JP2021057488A - Manufacturing method of cylindrical bond magnet, cylindrical bond magnet molding die, and cylindrical bond magnet - Google Patents

Manufacturing method of cylindrical bond magnet, cylindrical bond magnet molding die, and cylindrical bond magnet Download PDF

Info

Publication number
JP2021057488A
JP2021057488A JP2019180589A JP2019180589A JP2021057488A JP 2021057488 A JP2021057488 A JP 2021057488A JP 2019180589 A JP2019180589 A JP 2019180589A JP 2019180589 A JP2019180589 A JP 2019180589A JP 2021057488 A JP2021057488 A JP 2021057488A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
less
bond magnet
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019180589A
Other languages
Japanese (ja)
Other versions
JP7381851B2 (en
Inventor
理恵 吉田
Rie Yoshida
理恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2019180589A priority Critical patent/JP7381851B2/en
Publication of JP2021057488A publication Critical patent/JP2021057488A/en
Application granted granted Critical
Publication of JP7381851B2 publication Critical patent/JP7381851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a manufacturing method of a cylindrical bond magnet, having a large diameter and a sinusoidal curve or a front surface magnetic flux density approximate to it, and provide a die used for the manufacturing method, and provide the cylindrical bond magnet.SOLUTION: A manufacturing method of a cylindrical bond magnet contains steps of: arranging a die in which an orientation magnet is arranged at an injection machine, the die having a cylindrical cavity; and implanting a bond magnet composition to the die and performing an injection molding. The minimum gap between an inner peripheral part of the cylindrical cavity and an external peripheral part of the orientation magnet is 2 mm or more and 10 mm or less. The cylindrical cavity has an outer peripheral diameter of 100 mm or more and 300 mm or less, and a difference of an outer peripheral radius and an inner peripheral radius is 2 mm or more and 30 mm or less. The orientation magnet is constructed by a plurality of fan-shaped flat magnets magnetized in a circumferential direction. Each of the fan-shaped flat magnets is arranged in the circumferential direction so that each magnetic direction of the adjacent fan-shaped flat magnets repels the circumferential direction.SELECTED DRAWING: None

Description

本発明は、円筒状ボンド磁石の製造方法、円筒状ボンド磁石成形用金型、および円筒状ボンド磁石に関する。 The present invention relates to a method for manufacturing a cylindrical bond magnet, a mold for forming a cylindrical bond magnet, and a cylindrical bond magnet.

モーター等の動力用に、円筒状の多極ボンド磁石が用いられる。このような円筒状ボンド磁石は、配向用磁石を備えた金型にボンド磁石用組成物を注入して射出成形することにより製造される。円筒状ボンド磁石の磁極間の表面磁束密度の変化が急峻であると、モーターに適用したときにコギングを生じる原因となるため、円筒状ボンド磁石は正弦波曲線に近い表面磁束密度を有することが求められる。また、大型モーターに対応するために、円筒状ボンド磁石を大径化することも求められている。 Cylindrical multi-pole bond magnets are used to power motors and the like. Such a cylindrical bond magnet is manufactured by injecting a composition for a bond magnet into a mold provided with an alignment magnet and injection molding. A steep change in the surface magnetic flux density between the magnetic poles of a cylindrical bond magnet causes cogging when applied to a motor, so the cylindrical bond magnet may have a surface magnetic flux density close to a sinusoidal curve. Desired. It is also required to increase the diameter of the cylindrical bond magnet in order to support a large motor.

特許文献1は、円筒状キャビティの外側に配向用磁石を配置した金型を用いて、射出成形によりリング状ボンド磁石を製造している。製造されたボンド磁石は、外周径が16mm程度と小型である。 Patent Document 1 manufactures a ring-shaped bond magnet by injection molding using a mold in which an orientation magnet is arranged outside a cylindrical cavity. The manufactured bond magnet has a small outer diameter of about 16 mm.

特許文献2〜3は、円筒状キャビティの内側に、複数の配向用磁石をそれぞれの磁場が円周方向に互いに反発するように配置した金型を用いて、射出成形により円筒状ボンド磁石を製造している。製造されたボンド磁石は外周径が大きいものでも42mm程度である。特許文献3では配向用磁石とボンド磁石成形体との間に厚さ0.5mmのスリーブを配置して磁場配向しているが、この条件では配向用磁石との距離が近すぎるために、ボンド磁石成形体の磁極間の表面磁束密度の変化が急峻となる傾向がある。 In Patent Documents 2 and 3, a cylindrical bond magnet is manufactured by injection molding using a mold in which a plurality of orientation magnets are arranged inside a cylindrical cavity so that their respective magnetic fields repel each other in the circumferential direction. doing. The manufactured bond magnet has a large outer diameter of about 42 mm. In Patent Document 3, a sleeve having a thickness of 0.5 mm is arranged between the alignment magnet and the bond magnet molded body to align the magnetic field. However, under this condition, the distance between the alignment magnet and the magnet is too close, so that the bond is formed. The change in the surface magnetic flux density between the magnetic poles of the magnet molded body tends to be steep.

特開2017−212863号公報Japanese Unexamined Patent Publication No. 2017-212863 特開平5−90053号公報Japanese Unexamined Patent Publication No. 5-90053 特開2005−223233号公報Japanese Unexamined Patent Publication No. 2005-223233

本発明は、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石の製造方法、その製造方法に用いる金型、および円筒状ボンド磁石を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a cylindrical bond magnet having a large diameter and a sinusoidal curve or a surface magnetic flux density close thereto, a mold used for the manufacturing method, and a cylindrical bond magnet.

本発明の一態様にかかる円筒状ボンド磁石の製造方法は、円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。 The method for manufacturing a cylindrical bond magnet according to one aspect of the present invention includes a step of arranging a mold having a cylindrical cavity and an alignment magnet arranged in an injection molding machine, and a composition for a bond magnet in the mold. A method for manufacturing a cylindrical bond magnet, which includes a step of injecting an object and injection molding, in which the shortest gap between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet is 2 mm or more and 10 mm or less. The cylindrical cavity has an outer peripheral diameter of 100 mm or more and 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less. The fan-shaped flat plate magnets are composed of the above fan-shaped flat plate magnets, and are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat plate magnets repel each other in the circumferential direction.

