JP2004104143A - Resin-bonded magnet and its manufacturing method - Google Patents

Resin-bonded magnet and its manufacturing method Download PDF

Info

Publication number
JP2004104143A
JP2004104143A JP2003356612A JP2003356612A JP2004104143A JP 2004104143 A JP2004104143 A JP 2004104143A JP 2003356612 A JP2003356612 A JP 2003356612A JP 2003356612 A JP2003356612 A JP 2003356612A JP 2004104143 A JP2004104143 A JP 2004104143A
Authority
JP
Japan
Prior art keywords
magnet
resin
magnetic powder
less
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003356612A
Other languages
Japanese (ja)
Inventor
Masaaki Sakata
坂田 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003356612A priority Critical patent/JP2004104143A/en
Publication of JP2004104143A publication Critical patent/JP2004104143A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide resin-bonded magnets which are excellent in a magnetic characteristic and accuracy of dimensions and are of a thin-wall arc shape and thin-wall cylindrical shap; and provide a means for manufacturing them. <P>SOLUTION: One of the resin-bonded magnets is of an arc shape which is 1.5 mm to 50 mm in the outer radius and is at least 0.1 mm or smaller than 1.0 mm in the wall thickness, and another resin-bonded type magnet is of a cylindrical shape which is 3 mm to 100 mm in the outer diameter and is at least 0.1 mm or smaller than 1.0 mm in the wall thickness. The composition of the magnet is cooled and solidified passing at a temperature lower than the melting point of the composition through a mold 105, and the magnet has high dimensional precision and magnetic charateristics by extrusion. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、電子機器などに使用される小型モーターやアクチュエータに利用される樹脂結合型磁石及び該樹脂結合型磁石の押出成形を用いた製造方法に関するものである。  The present invention relates to a resin-bonded magnet used for a small motor or an actuator used in an electronic device or the like, and a method for manufacturing the resin-bonded magnet using extrusion molding.

  従来小型DCモーター等に用いられている円弧状磁石としては、焼結フェライト磁石、樹脂結合型フェライト磁石が主に使用されており、また、円筒状磁石としては、焼結フェライト磁石、樹脂結合型フェライト磁石の他に焼結希土類磁石、樹脂結合型希土類磁石も使用されていた。これら磁石の成形で、焼結法は、例えば特公昭51−38917号公報に開示されているように磁性粉末のみを金型中に充填し成形した後該磁性粉末を焼結するかあるいは、特開昭56−125814号公報あるいは特開昭63−209108号公報等に開示されているように磁性粉末とバインダーからなる混合物を成形後、この成形体を焼結する方法である。樹脂結合型磁石の成形には、射出成形法、圧縮成形法、押出成形法が主に用いられていた。射出成形法は、例えば特公昭55−33173号公報あるいは特公昭58−53491号公報等に開示されているように磁性粉末と熱可塑性樹脂からなる磁石原料を十分な流動性が得られる温度まで加熱した状態で金型中に充填し、所定の形状に成形するものである。また、圧縮成形法は、特公昭50−18559号公報あるいは特開平1−310522号公報等に開示されているように磁性粉末と熱硬化性樹脂からなる磁石原料をプレスの金型中に充填し圧縮して成形する方法である。また、押出成形法は、特開昭61−121307号公報あるいは特開昭62−208612号公報等に開示されているように磁性粉末と熱可塑性樹脂からなる磁石原料を十分な流動性が得られる温度まで加熱した状態で金型を通過させ、その後冷却して所定の形状に成形するものである。 Conventionally, sintered ferrite magnets and resin-bonded ferrite magnets are mainly used as arc-shaped magnets used for small DC motors, and sintered ferrite magnets and resin-bonded magnets are used as cylindrical magnets. In addition to ferrite magnets, sintered rare earth magnets and resin-bonded rare earth magnets have also been used. In molding these magnets, a sintering method is as follows. For example, as disclosed in Japanese Patent Publication No. 51-38917, only a magnetic powder is filled in a metal mold and molded, and then the magnetic powder is sintered. As disclosed in JP-A-56-125814 or JP-A-63-209108, a method comprising molding a mixture comprising a magnetic powder and a binder and then sintering the molded product. Injection molding, compression molding, and extrusion molding have been mainly used for molding resin-bonded magnets. The injection molding method involves heating a magnet raw material comprising a magnetic powder and a thermoplastic resin to a temperature at which sufficient fluidity can be obtained, as disclosed in, for example, Japanese Patent Publication No. 55-33173 or Japanese Patent Publication No. 58-53491. In this state, the mold is filled into a mold and molded into a predetermined shape. In the compression molding method, as disclosed in Japanese Patent Publication No. 50-18559 or JP-A-1-310522, a magnet raw material comprising a magnetic powder and a thermosetting resin is filled in a press die. It is a method of molding by compression. In addition, the extrusion molding method provides sufficient fluidity of a magnet raw material comprising a magnetic powder and a thermoplastic resin as disclosed in JP-A-61-121307 or JP-A-62-208612. This is to pass through a mold while being heated to a temperature, and then cool and mold it into a predetermined shape.

特公昭51−38917号公報JP-B-51-38917 特開昭56−125814号公報JP-A-56-125814 特開昭63−209108号公報JP-A-63-209108 特公昭55−33173号公報JP-B-55-33173 特公昭58−53491号公報JP-B-58-53491 特公昭50−18559号公報Japanese Patent Publication No. 50-18559 特開平1−310522号公報JP-A-1-310522 特開昭61−121307号公報JP-A-61-121307 特開昭62−208612号公報JP-A-62-208612

しかしながら、前述の従来技術では、以下のような課題を有している。   However, the above-described related art has the following problems.

 近年、OA機器、カメラ、家電製品等の小型化はますます進んでおり、これら機器に使用されるモーターも小型化が進んでいる。これに伴いモーターに使用される小型の磁石の需要も増えている。従来の磁石が有する課題として、円弧形状磁石については、
 (1)一般に円弧形状磁石は、電機子(ローター)の外側に界磁用として設置し、巻線を施した内側の電機子を回転させるという方法で使用される。従来の円弧形状磁石は、磁石肉厚が1.0mm以上のもののみで、肉厚1.0mm未満の薄肉の磁石がなかった。そのため、モーターを小型化する際、電機子の大きさが小さくなるため、モーター特性(トルク等)を維持してモーターを小型化することが難しい、コイル線の巻線が難しく断線し易いという課題があった。
In recent years, miniaturization of OA equipment, cameras, home electric appliances, and the like has been more and more advanced, and motors used in these equipment have also been reduced in size. Accordingly, the demand for small magnets used in motors is increasing. One of the problems with conventional magnets is that arc-shaped magnets
(1) Generally, an arc-shaped magnet is used for a magnetic field outside an armature (rotor), and is used in such a manner that an inner armature provided with a winding is rotated. The conventional arc-shaped magnet has only a magnet thickness of 1.0 mm or more, and there is no thin magnet having a thickness of less than 1.0 mm. Therefore, when the motor is downsized, the size of the armature becomes small, so that it is difficult to downsize the motor while maintaining the motor characteristics (torque, etc.), and it is difficult to wind the coil wire and it is easy to disconnect. was there.

 (2)従来の磁石は磁気特性が低いフェライト磁石が主であり、小型モーター用に磁石を小型化して体積を小さくすると必要な磁界強度を得ることが困難になり、モーター特性が低下してしまうという課題もあった。 (2) Conventional magnets are mainly ferrite magnets having low magnetic properties. If a magnet is reduced in size and its volume is reduced for a small motor, it becomes difficult to obtain a required magnetic field strength, and the motor properties deteriorate. There was also a problem.

