等が発生して外観的に劣るおそれがある。一方で、平均粒径が1μmよりも小さいと、磁性粒子のコストが高くなるので、低コスト化の観点から好ましくない。 The average particle diameter of the magnetic particles is preferably 10 μm or less, more preferably 1 μm or more and 5 μm or less. When the thickness is 10 μm or less, uneven portions, cracks, etc. are unlikely to occur on the surface of the product, and the product can have an excellent appearance, and furthermore, it is possible to reduce costs. If the average particle size is larger than 10 μm, unevenness or cracks may occur on the surface of the product, which may result in poor appearance. On the other hand, if the average particle diameter is smaller than 1 μm, the cost of the magnetic particles increases, which is not preferable from the viewpoint of cost reduction.

ボンド磁石用組成物組成物には、更に、流動性を損なうことなく初期強度を向上させるために、ポリスチレン系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系などの熱可塑性エラストマーを配合してもよい。また、円筒状ボンド磁石が高温にさらされた場合にも強度の経時変化を低減できるよう、リン系酸化防止剤などの酸化防止剤を配合してもよい。リン系酸化防止剤としては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等が挙げられる。 The composition for bonded magnets may further contain thermoplastic elastomers such as polystyrene, polyolefin, polyester, polyurethane, and polyamide in order to improve initial strength without impairing fluidity. good. Further, an antioxidant such as a phosphorous antioxidant may be added to reduce the change in strength over time even when the cylindrical bonded magnet is exposed to high temperatures. Examples of phosphorous antioxidants include tris(2,4-di-tert-butylphenyl) phosphite and the like.

ボンド磁石用組成物中の磁性粒子の含有量は、80質量%以上95質量%以下が好ましく、高い磁気特性を得る点から、90質量%以上95質量以下がより好ましい。一方、ボンド磁石用組成物中の熱可塑性樹脂の含有量は、3質量%以上20質量%以下が好ましく、流動性を確保する観点から5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲が好ましく、耐衝撃性の点から90:10から70:30の範囲がより好ましい。更にリン系酸化防止剤を含む場合には、コンパウンド中のリン系酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。 The content of magnetic particles in the bonded magnet composition is preferably 80% by mass or more and 95% by mass or less, and more preferably 90% by mass or more and 95% by mass or less in terms of obtaining high magnetic properties. On the other hand, the content of the thermoplastic resin in the bonded magnet composition is preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less from the viewpoint of ensuring fluidity. Furthermore, when a thermoplastic elastomer is included, the mass ratio of the thermoplastic resin to the thermoplastic elastomer is preferably in the range of 90:10 to 50:50, and from the viewpoint of impact resistance, it is preferably in the range of 90:10 to 70:30. More preferred. Furthermore, when a phosphorus-based antioxidant is included, the content of the phosphorus-based antioxidant in the compound is preferably 0.1% by mass or more and 2% by mass or less.

<<円筒状ボンド磁石成形用金型>>
本発明の一態様にかかる円筒状ボンド磁石成形用金型は、円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。本発明の金型におけるキャビティ、配向用磁石、寸法については前述した。
<<Cylindrical bonded magnet mold>>
A mold for forming a cylindrical bonded magnet according to one aspect of the present invention includes a plurality of sector-shaped flat plate magnets magnetized in the circumferential direction in a direction in which the magnetic field directions of the sector-shaped flat plate magnets repel each other in the circumferential direction. an orienting magnet arranged in the direction of The diameter is 100 mm or more and 300 mm or less, and the difference between the outer radius and the inner radius is 2 mm or more and 30 mm or less. The cavity, orientation magnet, and dimensions in the mold of the present invention have been described above.

<<円筒状ボンド磁石>>
本発明の一態様にかかる円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。
<<Cylindrical bonded magnet>>
The cylindrical bonded magnet according to one aspect of the present invention has a surface magnetic flux density on the inner circumferential side that changes periodically, a distortion rate of the surface magnetic flux density with respect to a sine wave curve of 22% or less, and an outer circumferential diameter of 100 mm. The difference between the outer radius and the inner radius is 2 mm or more and 30 mm or less.