本発明の一態様にかかる円筒状ボンド磁石成形用金型は、円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。 The cylindrical bond magnet molding mold according to one aspect of the present invention surrounds a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction in a direction in which the magnetic field directions of the fan-shaped flat plate magnets repel each other in the circumferential direction. It has an alignment magnet arranged in the direction and a cylindrical cavity, and the shortest gap between the outer peripheral portion of the alignment magnet and the inner peripheral portion of the cylindrical cavity is 2 mm or more and 10 mm or less, and the outer peripheral diameter of the cylindrical cavity is It is 100 mm or more and 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less.

本発明の一態様にかかる円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。 In the cylindrical bond magnet according to one aspect of the present invention, the surface magnetic flux density on the inner peripheral side fluctuates periodically, the strain rate of the surface magnetic flux density with respect to the sinusoidal curve is 22% or less, and the outer peripheral diameter is 100 mm. It is 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less.

本発明の一態様にかかる円筒状ボンド磁石成形用金型によると、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石を製造することができる。 According to the cylindrical bond magnet molding die according to one aspect of the present invention, it is possible to manufacture a cylindrical bond magnet having a large diameter and a surface magnetic flux density of a sinusoidal curve or a surface magnetic flux density close thereto.

実施例1および比較例1で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。It is a schematic view seen from the upper surface of the injection molding die and the fan-shaped flat plate magnet used in Example 1 and Comparative Example 1. 実施例1および比較例1における配向用磁石の外周の配向磁場である。It is the alignment magnetic field of the outer circumference of the alignment magnet in Example 1 and Comparative Example 1. 実施例1および比較例1における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner circumference of the cylindrical bond magnet in Example 1 and Comparative Example 1. 比較例2〜4で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。It is a schematic view seen from the upper surface of the injection molding die and the fan-shaped flat plate magnet used in Comparative Examples 2-4. 比較例2〜4における配向用磁石の外周の配向磁場である。It is the alignment magnetic field of the outer circumference of the alignment magnet in Comparative Examples 2 to 4. 比較例2〜4における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner circumference of the cylindrical bond magnet in Comparative Examples 2-4. 比較例5で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。It is a schematic view seen from the upper surface of the injection molding die and the fan-shaped flat plate magnet used in Comparative Example 5. 比較例5における配向用磁石の外周の配向磁場である。It is the alignment magnetic field of the outer circumference of the alignment magnet in Comparative Example 5. 比較例5における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner circumference of the cylindrical bond magnet in Comparative Example 5. 比較例6で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。It is a schematic view seen from the upper surface of the injection molding die and the fan-shaped flat plate magnet used in Comparative Example 6. 比較例6における配向用磁石の外周の配向磁場である。It is the alignment magnetic field of the outer circumference of the alignment magnet in Comparative Example 6. 比較例6における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner circumference of the cylindrical bond magnet in Comparative Example 6. 比較例7で用いた射出成型用金型および扇形平板磁石の上面からみた模式図である。It is a schematic view seen from the upper surface of the injection molding die and the fan-shaped flat plate magnet used in Comparative Example 7. 比較例7における配向用磁石の外周の配向磁場である。It is the alignment magnetic field of the outer circumference of the alignment magnet in Comparative Example 7. 比較例7における円筒状ボンド磁石の内周の表面磁束密度である。It is the surface magnetic flux density of the inner circumference of the cylindrical bond magnet in Comparative Example 7.

以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Hereinafter, embodiments of the present invention will be described in detail. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following. In this specification, the term "process" is used not only for an independent process but also for the term "process" as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. included. Further, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.

<<円筒状ボンド磁石の製造方法>>
本発明の一態様にかかる円筒状ボンド磁石の製造方法は、円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。本発明の一態様によると円筒状キャビティの内周部と配向用磁石の外周部との最短ギャップが2mm以上10mm以下とし、配向用磁石が、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されることにより、キャビティ内に発生する磁場が磁極部で最大となりつつ、かつ磁極間の切り替わりがゆるやかになるため、大径で、正弦波曲線またはそれに近似した表面磁束密度を有する円筒状ボンド磁石を製造することができると考えられる。
<< Manufacturing method of cylindrical bond magnet >>
The method for manufacturing a cylindrical bond magnet according to one aspect of the present invention includes a step of arranging a mold having a cylindrical cavity and an alignment magnet arranged in an injection molding machine, and a composition for a bond magnet in the mold. A method for manufacturing a cylindrical bond magnet, which includes a step of injecting an object and injection molding, in which the shortest gap between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet is 2 mm or more and 10 mm or less. The cylindrical cavity has an outer peripheral diameter of 100 mm or more and 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less. The fan-shaped flat plate magnets are composed of the above fan-shaped flat plate magnets, and are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat plate magnets repel each other in the circumferential direction. According to one aspect of the present invention, the shortest gap between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet is 2 mm or more and 10 mm or less, and the alignment magnet is formed from a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction. The fan-shaped flat plate magnets are configured so that the magnetic field directions of adjacent fan-shaped flat plate magnets are arranged in the circumferential direction so as to repel each other in the circumferential direction, so that the magnetic field generated in the cavity is maximized at the magnetic pole portion. In addition, since the switching between the magnetic poles becomes gentle, it is considered that a cylindrical bond magnet having a large diameter and a surface magnetic flux density close to that of a sinusoidal curve can be manufactured.