 (3)従来の円弧形状磁石の製造方法についても、次のような課題を有している。 (3) The conventional method for manufacturing an arc-shaped magnet also has the following problems.

  (a)焼結法で製造した磁石は靱性が低く、割れ、欠けが生じ易い。そのため、磁石肉厚1.0mm未満の磁石では、モーターに組み込む際に割れが生じてしまいモーターに使用することは困難である。 (A) Magnets manufactured by the sintering method have low toughness and are susceptible to cracking and chipping. For this reason, a magnet having a magnet thickness of less than 1.0 mm causes cracking when assembled into a motor, and is difficult to use for a motor.

  (b)射出成形法ではキャビティーへの磁石原料の充填が必要であるが、磁性粉末を多量に含んだ磁石原料を充填させるためには、キャビティーの厚みが1.0mm以上必要である。従って磁石肉厚が1.0mm未満の磁石は成形ができない。 (B) In the injection molding method, it is necessary to fill the cavity with a magnet raw material, but in order to fill the magnet raw material containing a large amount of magnetic powder, the cavity must have a thickness of 1.0 mm or more. Therefore, a magnet having a thickness of less than 1.0 mm cannot be formed.

  (c)圧縮成形法においても、原料粉末を均一に型内に充填するためには型のギャップが1.0mm以上あることが望ましい。成形パンチの強度面では、円弧形状のパンチは座屈変形を起こし易いことから、肉厚が1.0mm未満の場合パンチの破壊が起こり磁石の成形は不可能である。従って、圧縮成形法を用いても肉厚1.0mm未満の磁石の成形はできない。 (C) Also in the compression molding method, the gap of the mold is desirably 1.0 mm or more in order to uniformly fill the material powder into the mold. In terms of the strength of the forming punch, the arc-shaped punch is liable to buckle, and if the wall thickness is less than 1.0 mm, the punch is broken and the magnet cannot be formed. Therefore, even if the compression molding method is used, it is impossible to form a magnet having a thickness of less than 1.0 mm.

  (d)押出成形法においても、従来の方法では金型から押し出されたところで冷却するため肉厚1.0mm未満の磁石では変形が起こり易く、要求される寸法精度を満たす磁石を得ることは困難である。 (D) Also in the extrusion molding method, in the conventional method, since the magnet is cooled when it is extruded from the mold, the magnet having a thickness of less than 1.0 mm is easily deformed, and it is difficult to obtain a magnet satisfying the required dimensional accuracy. It is.

  (e)肉厚1.0mm未満の磁石を得る方法として、上記射出成形、圧縮成形あるいは押出成形した磁石を切削加工によって肉厚1.0mm未満に加工するという方法も考えられる。しかしながらこれら磁石は、切削加工によって微細な傷が入ること、磁石内部に密度ばらつきがあり切削加工により低密度な部分が表面に現れることにより機械的強度が弱くなる。そのため、モーターに組み込む際に割れが生じてしまいモーターに使用することは困難である。 (E) As a method for obtaining a magnet having a thickness of less than 1.0 mm, a method of processing the above-mentioned injection-molded, compression-molded or extruded magnet by cutting to a thickness of less than 1.0 mm is also conceivable. However, these magnets have low mechanical strength due to minute scratches caused by the cutting process, density variations inside the magnet, and low density portions appearing on the surface by the cutting process. For this reason, cracks occur when assembled into the motor, and it is difficult to use the motor for the motor.

 また、円筒形状磁石については、
 (1)円筒形状磁石は、円弧形状磁石と同様に電機子(ローター)の外側に界磁用として設置し、巻線を施した内側の電機子を回転させるという方法で使用される場合と、円筒状のヨークに接着しローターとして使用される場合がある。従来の円筒形状磁石も、磁石肉厚が1.0mm以上のものが多く、そのため、モーターを小型化する際、外側の界磁用として使用する場合、電機子の大きさが小さくなるためモーター特性(トルク等)を維持してモーターを小型化することが難しい、コイル線の巻線が難しく断線し易いという課題があった。また、ローターとして使用する場合もローター外径が大きくなるため小型化することが難しいという課題があった。
For cylindrical magnets,
(1) A cylindrical magnet is installed outside of an armature (rotor) for field use similarly to an arc-shaped magnet, and is used by a method of rotating an inner armature on which a winding is applied, It is sometimes used as a rotor by adhering to a cylindrical yoke. Many of the conventional cylindrical magnets have a magnet thickness of 1.0 mm or more. Therefore, when the motor is downsized and used for an outer field, the size of the armature is reduced, so that the motor characteristics are reduced. (Torque, etc.), it is difficult to reduce the size of the motor, and there is a problem that the winding of the coil wire is difficult and the wire is easily broken. Also, when used as a rotor, there is a problem that it is difficult to reduce the size because the outer diameter of the rotor is large.

 (2)磁石肉厚が0.1mm未満のものでは、下記に示す理由で磁気特性が低いため、小型モーター用に磁石を小型化して体積を小さくすると必要な磁界強度を得ることが困難になり、モーター特性が低下してしまうという課題があった。 (2) When the magnet thickness is less than 0.1 mm, the magnetic properties are low for the following reasons. Therefore, if the magnet is reduced in size and the volume is reduced for a small motor, it becomes difficult to obtain the required magnetic field strength. However, there is a problem that the motor characteristics are deteriorated.

 (3)従来の円筒形状磁石の製造方法についても、円弧形状磁石の製造と同様に以下のような課題を有している。 (3) The conventional method of manufacturing a cylindrical magnet also has the following problems as in the case of manufacturing an arc-shaped magnet.

  (a)焼結法で製造した磁石は靱性が低く、割れ、欠けが生じ易い。そのため、円筒形状で肉厚1.0mm未満の磁石を得ることは困難である。 (A) Magnets manufactured by the sintering method have low toughness and are susceptible to cracking and chipping. Therefore, it is difficult to obtain a cylindrical magnet having a thickness of less than 1.0 mm.

  (b)射出成形法でも円弧形状磁石の場合と同様に、磁性粉末を多量に含んだ磁石原料を充填させるためにキャビティーの厚みが1.0mm以上必要であり、従って磁石肉厚が1.0mm未満の磁石は成形ができない。 (B) In the injection molding method, as in the case of the arc-shaped magnet, the cavity must have a thickness of 1.0 mm or more in order to fill a magnet raw material containing a large amount of magnetic powder. Magnets less than 0 mm cannot be molded.

  (c)圧縮成形法においては、原料粉末を均一に型内に充填するためには型のギャップが1.0mm以上あることが望ましい。成形パンチの機械的強度面でも肉厚が1.0mm未満の場合、強度不足からパンチの破壊が起こり易く磁石の成形は困難である。従って、圧縮成形法を用いても肉厚1.0mm未満の磁石の成形は難しい。無理に肉厚1.0mm未満の磁石を成形する場合は、加圧力が高くできないため、成形品中の空孔が多くなり密度が低くなって磁気特性、機械的強度共に低下してしまう。 (C) In the compression molding method, the gap of the mold is desirably 1.0 mm or more in order to uniformly fill the material powder into the mold. If the thickness of the formed punch is less than 1.0 mm in mechanical strength, the punch is likely to be broken due to insufficient strength, and it is difficult to form a magnet. Therefore, it is difficult to form a magnet having a thickness of less than 1.0 mm even by using the compression molding method. When a magnet having a wall thickness of less than 1.0 mm is forcibly formed, since the pressing force cannot be increased, the number of pores in the molded product increases, the density decreases, and both the magnetic properties and the mechanical strength decrease.