円筒状ボンド磁石は、上記金型を使用して、ボンド磁石用組成物を射出成型することにより得られる。円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であるが、20%以下が好ましく、18%以下がより好ましく、15%以下がさらに好ましく、10%以下が特に好ましい。表面磁束密度の正弦波曲線に対する歪率が22%を超えると、円筒状ボンド磁石をモーターに適用した場合にコギングを生じる傾向がある。 The cylindrical bonded magnet is obtained by injection molding the bonded magnet composition using the above-mentioned mold. The cylindrical bonded magnet has a surface magnetic flux density on the inner circumferential side that changes periodically, and a distortion rate of the surface magnetic flux density with respect to a sinusoidal curve of 22% or less, preferably 20% or less, and more preferably 18% or less. It is preferably 15% or less, more preferably 10% or less, and particularly preferably 10% or less. If the distortion factor for the sinusoidal curve of the surface magnetic flux density exceeds 22%, cogging tends to occur when a cylindrical bonded magnet is applied to a motor.

円筒状ボンド磁石の高さは5mm以上100mm以下であるが、6mm以上15mm以下が好ましい。5mm未満では外周方向の磁束密度が小さくなり、100mmより大きくすると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。 The height of the cylindrical bonded magnet is 5 mm or more and 100 mm or less, preferably 6 mm or more and 15 mm or less. If it is less than 5 mm, the magnetic flux density in the outer circumferential direction will be small, and if it is larger than 100 mm, the cooling speed of the resin will vary locally during molding, which may reduce dimensional accuracy.

円筒状ボンド磁石は、外周半径に対する外周半径と内周半径の差の比が、円筒状ボンド磁石の強度の点から0.01以上0.8以下が好ましく、0.04以上0.6以下がより好ましい。また、円筒状ボンド磁石は、前述した金型を使用して射出成形で得られるため、金型の円筒状キャビティに対応した寸法を有する。円筒状キャビティの寸法については前述した。 In the cylindrical bonded magnet, the ratio of the difference between the outer radius and the inner radius to the outer radius is preferably 0.01 or more and 0.8 or less, and 0.04 or more and 0.6 or less, from the viewpoint of the strength of the cylindrical bonded magnet. More preferred. Further, since the cylindrical bonded magnet is obtained by injection molding using the above-mentioned mold, it has dimensions corresponding to the cylindrical cavity of the mold. The dimensions of the cylindrical cavity have been described above.

円筒状ボンド磁石は、前述したボンド磁石用組成物を射出成形して得られ、熱可塑性樹脂と磁性粒子を含み、さらに熱可塑性エラストマーや酸化防止剤を含み得る。円筒状ボンド磁石中の磁性粒子の含有量は、高い磁気特性を得る点から80質量%以上95質量%以下が好ましく、90質量%以上95質量%未満がより好ましい。円筒状ボンド磁石中の熱可塑性樹脂の含有量は、流動性を確保する観点から3質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、円筒状ボンド磁石中の熱可塑性エラストマーの含有量は、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲であることが好ましく、耐衝撃性の点から90:10から70:30範囲がより好ましい。更に酸化防止剤を含む場合には、円筒状ボンド磁石中の酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。 The cylindrical bonded magnet is obtained by injection molding the above-described bonded magnet composition, contains a thermoplastic resin and magnetic particles, and may further contain a thermoplastic elastomer and an antioxidant. The content of magnetic particles in the cylindrical bonded magnet is preferably 80% by mass or more and 95% by mass or less, more preferably 90% by mass or more and less than 95% by mass, from the viewpoint of obtaining high magnetic properties. The content of the thermoplastic resin in the cylindrical bonded magnet is preferably 3% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 15% by mass or less, from the viewpoint of ensuring fluidity. Furthermore, when a thermoplastic elastomer is included, the content of the thermoplastic elastomer in the cylindrical bonded magnet is preferably such that the mass ratio of the thermoplastic resin to the thermoplastic elastomer is in the range of 90:10 to 50:50. From the viewpoint of impact resistance, a range of 90:10 to 70:30 is more preferable. When an antioxidant is further included, the content of the antioxidant in the cylindrical bonded magnet is preferably 0.1% by mass or more and 2% by mass or less.

本発明の一態様にかかる円筒状ボンド磁石は、モーター等の動力装置や、回転センサーなどの信号装置、発電機等の動力装置に用いることができる。 The cylindrical bonded magnet according to one embodiment of the present invention can be used in power devices such as motors, signal devices such as rotation sensors, and power devices such as generators.