<金型>
本発明の一態様で用いる金型は、円筒状キャビティを有する。正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を製造するためには、前記円筒状キャビティは、外周直径(円筒状ボンド磁石の外径)が100mm以上300mm以下であるが、外周直径が150mm以上300mm未満であることが好ましく、200mm以上290mm以下であることが特に好ましい。また、円筒状キャビティの外周半径と内周半径の差(円筒状ボンド磁石の肉厚)は2mm以上30mm以下であるが、肉薄にすることによる軽量化の点から2mmより大きく10mm以下であることが好ましく、2.5mm以上5mm以下が特に好ましい。2mm未満では円筒状ボンド磁石の強度が低下し、30mmより大きくなると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。円筒状キャビティの高さ(円筒状ボンド磁石の高さ)は、5mm以上100mm以下であるが、6mm以上15mm以下が好ましい。5mm未満では外周方向の総磁束量が小さくなり、100mmより大きくすると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。円筒状キャビティの外周半径に対する外周半径と内周半径の差の比は、大径の円筒状ボンド磁石の強度の点から、0.01以上0.8以下が好ましく、0.04以上0.6以下がより好ましい。
<Mold>
The mold used in one aspect of the present invention has a cylindrical cavity. In order to manufacture a large-diameter cylindrical bond magnet having a sinusoidal curve or a surface magnetic flux density close thereto, the cylindrical cavity has an outer peripheral diameter (outer diameter of the cylindrical bond magnet) of 100 mm or more and 300 mm or less. However, the outer peripheral diameter is preferably 150 mm or more and less than 300 mm, and particularly preferably 200 mm or more and 290 mm or less. The difference between the outer peripheral radius and the inner peripheral radius of the cylindrical cavity (thickness of the cylindrical bond magnet) is 2 mm or more and 30 mm or less, but it is larger than 2 mm and 10 mm or less from the viewpoint of weight reduction by making the thickness thinner. Is preferable, and 2.5 mm or more and 5 mm or less is particularly preferable. If it is less than 2 mm, the strength of the cylindrical bond magnet is lowered, and if it is larger than 30 mm, the cooling speed of the resin is partially varied during molding, so that the dimensional accuracy may be lowered. The height of the cylindrical cavity (height of the cylindrical bond magnet) is 5 mm or more and 100 mm or less, but 6 mm or more and 15 mm or less is preferable. If it is less than 5 mm, the total magnetic flux amount in the outer peripheral direction becomes small, and if it is larger than 100 mm, the cooling speed of the resin partially varies during molding, so that the dimensional accuracy may decrease. The ratio of the difference between the outer peripheral radius and the inner peripheral radius to the outer peripheral radius of the cylindrical cavity is preferably 0.01 or more and 0.8 or less, preferably 0.04 or more and 0.6, from the viewpoint of the strength of the large-diameter cylindrical bond magnet. The following is more preferable.

前記寸法の円筒状キャビティにより、大径の円筒状ボンド磁石を製造できる。特に円筒状ボンド磁石を大径で肉薄とすると、軽量でかつ10000rpm以上の高速回転にも耐えうるモーター用の磁石を提供できる。 With the cylindrical cavity of the above dimensions, a large-diameter cylindrical bond magnet can be manufactured. In particular, if the cylindrical bond magnet has a large diameter and is thin, it is possible to provide a magnet for a motor that is lightweight and can withstand high-speed rotation of 10,000 rpm or more.

金型は、円筒状キャビティで形成されるボンド磁石に配向磁場を印加できるように、円筒状キャビティの内側に配向用磁石を有する。配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成される。扇形平板磁石としては永久磁石、電磁石が挙げられるが、回路が不要であることから永久磁石が好ましい。扇形平板磁石の表面磁束密度は特に限定されず、円筒状ボンド磁石の配向に必要な磁場により適宜決定できるが、通常0.5T以上2T以下である。 The mold has an alignment magnet inside the cylindrical cavity so that an alignment magnetic field can be applied to the bond magnet formed in the cylindrical cavity. The alignment magnet is composed of a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction. Examples of the fan-shaped flat plate magnet include a permanent magnet and an electromagnet, but a permanent magnet is preferable because a circuit is not required. The surface magnetic flux density of the fan-shaped flat plate magnet is not particularly limited and can be appropriately determined by the magnetic field required for the orientation of the cylindrical bond magnet, but is usually 0.5 T or more and 2 T or less.

円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップ(スリーブ厚さ)は2mm以上10mm以下であり、3mm以上9mm以下が好ましく、4mm以上8mm以下がより好ましい。前述の円筒状キャビティの寸法に対して、円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップを2mm以上10mm以下とすることで、正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を得ることができる。 The shortest gap (sleeve thickness) between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet is 2 mm or more and 10 mm or less, preferably 3 mm or more and 9 mm or less, and more preferably 4 mm or more and 8 mm or less. By setting the shortest gap between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet to 2 mm or more and 10 mm or less with respect to the above-mentioned dimensions of the cylindrical cavity, a sinusoidal curve or a surface magnetic flux density close to it is set. A large-diameter cylindrical bond magnet having the above can be obtained.

円筒状ボンド磁石に磁極を均等に形成させるために、配向用磁石は複数の同一形状の扇形平板磁石から構成されることが好ましい。配向用磁石を構成する扇形平板磁石の個数は、4個以上56個以下とすることができ、6個以上30個以下が好ましい。配向用磁石は扇形平板磁石のみから構成されてもよいが、扇形平板磁石に加えて、磁性スペーサーや、非磁性スペーサーを有していてもよい。磁性スペーサーや非磁性スペーサーを扇形平板磁石と交互に配置することにより、配向用磁石を容易に配置することができる。磁性スペーサーや、非磁性スペーサーは、扇形平板磁石と同一形状であることが好ましい。磁性スペーサーの飽和磁束密度は1.2T以上が好ましい。 In order to form the magnetic poles evenly on the cylindrical bond magnet, it is preferable that the alignment magnet is composed of a plurality of fan-shaped flat plate magnets having the same shape. The number of fan-shaped flat plate magnets constituting the alignment magnet can be 4 or more and 56 or less, preferably 6 or more and 30 or less. The alignment magnet may be composed of only a fan-shaped flat plate magnet, but may have a magnetic spacer or a non-magnetic spacer in addition to the fan-shaped flat plate magnet. By arranging the magnetic spacers and the non-magnetic spacers alternately with the fan-shaped flat plate magnets, the alignment magnets can be easily arranged. The magnetic spacer and the non-magnetic spacer preferably have the same shape as the fan-shaped flat plate magnet. The saturation magnetic flux density of the magnetic spacer is preferably 1.2 T or more.