  (d)円筒形状磁石でも従来の押出成形法では、金型から押し出されたところで冷却するため肉厚1.0mm未満の磁石では変形が起こり易く、要求される寸法精度を満たす磁石を得ることは困難である。 (D) Even in the case of a cylindrical magnet, in the conventional extrusion molding method, since it is cooled when it is extruded from the mold, a magnet having a thickness of less than 1.0 mm is easily deformed, and a magnet satisfying the required dimensional accuracy cannot be obtained. Have difficulty.

  (e)肉厚1.0mm未満の磁石を得る方法として、射出成形、圧縮成形あるいは押出成形した磁石を切削加工によって肉厚1.0mm未満に加工するという方法も考えられる。しかしながら、円弧形状磁石の場合と同様に機械的強度が弱くなるため、モーターに組み込む際に割れが生じてしまいモーターに使用することは困難である。
そこで本発明は上記のような課題を解決するもので、第1の目的は機械的強度に優れた肉厚0.1mm以上1.0mm未満の薄肉の樹脂結合型円弧形状磁石及び樹脂結合型円筒形状磁石を提供することにある。第2の目的は磁石組成物の融点以下の温度に金型中にて冷却固化しながら押出成形することにより前記した磁石の有効な製造方法を提供することにある。第3の目的は、磁性粉末に希土類磁性粉末を用いることにより磁気特性、機械的強度共に優れた肉厚0.1mm以上1.0mm未満の薄肉の樹脂結合型円弧形状磁石、樹脂結合型円筒形状磁石を提供すること及び、それら磁石の有効な製造方法を提供することにある。
(E) As a method of obtaining a magnet having a thickness of less than 1.0 mm, a method of processing a magnet formed by injection molding, compression molding, or extrusion molding to a thickness of less than 1.0 mm by cutting may be considered. However, as in the case of the arc-shaped magnet, the mechanical strength is weakened, so that when the magnet is incorporated into a motor, cracks occur, and it is difficult to use the magnet for the motor.
Accordingly, the present invention is to solve the above-mentioned problems, and a first object is to provide a thin resin-coupled arc-shaped magnet and a resin-coupled cylinder having excellent mechanical strength and a wall thickness of 0.1 mm or more and less than 1.0 mm. It is to provide a shape magnet. A second object of the present invention is to provide an effective method for producing the above-mentioned magnet by extruding while cooling and solidifying in a mold to a temperature lower than the melting point of the magnet composition. A third object is to use a rare-earth magnetic powder as a magnetic powder to obtain a thin resin-bonded arc-shaped magnet having a thickness of 0.1 mm or more and less than 1.0 mm, which is excellent in both magnetic properties and mechanical strength, and a resin-bonded cylindrical shape. An object of the present invention is to provide magnets and to provide an effective method for manufacturing the magnets.

 本発明の樹脂結合型磁石は、磁性粉末と熱可塑性樹脂を混合して、押し出し成形法により結合してなる樹脂結合型磁石であって、外半径が1.5mm以上50mm以下、肉厚が0.1mm以上1.0mm未満の円弧形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが2N/mm以上であることを特徴とする。 The resin-bonded magnet of the present invention is a resin-bonded magnet obtained by mixing a magnetic powder and a thermoplastic resin and bonding them by an extrusion molding method, and has an outer radius of 1.5 mm or more and 50 mm or less, and a thickness of 0 mm. An arc-shaped magnet having a crushing strength K of 2 N / mm or more when the length of the magnet is L (mm) and the crushing load is P (N). There is a feature.

     K= P/L
本発明の樹脂結合型磁石は、磁性粉末と熱可塑性樹脂を混合して、押し出し成形法により結合してなる樹脂結合型磁石であって、外径がφ2mm以上φ100mm以下、肉厚が0.1mm以上1.0mm未満の円筒形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが1N/mm以上であることを特徴とする。
K = P / L
The resin-bonded magnet of the present invention is a resin-bonded magnet obtained by mixing a magnetic powder and a thermoplastic resin and bonding them by an extrusion molding method, and has an outer diameter of 2 mm or more and 100 mm or less, and a wall thickness of 0.1 mm. A cylindrical magnet having a length of L (mm) and a crushing load of P (N), and a crushing strength K determined by the following equation is 1 N / mm or more, which is not less than 1.0 mm and less than 1.0 mm. It is characterized by.

     K= P/L
 さらに、前記磁性粉末が、希土類元素(ただしイットリウム(Y)を含む)とコバルトを主体とする遷移金属からなる希土類磁性粉末、希土類元素と鉄を主体とする遷移金属およびほう素からなる希土類磁性粉末あるいは希土類元素と鉄を主体とする遷移金属および窒素からなる希土類磁性粉末であることを特徴とする。
K = P / L
Further, the magnetic powder is a rare earth magnetic powder composed of a rare earth element (including yttrium (Y)) and a transition metal mainly composed of cobalt, and a rare earth magnetic powder composed of a transition metal composed mainly of a rare earth element and iron and boron. Alternatively, it is a rare earth magnetic powder comprising a transition metal mainly composed of a rare earth element and iron and nitrogen.

 本発明の樹脂結合型磁石の製造方法は、磁性粉末と熱可塑性樹脂とが混合されてなる磁石組成物を、該磁石組成物の融点以下の温度に金型中にて冷却固化しながら押出成形して、外半径が1.5mm以上50mm以下、肉厚が0.1mm以上1.0mm未満の円弧形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが2N/mm以上に成形することを特徴とする。 The method for producing a resin-bonded magnet of the present invention comprises extruding a magnet composition comprising a mixture of a magnetic powder and a thermoplastic resin while cooling and solidifying the magnet composition in a mold to a temperature equal to or lower than the melting point of the magnet composition. Then, an arc-shaped magnet having an outer radius of 1.5 mm or more and 50 mm or less and a wall thickness of 0.1 mm or more and less than 1.0 mm, the length of the magnet was L (mm), and the crushing load was P (N). The molding is characterized in that the crushing strength K determined by the following equation is formed to be 2 N / mm or more.

     K= P/L
本発明の樹脂結合型磁石の製造方法は、磁性粉末と熱可塑性樹脂とが混合されてなる磁石組成物を、該磁石組成物の融点以下の温度に金型中にて冷却固化しながら押出成形して、外径がφ2mm以上φ100mm以下、肉厚が0.1mm以上1.0mm未満の円筒形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが1N/mm以上に成形することを特徴とする。
K = P / L
The method for producing a resin-bonded magnet of the present invention comprises extruding a magnet composition comprising a mixture of a magnetic powder and a thermoplastic resin while cooling and solidifying the magnet composition in a mold to a temperature equal to or lower than the melting point of the magnet composition. Then, when a cylindrical magnet having an outer diameter of φ2 mm or more and φ100 mm or less and a wall thickness of 0.1 mm or more and less than 1.0 mm, and the length of the magnet is L (mm) and the crushing load is P (N), Is characterized in that the crushing strength K determined by the following formula is 1 N / mm or more.