以下、実施例について説明する。なお、特に断りのない限り、「%」は質量基準である。 Examples will be described below. Note that unless otherwise specified, "%" is based on mass.

(1)実施例1
(1-1)ボンド磁石用組成物の製造
サマリウム鉄窒素磁性粉末(平均粒径3μm)90質量%に対して12ナイロン樹
脂粉末9.5質量%、酸化防止剤粉末0.5質量%をミキサーで混合した
後、混合粉を二軸混練機に投入し、210℃にて混練して混練物を得た。得られた混練物
を冷却後、適当な大きさに切断しボンド磁石用組成物を得た。
(1) Example 1
(1-1) Production of composition for bonded magnet 90% by mass of samarium iron nitrogen magnetic powder (average particle size 3 μm), 9.5% by mass of 12 nylon resin powder and 0.5% by mass of antioxidant powder are mixed in a mixer. After mixing, the mixed powder was put into a twin-screw kneader and kneaded at 210°C to obtain a kneaded product. After cooling the obtained kneaded product, it was cut into appropriate sizes to obtain a bonded magnet composition.

(1-2)金型および配向用磁石
射出成型用金型および扇形平板磁石の上面からの模式図を図1Aに示す。金型内に、図1Aに示すように、配向用磁石と、スリーブを配置し、円筒状キャビティの外周直径260mm、内周直径250mm、厚さ4mm、高さ10mmであった。配向用磁石は12枚の扇形平板磁石より構成されており、扇形平板磁石1枚の辺の長さ119mm、厚さ20mm、中心角30°、表面磁束密度が0.8Tのものを用いた。また、図1Aにおいて、それぞれの扇形平板磁石の矢頭印は磁場方向示しており、磁場方向が隣り合う磁石と円周方向に互いに反発するように配向した扇形平板磁石を用いた。扇形平板磁石から構成される配向用磁石とキャビティとの間には、半径方向の厚さが6mm(円筒状キャビティの内周部と配向用磁石の外周部との最短ギャップ)のSUS304製の円筒状スリーブを配置した。
(1-2) Mold and Orienting Magnet FIG. 1A shows a schematic diagram of the injection mold and the fan-shaped flat magnet from above. As shown in FIG. 1A, an orientation magnet and a sleeve were arranged in the mold, and the cylindrical cavity had an outer diameter of 260 mm, an inner diameter of 250 mm, a thickness of 4 mm, and a height of 10 mm. The orientation magnet was composed of 12 fan-shaped flat magnets, each of which had a side length of 119 mm, a thickness of 20 mm, a center angle of 30°, and a surface magnetic flux density of 0.8 T. Further, in FIG. 1A, the arrowhead of each sector-shaped flat magnet indicates the direction of the magnetic field, and the sector-shaped flat magnets were used in which the magnetic field directions were oriented so that they repelled each other in the circumferential direction from adjacent magnets. A cylinder made of SUS304 with a radial thickness of 6 mm (the shortest gap between the inner circumference of the cylindrical cavity and the outer circumference of the alignment magnet) is placed between the orientation magnet composed of a sector-shaped flat magnet and the cavity. A shaped sleeve was placed.

(1-3)射出成形
上記金型を射出成形機に配置した。ボンド磁石用組成物を240℃のシリンダー内で溶解させ、90℃に調温した金型のキャビティ内に射出成形することで、外周直径260mm、内周直径250mm、厚さ4mm、高さ10mmの円筒状ボンド磁石を得た。
(1-3) Injection molding The above mold was placed in an injection molding machine. By melting the bonded magnet composition in a cylinder at 240°C and injection molding it into the cavity of a mold whose temperature is controlled at 90°C, a magnet with an outer diameter of 260 mm, an inner diameter of 250 mm, a thickness of 4 mm, and a height of 10 mm is produced. A cylindrical bonded magnet was obtained.

(2)比較例1
実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みを0.5mmに変更し、表1に示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(2) Comparative example 1
For the mold of the same size having a cylindrical cavity of the same size as in Example 1, except that the thickness of the sleeve shown in Table 1 was changed to 0.5 mm and the fan-shaped flat magnet shown in Table 1 was used. A cylindrical bonded magnet was manufactured in the same manner as in Example 1.