配向用磁石を構成する扇形平板磁石の中心角は10°以上90°以下とすることができ、20°以上60°以下が好ましい。また、この扇形平板磁石を構成するうえで、2本の辺にて構成する扇形の1辺の長さは、円筒状キャビティの外周直径から円筒状キャビティの内周部と、配向用磁石の外周部との最短ギャップを引いた値の二分の一以下とすることができる。 The central angle of the fan-shaped flat plate magnet constituting the alignment magnet can be 10 ° or more and 90 ° or less, preferably 20 ° or more and 60 ° or less. Further, in constructing this fan-shaped flat plate magnet, the length of one side of the sector composed of two sides is determined from the outer peripheral diameter of the cylindrical cavity to the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet. It can be less than half of the value obtained by subtracting the shortest gap from the part.

扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置されていることを特徴とする。なお、上述のように磁性スペーサ―や非磁性スペーサーを用いる場合、隣り合う扇形平板磁石とは、磁性スペーサ―や非磁性スペーサーで隔てられた扇形平板磁石のことをいう。磁場方向が円周方向に反発することにより、扇形平板磁石のS極同士が相対する部分では配向用磁石の中心に向かう磁場回路が形成され、扇形平板磁石のN極同士が相対する部分では配向用磁石の外側に向かう磁場回路が形成される。扇形平板磁石の磁場方向の模式図を、図1Aに示す。 The fan-shaped flat plate magnets are characterized in that they are arranged in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat plate magnets repel each other in the circumferential direction. When a magnetic spacer or a non-magnetic spacer is used as described above, the adjacent fan-shaped flat plate magnets are fan-shaped flat plate magnets separated by a magnetic spacer or a non-magnetic spacer. When the magnetic field direction repels in the circumferential direction, a magnetic field circuit is formed toward the center of the alignment magnet at the portion where the S poles of the fan-shaped flat plate magnet face each other, and the orientation at the portion where the north poles of the fan-shaped flat plate magnet face each other. A magnetic field circuit is formed toward the outside of the magnet. A schematic diagram of the magnetic field direction of the fan-shaped flat plate magnet is shown in FIG. 1A.

<射出成形>
上述の金型を射出成形機に配置し、ボンド磁石用組成物を金型に注入して射出成形することにより、円筒状ボンド磁石が得られる。熱処理しながら配向磁場を印加することによりボンド磁石の磁化容易軸を揃えることができる。射出成形の条件は特に限定されず、使用するボンド磁石用組成物に応じて適宜決定する。配向工程における配向磁場の大きさは、例えば極中心で0.1T以上、好ましくは、0.2T以上である。配向後、極数に応じた着磁ヨークを用い、着磁することにより、ボンド磁石を得ることができる。着磁工程における着磁磁場の大きさは、例えば1.5T以上あることが望ましい。
<Injection molding>
A cylindrical bond magnet can be obtained by arranging the above-mentioned mold in an injection molding machine, injecting the composition for a bond magnet into the mold, and performing injection molding. By applying an orientation magnetic field during heat treatment, the easily magnetized axes of the bond magnets can be aligned. The conditions for injection molding are not particularly limited, and are appropriately determined according to the composition for the bonded magnet to be used. The magnitude of the alignment magnetic field in the alignment step is, for example, 0.1 T or more, preferably 0.2 T or more at the polar center. After orientation, a bonded magnet can be obtained by magnetizing using a magnetizing yoke according to the number of poles. The magnitude of the magnetizing magnetic field in the magnetizing step is preferably 1.5 T or more, for example.

<ボンド磁石用組成物>
ボンド磁石用組成物は特に限定されず、例えば、熱可塑性樹脂と磁性粒子から構成される組成物が挙げられる。熱可塑性樹脂と磁性粒子を十分に混練し、得られた混練物を単軸混練機、二軸混練機等の混練機に投入し、冷却後、適当な大きさに切断することで得られる。
<Composition for bond magnet>
The composition for a bonded magnet is not particularly limited, and examples thereof include a composition composed of a thermoplastic resin and magnetic particles. It is obtained by sufficiently kneading the thermoplastic resin and the magnetic particles, putting the obtained kneaded product into a kneader such as a single-screw kneader or a twin-screw kneader, cooling the mixture, and then cutting the kneaded material into an appropriate size.

熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂などが挙げられる。その中でもポリアミド、特にポリアミド12が好ましい。ポリアミド12は、比較的低融点で、吸水率が低く、結晶性樹脂であるため成形性が良い。また、これらを適宜混合して使用することも可能である。 Examples of the thermoplastic resin include polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide, and acrylic resin. Among them, polyamide, particularly polyamide 12, is preferable. Polyamide 12 has a relatively low melting point, a low water absorption rate, and is a crystalline resin, so that it has good moldability. It is also possible to mix and use these as appropriate.

磁性粒子としては、フェライト系と、希土類系であるNd−Fe−B系、Sm−Co系、Sm−Fe−N系とが挙げられる。中でも、Sm−Fe−N系を用いることが好ましい。Sm−Fe−N系は、一般的にSmFe17で表される。Sm−Fe−N系は、フェライト系に比べると磁力が強く、比較的少ない量でも高磁力を発生することができる。また、Sm−Fe−N系は、Nd−Fe−B系やSm−Co系といった他の希土類系と比べると、粒子径が小さく、母材樹脂へのフィラーとして適していることや、錆びにくいという特長がある。 Examples of the magnetic particles include ferritic stainless steel and rare earth Nd-Fe-B type, Sm-Co type, and Sm-Fe-N type. Above all, it is preferable to use the Sm-Fe-N system. The Sm-Fe-N system is generally represented by Sm 2 Fe 17 N 3 . The Sm-Fe-N system has a stronger magnetic force than the ferrite system, and can generate a high magnetic force even with a relatively small amount. In addition, the Sm-Fe-N system has a smaller particle size than other rare earth systems such as Nd-Fe-B system and Sm-Co system, is suitable as a filler for the base metal resin, and is less likely to rust. There is a feature.