     K= P/L
 さらに、前記磁性粉末が、希土類元素(ただしイットリウム(Y)を含む)とコバルトを主体とする遷移金属からなる希土類磁性粉末、希土類元素と鉄を主体とする遷移金属およびほう素からなる希土類磁性粉末あるいは希土類元素と鉄を主体とする遷移金属および窒素からなる希土類磁性粉末であることを特徴とする。
  (作用)
K = P / L
Further, the magnetic powder is a rare earth magnetic powder composed of a rare earth element (including yttrium (Y)) and a transition metal mainly composed of cobalt, and a rare earth magnetic powder composed of a transition metal composed mainly of a rare earth element and iron and boron. Alternatively, it is a rare earth magnetic powder comprising a transition metal mainly composed of a rare earth element and iron and nitrogen.
(Action)

本発明の薄肉円弧形状及び円筒形状の樹脂結合型磁石を用いることにより、小型で高特性なモーターやアクチュエーターを作製することが可能となる。また、本発明の製造方法を用いることにより、該薄肉円弧形状、円筒形状の樹脂結合型磁石を製造することが可能である。   By using the thin arc-shaped and cylindrical resin-coupled magnets of the present invention, it is possible to produce a small-sized and high-performance motor or actuator. Further, by using the manufacturing method of the present invention, it is possible to manufacture the thin-walled arc-shaped and cylindrical resin-coupled magnet.

 本発明において、円弧形状磁石の外半径を1.5mm以上50mm以下としたのは、外半径が50mmよりも大きい場合、成形体が大径、薄肉のため変形し易く、一般に要求される寸法精度(外径寸法公差で±0.05mm以内)を満足する磁石を製造することが困難なためである。また、外半径1.5mm未満の場合、金型加工が難しく寸法精度の高い金型を作製することが困難で、そのため成形された磁石の寸法精度が低くなってしまうためである。また、円筒形状磁石の外径をφ2mm以上φ100mm以下としたのは、外径が100mmよりも大きい場合、成形体が大径、薄肉のため変形し易く、一般に要求される寸法精度(外径寸法公差で±0.05mm以内)を満足する磁石を製造することが困難になるためである。また、外径がφ2mm未満の場合、金型そのものの作製が困難で磁石成形ができないためである。 In the present invention, the reason why the outer radius of the arc-shaped magnet is set to 1.5 mm or more and 50 mm or less is that when the outer radius is larger than 50 mm, the formed body has a large diameter and is thin and is easily deformed, and generally required dimensional accuracy. This is because it is difficult to manufacture a magnet that satisfies (within ± 0.05 mm outer diameter dimensional tolerance). Also, if the outer radius is less than 1.5 mm, it is difficult to mold and it is difficult to produce a mold with high dimensional accuracy, so that the dimensional accuracy of the formed magnet is reduced. In addition, the reason why the outer diameter of the cylindrical magnet is set to not less than φ2 mm and not more than φ100 mm is that when the outer diameter is larger than 100 mm, the formed body is large in diameter and thin and easily deformed. This is because it becomes difficult to manufacture a magnet satisfying a tolerance of ± 0.05 mm. On the other hand, if the outer diameter is less than φ2 mm, it is difficult to manufacture the mold itself and magnet molding cannot be performed.

 本発明において、磁石肉厚を0.1mm以上1.0mm未満としたのは、肉厚0.1mm未満の薄肉にすると、磁性粉末を高体積率含んだ磁石であるため十分な機械的強度が得られず、組み込み時に割れる等の問題が発生し実用が困難になるためである。また、肉厚1.0mm以上になると、例えばモーターの電機子の小型化ができないといった問題があり、もはや薄肉磁石としての効果が小さくなるためである。 In the present invention, the reason that the thickness of the magnet is set to 0.1 mm or more and less than 1.0 mm is that when the thickness is reduced to less than 0.1 mm, the magnet contains a high volume ratio of magnetic powder, and thus has sufficient mechanical strength. This is because they cannot be obtained, and problems such as cracking at the time of assembling occur, which makes practical use difficult. Further, if the thickness is 1.0 mm or more, there is a problem that, for example, the size of the armature of the motor cannot be reduced, and the effect as a thin magnet is no longer reduced.

 本発明において、機械的強度は円弧形状磁石、円筒形状磁石共に、
     K= P/L
なる式で示される値を用いた。円弧形状磁石、円筒形状磁石の機械的強度は公的規格では定められていないため、単位長さ当たりの圧壊荷重の値を圧壊強さとして用いた。実用上は本値を用いて十分評価できる。本発明において、円弧形状磁石の圧壊強さを2N/mm以上、円筒形状磁石の圧環強さを1N/mm以上としたのは、この値未満の機械的強度では、通常の取扱い時あるいはモーターへの組み込み時に磁石が破損し易く、また、モーター完成体としたとき、落下試験等の衝撃試験において磁石の破損によるモーターの動作不良を起こし易いためである。
In the present invention, the mechanical strength is both arc-shaped magnet and cylindrical magnet,
K = P / L
The value shown by the following equation was used. Since the mechanical strength of arc-shaped magnets and cylindrical magnets is not defined by official standards, the value of the crushing load per unit length was used as the crushing strength. In practical use, this value can be sufficiently evaluated. In the present invention, the crushing strength of the arc-shaped magnet is set to 2 N / mm or more, and the crushing strength of the cylindrical magnet is set to 1 N / mm or more. This is because the magnet is likely to be damaged when the motor is assembled, and when the motor is completed, the motor is likely to malfunction due to damage to the magnet in an impact test such as a drop test.

 本発明の樹脂結合型磁石の製造方法は、流動状態の磁石原料をスクリューまたはプランジャーを使って金型中に送り込み、注入された磁石組成物を金型中を冷却しながら通過させ金型外に押し出し成形する。その際、金型中にて前記磁石組成物の融点以下の温度に冷却固化しながら押出成形することにより、円弧形状、円筒形状共に密度が均一で高い寸法精度を有する磁石を成形することができる。
ここで温度を磁石組成物の融点以下としたのは、温度が融点より高いと、成形体がまだ軟らかい状態で金型から押し出され型外で容易に変形してしまい、寸法精度が低下してしまうからである。また、異方性を有する磁性粉末を用いる場合、成形時金型内に磁場を印加し磁石組成物中の磁性粉末を配向させ異方性磁石を製造することもできる。この場合も、金型中にて前記磁石組成物の融点以下の温度に冷却固化しながら押出成形することにより、磁気特性の高い磁石を成形することができる。ここでも温度を磁石組成物の融点以下としたのは、温度が融点より高いと、成形体がまだ軟らかい状態で金型から押し出され、型外で磁性粉末の配向が乱れ磁気特性が低下してしまうためである。
In the method for producing a resin-bonded magnet of the present invention, a magnet material in a fluidized state is fed into a mold using a screw or a plunger, and the injected magnet composition is passed through the mold while being cooled, and the outside of the mold is cooled. Extrusion molding. At that time, by performing extrusion molding while cooling and solidifying to a temperature equal to or lower than the melting point of the magnet composition in a mold, a magnet having uniform density and high dimensional accuracy in both arc shape and cylindrical shape can be formed. .
Here, the temperature is set to be equal to or lower than the melting point of the magnet composition.If the temperature is higher than the melting point, the molded body is easily extruded from the mold in a soft state and is easily deformed outside the mold, and the dimensional accuracy is reduced. It is because. When using magnetic powder having anisotropy, an anisotropic magnet can be produced by applying a magnetic field to a mold during molding to orient the magnetic powder in the magnet composition. Also in this case, a magnet having high magnetic properties can be formed by performing extrusion molding while cooling and solidifying the magnet composition to a temperature equal to or lower than the melting point of the magnet composition in a mold. Again, the temperature was set to be equal to or lower than the melting point of the magnet composition, because if the temperature is higher than the melting point, the molded body is extruded from the mold in a still soft state, the magnetic powder orientation is disturbed outside the mold, and the magnetic properties are reduced. This is because

 本発明に使用する磁性粉末としてはフェライト粉末や希土類磁性粉末などがあるが、磁気特性の高い希土類磁性粉末が望ましい。 磁性 The magnetic powder used in the present invention includes a ferrite powder and a rare earth magnetic powder, but a rare earth magnetic powder having high magnetic properties is desirable.