(3)比較例2~4
射出成型用金型および扇形平板磁石の上面からの模式図を図2Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みに変更したことと、表1および図2Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(3) Comparative Examples 2 to 4
FIG. 2A shows a schematic view of the injection mold and the sector-shaped flat magnet from above. Except for changing the sleeve thickness shown in Table 1 to the mold having the same cylindrical cavity as in Example 1 and using the fan-shaped flat magnet shown in Table 1 and FIG. 2A. manufactured a cylindrical bonded magnet using the same method as in Example 1.

(4)比較例5
射出成型用金型および扇形平板磁石の上面からの模式図を図3Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、隣り合う扇形平板磁石同士の間に、扇形平板磁石と同じ形状の非磁性スペーサー(SUS304材)を配置したこと、表1に示したスリーブの厚みに変更したこと、および表1および図3Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(4) Comparative example 5
FIG. 3A shows a schematic view of the injection mold and the sector-shaped flat magnet from above. A non-magnetic spacer (SUS304 material) having the same shape as the fan-shaped flat magnets was placed between adjacent fan-shaped flat magnets for a mold of the same size as in Example 1 and having a cylindrical cavity of the same size. A cylindrical bonded magnet was manufactured in the same manner as in Example 1, except that the thickness of the sleeve was changed to that shown in Example 1, and the fan-shaped flat magnet shown in Table 1 and FIG. 3A was used.

(5)比較例6
射出成型用金型および扇形平板磁石の上面からの模式図を図4Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、隣り合う扇形平板磁石同士の間に、扇形平板磁石と同じ形状の磁性材を配置したことと、表1に示したスリーブの厚みに変更したことと、表1および図4Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。なお磁性材はSS400材であり、飽和磁束密度は2.0T以上であった。
(5) Comparative example 6
FIG. 4A shows a schematic view of the injection mold and the sector-shaped flat magnet from above. For a mold of the same size and having a cylindrical cavity with the same dimensions as in Example 1, a magnetic material with the same shape as the fan-shaped flat magnets was placed between adjacent fan-shaped flat magnets, and the magnetic material shown in Table 1 was A cylindrical bonded magnet was manufactured in the same manner as in Example 1, except that the thickness of the sleeve was changed and the fan-shaped flat magnet shown in Table 1 and FIG. 4A was used. Note that the magnetic material was SS400 material, and the saturation magnetic flux density was 2.0T or more.

(6)比較例7
射出成型用金型および扇形平板磁石の上面からの模式図を図5Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みに変更したことと、表1および図5Aに示した扇形平板磁石を配置したこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(6) Comparative example 7
FIG. 5A shows a schematic view of the injection mold and the sector-shaped flat magnet from above. Except for changing the thickness of the sleeve shown in Table 1 and arranging the sector-shaped flat magnet shown in Table 1 and FIG. 5A for a mold of the same size having a cylindrical cavity of the same size as in Example 1. manufactured a cylindrical bonded magnet using the same method as in Example 1.

(7)評価
図1B、図2B、図3B、図4Bおよび図5Bにホール素子で測定した配向用磁石の外周の配向磁場を、図1C、図2C、図3C、図4Cおよび図5Cに、マグネットアナライザーで測定した円筒状ボンド磁石の内周の表面磁束密度を示す。また、正弦波曲線に対する円筒状ボンド磁石の内周の表面磁束密度の歪み率を表1に示す。歪み率は、波形のひずみの程度を表すもので、フーリエ変換によりその波形に含まれる全高調波成分(E2~En)を計算し、その実効値の総和と基本波(E1)の実効値との比として算出した。
(7) Evaluation Figures 1B, 2B, 3B, 4B and 5B show the alignment magnetic field around the outer periphery of the orientation magnet measured with a Hall element, and Figures 1C, 2C, 3C, 4C and 5C show the alignment magnetic field around the outer periphery of the alignment magnet. This figure shows the surface magnetic flux density on the inner circumference of a cylindrical bonded magnet measured with a magnet analyzer. Further, Table 1 shows the strain rate of the surface magnetic flux density on the inner circumference of the cylindrical bonded magnet with respect to the sinusoidal curve. The distortion rate represents the degree of distortion of a waveform. All harmonic components (E2 to En) included in the waveform are calculated by Fourier transform, and the sum of their effective values and the effective value of the fundamental wave (E1) are calculated. It was calculated as the ratio of