磁性粒子は、異方性のもの及び等方性のもののいずれか一方又は両方を用いることができる。より強力な磁気特性を得る観点から、異方性のもの(異方性磁性粒子)が好ましい。具体的には、異方性を有するSm−Fe−N系の磁性粒子(異方性Sm−Fe−N系磁性粒子)が好ましい。磁性粒子としてSm−Fe−N系磁性粒子を用いれば、当該磁性粒子は磁力が強いので、より磁気特性に優れたものとすることができる。 As the magnetic particles, either an anisotropic one or an isotropic one or both can be used. Anisotropic particles (anisotropic magnetic particles) are preferable from the viewpoint of obtaining stronger magnetic properties. Specifically, Sm-Fe-N-based magnetic particles having anisotropy (anisotropic Sm-Fe-N-based magnetic particles) are preferable. If Sm-Fe-N-based magnetic particles are used as the magnetic particles, the magnetic particles have a strong magnetic force, so that the magnetic particles can be made more excellent in magnetic characteristics.

磁性粒子の平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。10μm以下であれば、製品の表面に凹凸部や亀裂等が発生し難く、外観的に優れたものとすることができ、さらに、低コスト化を図ることができる。平均粒径が10μmよりも大きいと、製品の表面に凹凸部や亀裂等が発生して外観的に劣るおそれがある。一方で、平均粒径が1μmよりも小さいと、磁性粒子のコストが高くなるので、低コスト化の観点から好ましくない。 The average particle size of the magnetic particles is preferably 10 μm or less, more preferably 1 μm or more and 5 μm or less. If it is 10 μm or less, uneven portions and cracks are less likely to occur on the surface of the product, the appearance can be made excellent, and the cost can be further reduced. If the average particle size is larger than 10 μm, uneven portions and cracks may occur on the surface of the product, resulting in inferior appearance. On the other hand, if the average particle size is smaller than 1 μm, the cost of the magnetic particles increases, which is not preferable from the viewpoint of cost reduction.

ボンド磁石用組成物組成物には、更に、流動性を損なうことなく初期強度を向上させるために、ポリスチレン系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系などの熱可塑性エラストマーを配合してもよい。また、円筒状ボンド磁石が高温にさらされた場合にも強度の経時変化を低減できるよう、リン系酸化防止剤などの酸化防止剤を配合してもよい。リン系酸化防止剤としては、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト等が挙げられる。 Even if the composition for the bonded magnet is further blended with a thermoplastic elastomer such as polystyrene, polyolefin, polyester, polyurethane, or polyamide in order to improve the initial strength without impairing the fluidity. Good. Further, an antioxidant such as a phosphorus-based antioxidant may be blended so that the change in strength with time can be reduced even when the cylindrical bond magnet is exposed to a high temperature. Examples of the phosphorus-based antioxidant include tris (2,4-di-tert-butylphenyl) phosphite and the like.

ボンド磁石用組成物中の磁性粒子の含有量は、80質量%以上95質量%以下が好ましく、高い磁気特性を得る点から、90質量%以上95質量以下がより好ましい。一方、ボンド磁石用組成物中の熱可塑性樹脂の含有量は、3質量%以上20質量%以下が好ましく、流動性を確保する観点から5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲が好ましく、耐衝撃性の点から90:10から70:30の範囲がより好ましい。更にリン系酸化防止剤を含む場合には、コンパウンド中のリン系酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。 The content of the magnetic particles in the composition for a bonded magnet is preferably 80% by mass or more and 95% by mass or less, and more preferably 90% by mass or more and 95% by mass or less from the viewpoint of obtaining high magnetic properties. On the other hand, the content of the thermoplastic resin in the composition for a bonded magnet is preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less from the viewpoint of ensuring fluidity. Further, when the thermoplastic elastomer is contained, the mass ratio of the thermoplastic resin to the thermoplastic elastomer is preferably in the range of 90:10 to 50:50, and in the range of 90:10 to 70:30 from the viewpoint of impact resistance. More preferred. Further, when a phosphorus-based antioxidant is contained, the content of the phosphorus-based antioxidant in the compound is preferably 0.1% by mass or more and 2% by mass or less.

<<円筒状ボンド磁石成形用金型>>
本発明の一態様にかかる円筒状ボンド磁石成形用金型は、円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。本発明の金型におけるキャビティ、配向用磁石、寸法については前述した。
<< Cylindrical bond magnet molding mold >>
The cylindrical bond magnet molding mold according to one aspect of the present invention surrounds a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction in a direction in which the magnetic field directions of the fan-shaped flat plate magnets repel each other in the circumferential direction. It has an alignment magnet arranged in the direction and a cylindrical cavity, and the shortest gap between the outer peripheral portion of the alignment magnet and the inner peripheral portion of the cylindrical cavity is 2 mm or more and 10 mm or less, and the outer peripheral diameter of the cylindrical cavity is It is 100 mm or more and 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less. The cavity, alignment magnet, and dimensions of the mold of the present invention have been described above.

<<円筒状ボンド磁石>>
本発明の一態様にかかる円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である。
<< Cylindrical Bond Magnet >>
In the cylindrical bond magnet according to one aspect of the present invention, the surface magnetic flux density on the inner peripheral side fluctuates periodically, the strain rate of the surface magnetic flux density with respect to the sinusoidal curve is 22% or less, and the outer peripheral diameter is 100 mm. It is 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm or more and 30 mm or less.

円筒状ボンド磁石は、上記金型を使用して、ボンド磁石用組成物を射出成型することにより得られる。円筒状ボンド磁石は、内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であるが、20%以下が好ましく、18%以下がより好ましく、15%以下がさらに好ましく、10%以下が特に好ましい。表面磁束密度の正弦波曲線に対する歪率が22%を超えると、円筒状ボンド磁石をモーターに適用した場合にコギングを生じる傾向がある。 The cylindrical bond magnet can be obtained by injection molding a composition for a bond magnet using the above mold. In the cylindrical bond magnet, the surface magnetic flux density on the inner peripheral side fluctuates periodically, and the distortion rate of the surface magnetic flux density with respect to the sinusoidal curve is 22% or less, preferably 20% or less, more preferably 18% or less. It is preferable, 15% or less is more preferable, and 10% or less is particularly preferable. If the distortion factor of the surface magnetic flux density with respect to the sinusoidal curve exceeds 22%, cogging tends to occur when a cylindrical bond magnet is applied to the motor.