 本発明に利用できる樹脂は、熱可塑性樹脂で例えばポリアミド、ポリフェニレンサルファイド(PPS)等のプラスチック、塩素化ポリエチレンなどのエラストマー、合成ゴムなどがある。添加剤としては、金属石けん(ステアリン酸亜鉛、ステアリン酸カルシウムなど)、ワックス等の滑剤や酸化防止剤などを用いることができる。 樹脂 The resin that can be used in the present invention is a thermoplastic resin, for example, a plastic such as polyamide and polyphenylene sulfide (PPS), an elastomer such as chlorinated polyethylene, and a synthetic rubber. As additives, metal soaps (zinc stearate, calcium stearate, etc.), lubricants such as wax, antioxidants and the like can be used.

本発明の製造方法を用いることにより、従来製造ができなかった、磁気特性が高く寸法精度が良好で機械的強度に優れた薄肉形状樹脂結合型磁石を製造することができる。 By using the manufacturing method of the present invention, it is possible to manufacture a thin resin-bonded magnet having high magnetic properties, good dimensional accuracy, and excellent mechanical strength, which could not be conventionally manufactured.

 また、本発明によれば、機械的強度に優れた薄肉円弧形状樹脂結合型磁石及び薄肉円筒形状樹脂結合型磁石を提供することができ、この薄肉樹脂結合型磁石を用いることにより、従来に比べ非常に小型なモーター、アクチュエーターを作製することが可能となるという優れた効果を有する。そのため、OA機器、民生機器等の小型軽量化、ひいては省資源化に大いに効果を発揮するものである。  Further, according to the present invention, it is possible to provide a thin arc-shaped resin-coupled magnet and a thin-cylindrical resin-coupled magnet excellent in mechanical strength. It has an excellent effect that a very small motor and actuator can be manufactured. Therefore, it is very effective in reducing the size and weight of OA equipment, consumer equipment, and the like, and eventually saving resources.

 以下、さらに詳細な実施例を示す。 Hereinafter, more detailed examples will be described.

 組成がSm(Co0.672Cu0.08Fe0.22Zr0.0288.35となるように原料を溶解、鋳造後、できたインゴットを熱処理して磁気的に硬化させ、その後該インゴットを粉砕して平均粒径が15μmの磁性粉末を得た。この粉末を粉末Aとする。また、他の種類の粉末として、Nd14(Fe0.95Co0.0580.55.5 の組成となるように原料を溶解、鋳造し、得られたインゴットから急冷薄帯製造装置を用い、アルゴンガス雰囲気中で急冷薄帯を作製した。この急冷薄帯を粉砕し、平均粒径20μmの磁石粉末を得た。この粉末を粉末Bとする。また、他の種類の粉末として、Sm2Fe17の組成となるように原料を溶解、鋳造し、得られたインゴットを粗粉砕した。この粉末を窒素中にて460℃で窒化処理を行い、その後さらに粉砕して平均粒径20μmの磁石粉末を得た。この粉末を粉末Cとする。 After dissolving and casting the raw materials so that the composition becomes Sm (Co 0.672 Cu 0.08 Fe 0.22 Zr 0.028 ) 8.35 , the resulting ingot is heat-treated and magnetically cured, and then the ingot is pulverized to have an average particle size of 15 μm. Was obtained. This powder is referred to as Powder A. Further, as another type of powder, a raw material was melted and cast so as to have a composition of Nd 14 (Fe 0.95 Co 0.05 ) 80.5 B 5.5 , and the obtained ingot was quenched using an apparatus for producing a quenched ribbon in an argon gas atmosphere. The quenched ribbon was produced with. The quenched ribbon was pulverized to obtain a magnet powder having an average particle diameter of 20 μm. This powder is referred to as Powder B. Further, as another type of powder, a raw material was dissolved and cast so as to have a composition of Sm 2 Fe 17 , and the obtained ingot was roughly pulverized. This powder was subjected to nitriding treatment at 460 ° C. in nitrogen, and then further pulverized to obtain a magnet powder having an average particle diameter of 20 μm. This powder is referred to as Powder C.

 粉末AとPPSの粉末およびステアリン酸亜鉛粉末を、それぞれの比率が90重量%、9.9重量%および0.1重量%となるように混合した。また、粉末Bとナイロン12粉末およびステアリン酸亜鉛粉末、ヒドラジン系酸化防止剤をそれぞれの比率が95重量%、4.9重量%、0.05重量%、0.05重量%となるように混合した。また、粉末Cとポリプロピレンの粉末およびステアリン酸カルシウム粉末を、それぞれの比率が92重量%、7.9重量%および0.1重量%となるように混合した。これらの混合物を2軸押出混練機にて、PPSを使用したものは340℃、ナイロン12、ポリプロピレンを使用したものは260℃で混練した。この混練物を外径が1〜10mmの粒となるように粉砕して原料コンパウンドとした。粉末Aを使用したものをコンパウンド1、粉末Bを使用したものをコンパウンド2、粉末Cを使用したものをコンパウンド3とする。それぞれのコンパウンドの融点は、コンパウンド1が290℃、コンパウンド2が175℃、コンパウンド3が165℃であった。このコンパウンドを用い、図4に示した押出成形機および金型を使用して外半径4.5mm、肉厚0.5mmの円弧状磁石および外半径25mm、肉厚0.9mmの円弧状磁石を成形した。コンパウンド1および3の成形時には、金型中に15kOeの磁場を印加し異方性磁石を成形した。コンパウンド2の成形では磁場を印加せず等方性磁石を成形した。この際、金型出口にて成形品の温度を測定し、成形品温度と成形品の磁気特性、寸法精度(外半径ばらつき)との関係を調べた。測定結果を表1に示す。 Powder A, PPS powder and zinc stearate powder were mixed so that the respective ratios were 90%, 9.9% and 0.1% by weight. Also, powder B, nylon 12 powder, zinc stearate powder, and hydrazine-based antioxidant were mixed such that the respective ratios were 95% by weight, 4.9% by weight, 0.05% by weight, and 0.05% by weight. did. The powder C, the polypropylene powder and the calcium stearate powder were mixed so that the proportions were 92% by weight, 7.9% by weight and 0.1% by weight, respectively. These mixtures were kneaded with a twin screw extruder at 340 ° C. using PPS and 260 ° C. using nylon 12 and polypropylene. The kneaded product was pulverized to particles having an outer diameter of 1 to 10 mm to obtain a raw material compound. Compound 1 using powder A, compound 2 using powder B, and compound 3 using powder C. The melting point of each compound was 290 ° C. for Compound 1, 175 ° C. for Compound 2, and 165 ° C. for Compound 3. Using this compound, an arc-shaped magnet having an outer radius of 4.5 mm and a wall thickness of 0.5 mm and an arc-shaped magnet having an outer radius of 25 mm and a wall thickness of 0.9 mm were formed using the extruder and the mold shown in FIG. Molded. During molding of Compounds 1 and 3, a magnetic field of 15 kOe was applied to the mold to mold an anisotropic magnet. In forming Compound 2, an isotropic magnet was formed without applying a magnetic field. At this time, the temperature of the molded article was measured at the exit of the mold, and the relationship between the molded article temperature, the magnetic properties of the molded article, and the dimensional accuracy (outer radius variation) was examined. Table 1 shows the measurement results.