Figure 0007381851000001
Figure 0007381851000001

比較例1~7の円筒状ボンド磁石は、磁極間の表面磁束密度の変化が急峻であり、正弦波曲線に対する歪みが大きかった。また、比較例2~7では余分な磁極が生じた。これに対し、実施例1の円筒状ボンド磁石は、スリーブ厚さを調節し、隣り合う扇形平板磁石を、磁場方向がそれぞれ円周方向に互いに反発する方向に配置して磁場配向させたため、比較例1~7と同じ形状であるにもかかわらず正弦波曲線に対する歪みが低減された。 The cylindrical bonded magnets of Comparative Examples 1 to 7 had a steep change in the surface magnetic flux density between the magnetic poles, and had large distortions with respect to the sinusoidal curve. Further, in Comparative Examples 2 to 7, extra magnetic poles were generated. On the other hand, in the cylindrical bonded magnet of Example 1, the thickness of the sleeve was adjusted and the magnetic fields were oriented by arranging the adjacent fan-shaped flat magnets so that their magnetic fields repelled each other in the circumferential direction. Despite having the same shape as Examples 1 to 7, the distortion to the sinusoidal curve was reduced.

本発明の異方性磁性粉末の円筒状ボンド磁石の製造方法は、正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を製造できる。この円筒状ボンド磁石を大型モーターに適用した場合、コギングを抑制できる。 The method for producing a cylindrical bonded magnet using anisotropic magnetic powder according to the present invention can produce a large-diameter cylindrical bonded magnet having a surface magnetic flux density that is or approximates a sinusoidal curve. When this cylindrical bonded magnet is applied to a large motor, cogging can be suppressed.

1:配向用磁石
2:キャビティ
3:鋼材
4:スリーブ
1: Orienting magnet 2: Cavity 3: Steel material 4: Sleeve

Claims (9)

円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、
前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、
前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、
前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、
前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置された、
円筒状ボンド磁石の製造方法。
placing a mold having a cylindrical cavity and an orientation magnet in an injection molding machine;
A method for manufacturing a cylindrical bonded magnet, comprising a step of injecting a bonded magnet composition into the mold and injection molding,
The shortest gap between the inner peripheral part of the cylindrical cavity and the outer peripheral part of the orientation magnet is 2 mm or more and 10 mm or less,
The cylindrical cavity has an outer diameter of 100 mm or more and 300 mm or less, and a difference between the outer radius and the inner radius of 2 mm or more and 30 mm or less,
The orientation magnet is composed of a plurality of fan-shaped flat magnets magnetized in the circumferential direction, and the fan-shaped flat magnets are magnetized in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat magnets repel each other in the circumferential direction. placed,
A method for manufacturing a cylindrical bonded magnet.
円筒状キャビティの外周半径に対する外周半径と内周半径の差の比が、0.038以上0.6以下である請求項1に記載の円筒状ボンド磁石の製造方法。 The method for manufacturing a cylindrical bonded magnet according to claim 1, wherein the ratio of the difference between the outer radius and the inner radius of the cylindrical cavity to the outer radius is 0.038 or more and 0.6 or less. 配向用磁石が、4個以上56個以下の扇形平板磁石から構成される請求項1または2に記載の円筒状ボンド磁石の製造方法。 3. The method for manufacturing a cylindrical bonded magnet according to claim 1, wherein the orientation magnet is comprised of 4 or more and 56 or less sector-shaped flat magnets. 円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、
該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である円筒状ボンド磁石成形用金型。
It has an orientation magnet in which a plurality of sector-shaped flat magnets magnetized in the circumferential direction are arranged in the circumferential direction in a direction in which the magnetic field directions of the sector-shaped flat plate magnets repel each other in the circumferential direction, and a cylindrical cavity,
The shortest gap between the outer circumference of the orientation magnet and the inner circumference of the cylindrical cavity is 2 mm or more and 10 mm or less, the outer diameter of the cylindrical cavity is 100 mm or more and 300 mm or less, and the difference between the outer radius and the inner radius is 2 mm. A mold for forming a cylindrical bonded magnet having a diameter of at least 30 mm.
円筒状キャビティの外周半径に対する外周半径と内周半径の差の比が、0.038以上0.6以下である請求項4に記載の円筒状ボンド磁石成形用金型。 The mold for forming a cylindrical bonded magnet according to claim 4, wherein the ratio of the difference between the outer radius and the inner radius to the outer radius of the cylindrical cavity is 0.038 or more and 0.6 or less. 配向用磁石が、4個以上56個以下の扇形平板磁石から構成される請求項4または5に記載の円筒状ボンド磁石成形用金型。 The mold for forming a cylindrical bonded magnet according to claim 4 or 5, wherein the orientation magnet is comprised of 4 or more and 56 or less fan-shaped flat magnets. 請求項4~6のいずれか1項に記載の円筒状ボンド磁石成形用金型を使用して、ボンド磁石用組成物を射出成形する工程を含む、円筒状ボンド磁石の製造方法。 A method for producing a cylindrical bonded magnet, comprising the step of injection molding a bonded magnet composition using the cylindrical bonded magnet mold according to any one of claims 4 to 6. 内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である円筒状ボンド磁石。 The surface magnetic flux density on the inner circumferential side fluctuates periodically, the distortion rate of the surface magnetic flux density with respect to a sine wave curve is 22% or less, the outer circumferential diameter is 100 mm or more and 300 mm or less, and the outer circumferential radius and the inner circumferential radius are A cylindrical bonded magnet with a difference of 2 mm or more and 30 mm or less. 外周半径に対する外周半径と内周半径の差の比が、0.038以上0.6以下である請求項8に記載の円筒状ボンド磁石。
The cylindrical bonded magnet according to claim 8, wherein the ratio of the difference between the outer radius and the inner radius to the outer radius is 0.038 or more and 0.6 or less.
JP2019180589A 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet Active JP7381851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180589A JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180589A JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Publications (2)