円筒状ボンド磁石の高さは5mm以上100mm以下であるが、6mm以上15mm以下が好ましい。5mm未満では外周方向の磁束密度が小さくなり、100mmより大きくすると、成形時に部分的に樹脂の冷却スピードにばらつきが生じるため寸法精度が低下することがある。 The height of the cylindrical bond magnet is 5 mm or more and 100 mm or less, but 6 mm or more and 15 mm or less is preferable. If it is less than 5 mm, the magnetic flux density in the outer peripheral direction becomes small, and if it is larger than 100 mm, the cooling speed of the resin partially varies during molding, so that the dimensional accuracy may decrease.

円筒状ボンド磁石は、外周半径に対する外周半径と内周半径の差の比が、円筒状ボンド磁石の強度の点から0.01以上0.8以下が好ましく、0.04以上0.6以下がより好ましい。また、円筒状ボンド磁石は、前述した金型を使用して射出成形で得られるため、金型の円筒状キャビティに対応した寸法を有する。円筒状キャビティの寸法については前述した。 For the cylindrical bond magnet, the ratio of the difference between the outer peripheral radius and the inner peripheral radius to the outer peripheral radius is preferably 0.01 or more and 0.8 or less, and 0.04 or more and 0.6 or less from the viewpoint of the strength of the cylindrical bond magnet. More preferred. Further, since the cylindrical bond magnet is obtained by injection molding using the above-mentioned mold, it has a size corresponding to the cylindrical cavity of the mold. The dimensions of the cylindrical cavity have been described above.

円筒状ボンド磁石は、前述したボンド磁石用組成物を射出成形して得られ、熱可塑性樹脂と磁性粒子を含み、さらに熱可塑性エラストマーや酸化防止剤を含み得る。円筒状ボンド磁石中の磁性粒子の含有量は、高い磁気特性を得る点から80質量%以上95質量%以下が好ましく、90質量%以上95質量%未満がより好ましい。円筒状ボンド磁石中の熱可塑性樹脂の含有量は、流動性を確保する観点から3質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、円筒状ボンド磁石中の熱可塑性エラストマーの含有量は、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲であることが好ましく、耐衝撃性の点から90:10から70:30範囲がより好ましい。更に酸化防止剤を含む場合には、円筒状ボンド磁石中の酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。 The cylindrical bond magnet is obtained by injection molding the above-mentioned composition for a bond magnet, contains a thermoplastic resin and magnetic particles, and may further contain a thermoplastic elastomer and an antioxidant. The content of the magnetic particles in the cylindrical bond magnet is preferably 80% by mass or more and 95% by mass or less, and more preferably 90% by mass or more and less than 95% by mass from the viewpoint of obtaining high magnetic properties. The content of the thermoplastic resin in the cylindrical bond magnet is preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less from the viewpoint of ensuring fluidity. When a thermoplastic elastomer is further contained, the content of the thermoplastic elastomer in the cylindrical bonded magnet is preferably in the range of 90:10 to 50:50 in the mass ratio of the thermoplastic resin and the thermoplastic elastomer. From the viewpoint of impact resistance, the range of 90:10 to 70:30 is more preferable. Further, when an antioxidant is contained, the content of the antioxidant in the cylindrical bond magnet is preferably 0.1% by mass or more and 2% by mass or less.

本発明の一態様にかかる円筒状ボンド磁石は、モーター等の動力装置や、回転センサーなどの信号装置、発電機等の動力装置に用いることができる。 The cylindrical bond magnet according to one aspect of the present invention can be used for a power device such as a motor, a signal device such as a rotation sensor, and a power device such as a generator.

以下、実施例について説明する。なお、特に断りのない限り、「%」は質量基準である。 Hereinafter, examples will be described. Unless otherwise specified, "%" is based on mass.

(1)実施例1
(1−1)ボンド磁石用組成物の製造
サマリウム鉄窒素磁性粉末(平均粒径3μm)90質量%に対して12ナイロン樹
脂粉末9.5質量%、酸化防止剤粉末0.5質量%をミキサーで混合した
後、混合粉を二軸混練機に投入し、210℃にて混練して混練物を得た。得られた混練物
を冷却後、適当な大きさに切断しボンド磁石用組成物を得た。
(1) Example 1
(1-1) Production of Composition for Bond Magnet A mixer of 9.5% by mass of 12 nylon resin powder and 0.5% by mass of antioxidant powder with respect to 90% by mass of samarium iron nitrogen magnetic powder (average particle size 3 μm). After mixing in, the mixed powder was put into a twin-screw kneader and kneaded at 210 ° C. to obtain a kneaded product. The obtained kneaded product was cooled and then cut into an appropriate size to obtain a composition for a bonded magnet.