Figure 2004104143
Figure 2004104143

 一般的に円弧形状の樹脂結合型磁石に要求される寸法精度は、例えば外半径公差では±0.05mm以下である。表1から明らかなように、磁石組成物の融点以下の温度に冷却固化して成形品を押出成形することにより、良好な寸法精度を有する薄肉円弧形状磁石を製造することが可能である。また、この方法を用いることにより良好な磁気特性を有する薄肉円弧形状磁石を製造することも可能である。 寸 法 Generally, the dimensional accuracy required for an arc-shaped resin-coupled magnet is, for example, ± 0.05 mm or less in outer radius tolerance. As is clear from Table 1, it is possible to manufacture a thin arc-shaped magnet having good dimensional accuracy by cooling and solidifying to a temperature lower than the melting point of the magnet composition and extruding the molded article. Further, by using this method, it is also possible to manufacture a thin-walled arc-shaped magnet having good magnetic properties.

 実施例1と同じコンパウンド1、2、3を使用し同じ成形方法にて寸法を変えた円弧形状磁石を作製し、寸法精度(外半径ばらつき)と機械的強度(圧壊強さ)を測定した。圧壊強さは、長さ10mmに切断した円弧形状磁石を図6に示すように置き上方より圧壊荷重P(N)を加え、磁石が破壊したときの荷重を磁石長さで除した値を用いた。結果を表2に示す。 (4) Using the same compounds 1, 2, and 3 as in Example 1, arc-shaped magnets having different dimensions were produced by the same molding method, and dimensional accuracy (variation in outer radius) and mechanical strength (crushing strength) were measured. The crushing strength is obtained by placing a circular arc-shaped magnet cut to a length of 10 mm as shown in FIG. 6, applying a crushing load P (N) from above, and dividing the load when the magnet breaks by the magnet length. Was. Table 2 shows the results.

Figure 2004104143
Figure 2004104143

 表2から明らかなように、外半径が1.5mm未満あるいは50mmより大きくなると良好な寸法精度が得られない。また、肉厚が0.1mm未満であると圧壊強さが急激に低下してしまい実用に不適である。外半径1.5mm以上50mm以下、肉厚0.1mm以上では、良好な寸法精度、機械的強度を有している。 As is clear from Table 2, if the outer radius is less than 1.5 mm or greater than 50 mm, good dimensional accuracy cannot be obtained. On the other hand, if the thickness is less than 0.1 mm, the crushing strength is sharply reduced, which is not suitable for practical use. When the outer radius is 1.5 mm or more and 50 mm or less and the wall thickness is 0.1 mm or more, good dimensional accuracy and mechanical strength are obtained.

 実施例2においてコンパウンド2を使用して作製した円弧形状磁石を用い、機械的強度(圧壊強さ)とモーター組み込み時の不良率について調査した。不良率はモーター300台組み込み時の不良の発生率を示している。結果を表3に示す。 用 い Using the arc-shaped magnet produced by using the compound 2 in Example 2, the mechanical strength (crushing strength) and the failure rate when the motor was assembled were investigated. The failure rate indicates the failure rate when 300 motors are incorporated. Table 3 shows the results.

Figure 2004104143
Figure 2004104143

 表3から明らかなように、圧壊強さ2N/mm未満であると急激にモーター組み込み時の不良率が増加してしまう。これは、機械的強度が小さいため取扱い時の磁石の破損が増大したことが原因である。圧壊強さが2N/mm以上であれば不良率は小さく実用上問題がない。 明 ら か As is clear from Table 3, when the crushing strength is less than 2 N / mm, the failure rate when the motor is incorporated into the motor increases rapidly. This is due to the fact that the mechanical strength is small and the damage of the magnet during handling is increased. If the crushing strength is 2 N / mm or more, the defective rate is small and there is no practical problem.

 実施例2と同様に実施例1と同じコンパウンド1、2、3を使用し同じ成形方法にて、内半径4.6mmで肉厚を変えた円弧形状磁石を作製した。これを外径φ12mmのDCモーターのケースに装着し、磁束量を測定した。測定は、電機子にコイル線を10回巻回したものに発生する起電力から磁束量を測定する方法で行った。磁石肉厚と磁束量の関係の測定結果を図7に示す。比較例として、肉厚1.1mmの焼結フェライト磁石の結果も合わせて示した。 (4) An arc-shaped magnet having an inner radius of 4.6 mm and a varied thickness was produced by using the same compounds 1, 2, and 3 as in Example 2 and using the same molding method as in Example 1. This was mounted on a DC motor case having an outer diameter of φ12 mm, and the amount of magnetic flux was measured. The measurement was performed by a method of measuring the amount of magnetic flux from the electromotive force generated in an armature obtained by winding a coil wire 10 times. FIG. 7 shows the measurement results of the relationship between the magnet thickness and the amount of magnetic flux. As a comparative example, the results of a sintered ferrite magnet having a wall thickness of 1.1 mm are also shown.

 モーター特性(トルク値)は発生する磁束量に比例することが知られている。
図7から明らかなように、肉厚0.1mm以上の円弧形状磁石を用いることにより従来のものと比較しても十分高い特性のモーターを作製することが可能である。
It is known that motor characteristics (torque value) are proportional to the amount of generated magnetic flux.
As is clear from FIG. 7, it is possible to produce a motor having sufficiently higher characteristics than the conventional motor by using an arc-shaped magnet having a thickness of 0.1 mm or more.

 実施例1と同じコンパウンド1、2、3を使用し、図3に示した押出成形機および金型を使用して外径5.0mm、肉厚0.1mmの円筒状磁石、外径50mm、肉厚0.5mmの円筒状磁石及び外径80mm、肉厚0.9mmの円筒状磁石を成形した。コンパウンド1および3の成形時には、金型中に13kOeの放射状の磁場を印加し異方性磁石を成形した。コンパウンド2の成形では磁場を印加せず等方性磁石を成形した。この際、金型出口にて成形品の温度を測定し、成形品温度と成形品の磁気特性、寸法精度(外径ばらつき)との関係を調べた。測定結果を表4に示す。 Using the same compounds 1, 2, and 3 as in Example 1, a cylindrical magnet having an outer diameter of 5.0 mm, a wall thickness of 0.1 mm, and an outer diameter of 50 mm was obtained using the extruder and the mold shown in FIG. A cylindrical magnet having a thickness of 0.5 mm and a cylindrical magnet having an outer diameter of 80 mm and a thickness of 0.9 mm were formed. At the time of molding the compounds 1 and 3, a 13 kOe radial magnetic field was applied to the mold to mold the anisotropic magnet. In forming Compound 2, an isotropic magnet was formed without applying a magnetic field. At this time, the temperature of the molded product was measured at the exit of the mold, and the relationship between the temperature of the molded product, the magnetic properties of the molded product, and the dimensional accuracy (outer diameter variation) was examined. Table 4 shows the measurement results.

Figure 2004104143
Figure 2004104143

 一般に円筒形状の樹脂結合型磁石に要求される寸法精度は、例えば外径公差で±0.05mm以下である。表4から明らかなように、磁石組成物の融点以下の温度に冷却固化して成形品を押出成形することにより、良好な寸法精度を有する薄肉円筒形状磁石を製造することが可能である。また、この方法を用いることにより良好な磁気特性を有する薄肉円筒形状磁石を製造することも可能である。 寸 法 Generally, the dimensional accuracy required for a cylindrical resin-coupled magnet is, for example, ± 0.05 mm or less in outer diameter tolerance. As is clear from Table 4, it is possible to manufacture a thin-walled cylindrical magnet having good dimensional accuracy by cooling and solidifying the magnet composition to a temperature equal to or lower than the melting point of the magnet composition and extruding the molded article. Also, by using this method, it is possible to produce a thin cylindrical magnet having good magnetic properties.