Publication Number Publication Date
JP2021057488A JP2021057488A (en) 2021-04-08
JP7381851B2 true JP7381851B2 (en) 2023-11-16

Family

ID=75272769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180589A Active JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Country Status (1)

Country Link
JP (1) JP7381851B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104143A (en) 1992-10-29 2004-04-02 Seiko Epson Corp Resin-bonded magnet and its manufacturing method
JP2005223233A (en) 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
WO2009099054A1 (en) 2008-02-07 2009-08-13 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP2017212863A (en) 2016-05-26 2017-11-30 ナパック株式会社 Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2018127668A (en) 2017-02-08 2018-08-16 住友金属鉱山株式会社 Molding die for anisotropic bonded magnet and production method using the same
JP2018148694A (en) 2017-03-06 2018-09-20 三菱電機株式会社 Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104143A (en) 1992-10-29 2004-04-02 Seiko Epson Corp Resin-bonded magnet and its manufacturing method
JP2005223233A (en) 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
WO2009099054A1 (en) 2008-02-07 2009-08-13 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP2017212863A (en) 2016-05-26 2017-11-30 ナパック株式会社 Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2018127668A (en) 2017-02-08 2018-08-16 住友金属鉱山株式会社 Molding die for anisotropic bonded magnet and production method using the same
JP2018148694A (en) 2017-03-06 2018-09-20 三菱電機株式会社 Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator

Also Published As

Publication number Publication date
JP2021057488A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2009063350A2 (en) Permanent magnet rotor for a synchronous electrical machine, particularly for a reluctance motor
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
KR100981218B1 (en) Permanent magnet rotor and motor using the same
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4029679B2 (en) Bond magnet for motor and motor
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JP5470851B2 (en) Radial gap type magnet motor
JP6907742B2 (en) Magnet material manufacturing method, motor manufacturing method
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JPS6312370B2 (en)
JPH0361322B2 (en)
JP7356003B2 (en) Method for manufacturing a mold for a polar anisotropic annular bonded magnet body
JPS61237405A (en) Multipolarized magnet
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JPS6349889B2 (en)
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JP2020096485A (en) Permanent magnet and rotating electric machine
JP6536289B2 (en) Bond magnet, bond magnet piece and method of manufacturing bond magnet
JPS5923448B2 (en) anisotropic magnet
JPH06349630A (en) Anisortopical magmet
JP2003088057A (en) Motor field magnet and its manufacturing method
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPS60211908A (en) Manufacture of cylindrical permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7381851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151