(1−2)金型および配向用磁石
射出成型用金型および扇形平板磁石の上面からの模式図を図1Aに示す。金型内に、図1Aに示すように、配向用磁石と、スリーブを配置し、円筒状キャビティの外周直径260mm、内周直径250mm、厚さ4mm、高さ10mmであった。配向用磁石は12枚の扇形平板磁石より構成されており、扇形平板磁石1枚の辺の長さ119mm、厚さ20mm、中心角30°、表面磁束密度が0.8Tのものを用いた。また、図1Aにおいて、それぞれの扇形平板磁石の矢頭印は磁場方向示しており、磁場方向が隣り合う磁石と円周方向に互いに反発するように配向した扇形平板磁石を用いた。扇形平板磁石から構成される配向用磁石とキャビティとの間には、半径方向の厚さが6mm(円筒状キャビティの内周部と配向用磁石の外周部との最短ギャップ)のSUS304製の円筒状スリーブを配置した。
(1-2) Mold and Orientation Magnet A schematic view from the upper surface of the injection molding mold and the fan-shaped flat plate magnet is shown in FIG. 1A. As shown in FIG. 1A, an orientation magnet and a sleeve were arranged in the mold, and the outer diameter of the cylindrical cavity was 260 mm, the inner circumference diameter was 250 mm, the thickness was 4 mm, and the height was 10 mm. The alignment magnet was composed of 12 fan-shaped flat plate magnets, and the side length of one fan-shaped flat plate magnet was 119 mm, the thickness was 20 mm, the central angle was 30 °, and the surface magnetic flux density was 0.8 T. Further, in FIG. 1A, the arrowhead marks of the respective fan-shaped flat plate magnets indicate the direction of the magnetic field, and the magnets having the magnetic field directions adjacent to each other and the fan-shaped flat plate magnets oriented so as to repel each other in the circumferential direction were used. A SUS304 cylinder with a radial thickness of 6 mm (the shortest gap between the inner circumference of the cylindrical cavity and the outer circumference of the alignment magnet) between the alignment magnet composed of fan-shaped flat plate magnets and the cavity. A shaped sleeve was placed.

(1−3)射出成形
上記金型を射出成形機に配置した。ボンド磁石用組成物を240℃のシリンダー内で溶解させ、90℃に調温した金型のキャビティ内に射出成形することで、外周直径260mm、内周直径250mm、厚さ4mm、高さ10mmの円筒状ボンド磁石を得た。
(1-3) Injection molding The above mold was placed in an injection molding machine. The composition for a bond magnet is melted in a cylinder at 240 ° C. and injection molded into a cavity of a mold whose temperature is adjusted to 90 ° C. to obtain an outer peripheral diameter of 260 mm, an inner peripheral diameter of 250 mm, a thickness of 4 mm, and a height of 10 mm. A cylindrical bond magnet was obtained.

(2)比較例1
実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みを0.5mmに変更し、表1に示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(2) Comparative Example 1
For a mold of the same size having a cylindrical cavity of the same size as in Example 1, the thickness of the sleeve shown in Table 1 was changed to 0.5 mm, and the fan-shaped flat plate magnet shown in Table 1 was used. , A cylindrical bond magnet was manufactured by the same method as in Example 1.

(3)比較例2〜4
射出成型用金型および扇形平板磁石の上面からの模式図を図2Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みに変更したことと、表1および図2Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(3) Comparative Examples 2 to 4
A schematic view from the upper surface of the injection molding die and the fan-shaped flat plate magnet is shown in FIG. 2A. Except for changing the thickness of the sleeve shown in Table 1 to the mold having the same cylindrical cavity having the same size as in Example 1 and using the fan-shaped flat plate magnet shown in Table 1 and FIG. 2A. Manufactured a cylindrical bond magnet in the same manner as in Example 1.

(4)比較例5
射出成型用金型および扇形平板磁石の上面からの模式図を図3Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、隣り合う扇形平板磁石同士の間に、扇形平板磁石と同じ形状の非磁性スペーサー(SUS304材)を配置したこと、表1に示したスリーブの厚みに変更したこと、および表1および図3Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(4) Comparative Example 5
A schematic view from the upper surface of the injection molding die and the fan-shaped flat plate magnet is shown in FIG. 3A. A non-magnetic spacer (SUS304 material) having the same shape as the fan-shaped flat magnets was placed between adjacent fan-shaped flat magnets for a mold having the same cylindrical cavity with the same dimensions as in Example 1. A cylindrical bond magnet was manufactured in the same manner as in Example 1 except that the thickness of the sleeve shown in 1 was changed and the fan-shaped flat plate magnet shown in Table 1 and FIG. 3A was used.

(5)比較例6
射出成型用金型および扇形平板磁石の上面からの模式図を図4Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、隣り合う扇形平板磁石同士の間に、扇形平板磁石と同じ形状の磁性材を配置したことと、表1に示したスリーブの厚みに変更したことと、表1および図4Aに示した扇形平板磁石を用いたこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。なお磁性材はSS400材であり、飽和磁束密度は2.0T以上であった。
(5) Comparative Example 6
FIG. 4A shows a schematic view from the upper surface of the injection molding die and the fan-shaped flat plate magnet. Table 1 shows that a magnetic material having the same shape as the fan-shaped flat plate magnets was arranged between adjacent fan-shaped flat plate magnets for a mold having the same size as a cylindrical cavity having the same size as that of the first embodiment. A cylindrical bond magnet was manufactured by the same method as in Example 1 except that the thickness of the sleeve was changed and the fan-shaped flat plate magnet shown in Table 1 and FIG. 4A was used. The magnetic material was SS400, and the saturation magnetic flux density was 2.0 T or more.

(6)比較例7
射出成型用金型および扇形平板磁石の上面からの模式図を図5Aに示す。実施例1と同じ寸法の円筒状キャビティを有する同じ寸法の金型に対し、表1に示したスリーブの厚みに変更したことと、表1および図5Aに示した扇形平板磁石を配置したこと以外は、実施例1と同じ方法で円筒状ボンド磁石を製造した。
(6) Comparative Example 7
A schematic view from the upper surface of the injection molding die and the fan-shaped flat plate magnet is shown in FIG. 5A. Except for changing the thickness of the sleeve shown in Table 1 to the mold having the same cylindrical cavity having the same size as in Example 1 and arranging the fan-shaped flat plate magnet shown in Table 1 and FIG. 5A. Manufactured a cylindrical bond magnet in the same manner as in Example 1.