 実施例4と同じコンパウンド1、2、3を使用し同じ成形方法にて寸法を変えた円筒形状磁石を作製し、寸法精度(外径ばらつき)と機械的強度(圧壊強さ)を測定した。圧壊強さは、所定の長さに切断した円筒形状磁石を図8に示すように置き上方より圧壊荷重P(N)を加え、磁石が破壊したときの荷重を磁石長さ(L)にて除した値を用いた。結果を表5に示す。 円 筒 Using the same compounds 1, 2 and 3 as in Example 4, cylindrical magnets of different dimensions were produced by the same molding method, and dimensional accuracy (outer diameter variation) and mechanical strength (crushing strength) were measured. The crushing strength is obtained by placing a cylindrical magnet cut to a predetermined length as shown in FIG. 8, applying a crushing load P (N) from above, and calculating the load when the magnet breaks by the magnet length (L). The divided value was used. Table 5 shows the results.

Figure 2004104143
Figure 2004104143

 表5から明らかなように、外径が100mmより大きくなると良好な寸法精度が得られない。また、外径2mm未満では金型製造が困難となり成形が困難である。さらに肉厚が0.1mm未満であると圧壊強さが急激に低下してしまい実用に不適である。外径2mm以上100mm以下、肉厚0.1mm以上では、良好な寸法精度、機械的強度を有している。 As is clear from Table 5, if the outer diameter is larger than 100 mm, good dimensional accuracy cannot be obtained. On the other hand, when the outer diameter is less than 2 mm, it is difficult to manufacture a mold and molding is difficult. Further, if the thickness is less than 0.1 mm, the crushing strength is rapidly reduced, which is not suitable for practical use. When the outer diameter is 2 mm or more and 100 mm or less and the wall thickness is 0.1 mm or more, good dimensional accuracy and mechanical strength are obtained.

 実施例6において作製した円筒形状磁石をローターとしてモーターに組み込み、モーター落下試験の不良率と機械的強度(圧壊強さ)との関係について調査した。不良率はモーター50台の落下試験による不良の発生率を示している。結果を表6に示す。 (4) The cylindrical magnet produced in Example 6 was incorporated into a motor as a rotor, and the relationship between the failure rate of a motor drop test and mechanical strength (crushing strength) was investigated. The failure rate indicates the rate of occurrence of failure by a drop test of 50 motors. Table 6 shows the results.

Figure 2004104143
Figure 2004104143

 表6から明らかなように、圧壊強さ1N/mm未満であると急激にモーター不良率が増加してしまう。これは、磁石の機械的強度が小さいため落下試験による衝撃で磁石が破損し、そのためモーターの不良が増大したからである。圧壊強さが1N/mm以上であれば不良率は小さく実用上問題がない。 (4) As is clear from Table 6, when the crushing strength is less than 1 N / mm, the motor failure rate sharply increases. This is because the magnets were low in mechanical strength, and the magnets were damaged by the impact of the drop test, thereby increasing motor failure. If the crushing strength is 1 N / mm or more, the defect rate is small and there is no practical problem.

 実施例6と同様にコンパウンド1、2、3を使用し同じ成形方法にて、外径24mmで肉厚を変えた円筒形状磁石を作製した。これをローターに装着し、24極に着磁して表面磁束密度を測定した。磁石肉厚と表面磁束密度の関係を図9に示す。比較例として、肉厚2mmの焼結フェライト磁石の結果も合わせて示した。 円 筒 A cylindrical magnet having an outer diameter of 24 mm and a different thickness was produced by the same molding method using Compounds 1, 2, and 3 as in Example 6. This was mounted on a rotor and magnetized to 24 poles to measure the surface magnetic flux density. FIG. 9 shows the relationship between the magnet wall thickness and the surface magnetic flux density. As a comparative example, the results of a sintered ferrite magnet having a thickness of 2 mm are also shown.

 モーター特性(トルク値)は表面磁束密度に比例することが知られている。図9から明らかなように、肉厚0.1mm以上の円筒形状磁石を用いることにより従来のものと比較しても十分高い特性のモーターを作製することが可能である。 It is known that motor characteristics (torque value) are proportional to the surface magnetic flux density. As is clear from FIG. 9, it is possible to manufacture a motor having sufficiently higher characteristics than the conventional motor by using a cylindrical magnet having a thickness of 0.1 mm or more.

 本発明は、電子機器などに使用される小型モーターやアクチュエータに利用される樹脂結合型磁石及び該樹脂結合型磁石の押出成形を用いた製造方法として利用可能である。 The present invention can be used as a resin-bonded magnet used for small motors and actuators used in electronic devices and the like, and as a manufacturing method using extrusion molding of the resin-bonded magnet.

本発明の円弧状樹脂結合型磁石の1実施例を示す図。The figure which shows one Example of the arc-shaped resin coupling type magnet of this invention. 本発明の円筒状樹脂結合型磁石の1実施例を示す図。The figure which shows one Example of the cylindrical resin coupling type magnet of this invention. 本発明の実施例における樹脂結合型磁石の製造工程を示す図。FIG. 3 is a diagram showing a manufacturing process of the resin-bonded magnet in the embodiment of the present invention. 本発明の実施例における円弧状樹脂結合型磁石の押出成形装置を示す図。The figure which shows the extrusion-molding apparatus of the arc-shaped resin coupling type magnet in the Example of this invention. 本発明の実施例における円筒状樹脂結合型磁石の押出成形装置を示す図。The figure which shows the extrusion-molding apparatus of the cylindrical resin coupling type magnet in the Example of this invention. 本発明の実施例における円弧形状磁石の圧壊強さ測定の荷重負荷方向を示す図。The figure which shows the load application direction of the crushing strength measurement of the arc-shaped magnet in the Example of this invention. 本発明の実施例における円弧形状磁石肉厚と磁束量との関係を示す図。The figure which shows the relationship between the arc-shaped magnet thickness and the magnetic flux amount in the Example of this invention. 本発明の実施例における円筒形状磁石の圧壊強さ測定の荷重負荷方向を示す図。The figure which shows the load application direction of the crushing strength measurement of the cylindrical magnet in the Example of this invention. 本発明の実施例における円筒形状磁石肉厚と表面磁束密度との関係を示す図。The figure which shows the relationship between the cylindrical magnet thickness and surface magnetic flux density in the Example of this invention.

符号の説明Explanation of reference numerals

 101,201 ホッパー
 102,202 シリンダ
 103,203 スクリュー
 104,204 アダプタープレート
 105,205 金型
 106,206 ヒーター
 107,207 ヒーター
 108,208 ヒーター
 109,209 冷却板
 110,210 電磁コイル
 111 ポールピース
 112,211 原料コンパウンド
 113,212 磁石成形品
P       圧壊荷重
R       磁石外半径
D    磁石外径
 T       磁石肉厚
 L       磁石長さ


101, 201 Hopper 102, 202 Cylinder 103, 203 Screw 104, 204 Adapter plate 105, 205 Mold 106, 206 Heater 107, 207 Heater 108, 208 Heater 109, 209 Cooling plate 110, 210 Electromagnetic coil 111 Pole piece 112, 211 Raw material compound 113,212 Magnet molded product P Crush load R Magnet outer radius D Magnet outer diameter T Magnet thickness L Magnet length


Claims (6)

磁性粉末と熱可塑性樹脂を混合して、押し出し成形法により結合してなる樹脂結合型磁石であって、外半径が1.5mm以上50mm以下、肉厚が0.1mm以上1.0mm未満の円弧形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが2N/mm以上であることを特徴とする樹脂結合型磁石。
     K= P/L
A resin-bonded magnet obtained by mixing a magnetic powder and a thermoplastic resin and bonding them together by an extrusion molding method, wherein the arc has an outer radius of 1.5 mm to 50 mm and a wall thickness of 0.1 mm to less than 1.0 mm. A resin-bonded type magnet having a crushing strength K defined by the following equation, where the length of the magnet is L (mm) and the crushing load is P (N), and the crushing strength K is 2 N / mm or more. magnet.
K = P / L
磁性粉末と熱可塑性樹脂を混合して、押し出し成形法により結合してなる樹脂結合型磁石であって、外径がφ2mm以上φ100mm以下、肉厚が0.1mm以上1.0mm未満の円筒形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが1N/mm以上であることを特徴とする樹脂結合型磁石。
     K= P/L
A resin-bonded magnet obtained by mixing a magnetic powder and a thermoplastic resin and bonding them together by extrusion molding, wherein the outer diameter is 2 mm or more and 100 mm or less, and the thickness of the cylindrical magnet is 0.1 mm or more and less than 1.0 mm. Wherein the length of the magnet is L (mm) and the crushing load is P (N), and the crushing strength K determined by the following equation is 1 N / mm or more.
K = P / L
前記磁性粉末が、希土類元素(ただしイットリウム(Y)を含む)とコバルトを主体とする遷移金属からなる希土類磁性粉末、希土類元素と鉄を主体とする遷移金属およびほう素からなる希土類磁性粉末あるいは希土類元素と鉄を主体とする遷移金属および窒素からなる希土類磁性粉末であることを特徴とする請求項1または2記載の樹脂結合型磁石。 The magnetic powder is a rare earth magnetic powder composed of a rare earth element (including yttrium (Y)) and a transition metal mainly composed of cobalt, a rare earth magnetic powder composed of a transition metal composed mainly of a rare earth element and iron and boron, or a rare earth magnetic powder. The resin-bonded magnet according to claim 1, wherein the magnet is a rare-earth magnetic powder composed of a transition metal mainly composed of an element and iron and nitrogen. 磁性粉末と熱可塑性樹脂とが混合されてなる磁石組成物を、該磁石組成物の融点以下の温度に金型中にて冷却固化しながら押出成形して、外半径が1.5mm以上50mm以下、肉厚が0.1mm以上1.0mm未満の円弧形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが2N/mm以上に成形することを特徴とする樹脂結合型磁石の製造方法。
     K= P/L
A magnet composition obtained by mixing a magnetic powder and a thermoplastic resin is extruded while being cooled and solidified in a mold at a temperature equal to or lower than the melting point of the magnet composition, and has an outer radius of 1.5 mm or more and 50 mm or less. An arc-shaped magnet having a wall thickness of 0.1 mm or more and less than 1.0 mm, where the length of the magnet is L (mm) and the crushing load is P (N), the crushing strength K determined by the following equation is obtained. A method for producing a resin-bonded magnet, characterized in that the magnet is molded to 2 N / mm or more.
K = P / L
磁性粉末と熱可塑性樹脂とが混合されてなる磁石組成物を、該磁石組成物の融点以下の温度に金型中にて冷却固化しながら押出成形して、外径がφ2mm以上φ100mm以下、肉厚が0.1mm以上1.0mm未満の円筒形状磁石で、該磁石の長さをL(mm)、圧壊荷重をP(N)としたとき下記の式にて定める圧壊強さKが1N/mm以上に成形することを特徴とする樹脂結合型磁石の製造方法。
     K= P/L
A magnet composition obtained by mixing a magnetic powder and a thermoplastic resin is extruded while being cooled and solidified in a mold at a temperature equal to or lower than the melting point of the magnet composition, and has an outer diameter of 2 mm or more and 100 mm or less. When the thickness of the cylindrical magnet is 0.1 mm or more and less than 1.0 mm, and the length of the magnet is L (mm) and the crushing load is P (N), the crushing strength K determined by the following formula is 1 N / A method for producing a resin-bonded magnet, characterized in that the magnet is molded to a thickness of at least mm.
K = P / L
前記磁性粉末が、希土類元素(ただしイットリウム(Y)を含む)とコバルトを主体とする遷移金属からなる希土類磁性粉末、希土類元素と鉄を主体とする遷移金属およびほう素からなる希土類磁性粉末あるいは希土類元素と鉄を主体とする遷移金属および窒素からなる希土類磁性粉末であることを特徴とする請求項4または5に記載の樹脂結合型磁石の製造方法。

The magnetic powder is a rare earth magnetic powder composed of a rare earth element (including yttrium (Y)) and a transition metal mainly composed of cobalt, a rare earth magnetic powder composed of a transition metal composed mainly of a rare earth element and iron and boron, or a rare earth magnetic powder. The method for producing a resin-bonded magnet according to claim 4, wherein the rare-earth magnetic powder comprises a transition metal mainly composed of an element and iron and nitrogen.

JP2003356612A 1992-10-29 2003-10-16 Resin-bonded magnet and its manufacturing method Pending JP2004104143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356612A JP2004104143A (en) 1992-10-29 2003-10-16 Resin-bonded magnet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29162392 1992-10-29
JP2003356612A JP2004104143A (en) 1992-10-29 2003-10-16 Resin-bonded magnet and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5267483A Division JPH06236807A (en) 1992-10-29 1993-10-26 Resin-bonded magnet and its manufacture

Publications (1)

Publication Number Publication Date
JP2004104143A true JP2004104143A (en) 2004-04-02

Family

ID=32300018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356612A Pending JP2004104143A (en) 1992-10-29 2003-10-16 Resin-bonded magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004104143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057488A (en) * 2019-09-30 2021-04-08 日亜化学工業株式会社 Manufacturing method of cylindrical bond magnet, cylindrical bond magnet molding die, and cylindrical bond magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057488A (en) * 2019-09-30 2021-04-08 日亜化学工業株式会社 Manufacturing method of cylindrical bond magnet, cylindrical bond magnet molding die, and cylindrical bond magnet
JP7381851B2 (en) 2019-09-30 2023-11-16 日亜化学工業株式会社 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Similar Documents

Publication Publication Date Title
US6500374B1 (en) Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal
EP0772211B1 (en) Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
EP0452580B1 (en) A resin bound magnet and its production process
JP2000036403A (en) Rare earth bonded magnet composition, rare earth bonded magnet, and manufacture thereof
US20020043301A1 (en) Density enhanced, DMC, bonded permanent magnets
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH06236807A (en) Resin-bonded magnet and its manufacture
JP5948805B2 (en) Anisotropic bonded magnet and compound for anisotropic bonded magnet
JP2004104143A (en) Resin-bonded magnet and its manufacturing method
JP2002134311A (en) Rare-earth resin bonded magnet composition and rare- earth resin bonded magnet embedded rotor
JP3658868B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JP4433068B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP3812926B2 (en) Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet
JP4301222B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH11283817A (en) Rare earth bonded magnet and composition thereof
US6978533B1 (en) Method of manufacturing rare earth-iron bond magnet
Ikuma et al. High-energy extrusion-molded Nd-Fe-B magnets
JP3653852B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP2004107797A (en) Rare earth magnet material for isotropic bond magnet
JP2001185412A (en) Anisotropic bonded magnet
JPH02251111A (en) Manufacture of resin bonded type rare earth magnet
JPH04324909A (en) Manufacture of resin-bonded type magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214