(7)評価
図1B、図2B、図3B、図4Bおよび図5Bにホール素子で測定した配向用磁石の外周の配向磁場を、図1C、図2C、図3C、図4Cおよび図5Cに、マグネットアナライザーで測定した円筒状ボンド磁石の内周の表面磁束密度を示す。また、正弦波曲線に対する円筒状ボンド磁石の内周の表面磁束密度の歪み率を表1に示す。歪み率は、波形のひずみの程度を表すもので、フーリエ変換によりその波形に含まれる全高調波成分(E2〜En)を計算し、その実効値の総和と基本波(E1)の実効値との比として算出した。
(7) Evaluation The orientation magnetic field of the outer circumference of the alignment magnet measured by the Hall element in FIGS. 1B, 2B, 3B, 4B and 5B is shown in FIGS. 1C, 2C, 3C, 4C and 5C. The surface magnetic flux density of the inner circumference of the cylindrical bond magnet measured by the magnet analyzer is shown. Table 1 shows the distortion rate of the surface magnetic flux density on the inner circumference of the cylindrical bond magnet with respect to the sinusoidal curve. The distortion factor represents the degree of distortion of the waveform. The total harmonic components (E2 to En) contained in the waveform are calculated by Fourier transform, and the sum of the effective values and the effective value of the fundamental wave (E1) are used. It was calculated as the ratio of.

Figure 2021057488
Figure 2021057488

比較例1〜7の円筒状ボンド磁石は、磁極間の表面磁束密度の変化が急峻であり、正弦波曲線に対する歪みが大きかった。また、比較例2〜7では余分な磁極が生じた。これに対し、実施例1の円筒状ボンド磁石は、スリーブ厚さを調節し、隣り合う扇形平板磁石を、磁場方向がそれぞれ円周方向に互いに反発する方向に配置して磁場配向させたため、比較例1〜7と同じ形状であるにもかかわらず正弦波曲線に対する歪みが低減された。 In the cylindrical bond magnets of Comparative Examples 1 to 7, the change in the surface magnetic flux density between the magnetic poles was steep, and the distortion with respect to the sinusoidal curve was large. Further, in Comparative Examples 2 to 7, extra magnetic poles were generated. On the other hand, in the cylindrical bond magnet of Example 1, the sleeve thickness was adjusted, and adjacent fan-shaped flat plate magnets were arranged in directions in which the magnetic field directions repel each other in the circumferential direction, so that the magnetic field was oriented. Although the shape is the same as in Examples 1 to 7, the distortion for the sinusoidal curve is reduced.

本発明の異方性磁性粉末の円筒状ボンド磁石の製造方法は、正弦波曲線またはそれに近似した表面磁束密度を有する大径の円筒状ボンド磁石を製造できる。この円筒状ボンド磁石を大型モーターに適用した場合、コギングを抑制できる。 The method for producing an anisotropic magnetic powder cylindrical bond magnet of the present invention can produce a large-diameter cylindrical bond magnet having a sinusoidal curve or a surface magnetic flux density close thereto. When this cylindrical bond magnet is applied to a large motor, cogging can be suppressed.

1:配向用磁石
2:キャビティ
3:鋼材
4:スリーブ
1: Orientation magnet 2: Cavity 3: Steel material 4: Sleeve

Claims (9)

円筒状キャビティを有し、配向用磁石が配置された金型を射出成形機に配置する工程と、
前記金型にボンド磁石用組成物を注入して射出成形する工程とを含む、円筒状ボンド磁石の製造方法であって、
前記円筒状キャビティの内周部と前記配向用磁石の外周部との最短ギャップが2mm以上10mm以下であり、
前記円筒状キャビティは、外周直径が100mm以上300mm以下であって、外周半径と内周半径の差が2mm以上30mm以下であって、
前記配向用磁石は、円周方向に磁化された複数の扇形平板磁石から構成され、扇形平板磁石は、隣り合う扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発するように円周方向に配置された、
円筒状ボンド磁石の製造方法。
A process of arranging a mold having a cylindrical cavity and an alignment magnet in an injection molding machine,
A method for manufacturing a cylindrical bond magnet, which comprises a step of injecting a composition for a bond magnet into the mold and injection molding.
The shortest gap between the inner peripheral portion of the cylindrical cavity and the outer peripheral portion of the alignment magnet is 2 mm or more and 10 mm or less.
The cylindrical cavity has an outer peripheral diameter of 100 mm or more and 300 mm or less, and a difference between the outer peripheral radius and the inner peripheral radius of 2 mm or more and 30 mm or less.
The alignment magnet is composed of a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction, and the fan-shaped flat plate magnets are arranged in the circumferential direction so that the magnetic field directions of adjacent fan-shaped flat plate magnets repel each other in the circumferential direction. Placed,
A method for manufacturing a cylindrical bond magnet.
円筒状キャビティの外周半径に対する外周半径と内周半径の差の比が、0.01以上0.8以下である請求項1に記載の円筒状ボンド磁石の製造方法。 The method for manufacturing a cylindrical bond magnet according to claim 1, wherein the ratio of the difference between the outer peripheral radius and the inner peripheral radius to the outer peripheral radius of the cylindrical cavity is 0.01 or more and 0.8 or less. 配向用磁石が、4個以上56個以下の扇形平板磁石から構成される請求項1または2に記載の円筒状ボンド磁石の製造方法。 The method for manufacturing a cylindrical bond magnet according to claim 1 or 2, wherein the alignment magnet is composed of 4 or more and 56 or less fan-shaped flat plate magnets. 円周方向に磁化された複数の扇形平板磁石を、各扇形平板磁石の磁場方向がそれぞれ円周方向に互いに反発する方向に周方向に配置した配向用磁石、および、円筒状キャビティを有し、
該配向用磁石の外周部と円筒状キャビティの内周部の最短ギャップが2mm以上10mm以下であり、円筒状キャビティの外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である円筒状ボンド磁石成形用金型。
It has an alignment magnet in which a plurality of fan-shaped flat plate magnets magnetized in the circumferential direction are arranged in the circumferential direction in which the magnetic field directions of the fan-shaped flat plate magnets repel each other in the circumferential direction, and a cylindrical cavity.
The shortest gap between the outer peripheral portion of the alignment magnet and the inner peripheral portion of the cylindrical cavity is 2 mm or more and 10 mm or less, the outer peripheral diameter of the cylindrical cavity is 100 mm or more and 300 mm or less, and the difference between the outer peripheral radius and the inner peripheral radius is 2 mm. A mold for forming a cylindrical bond magnet having a diameter of 30 mm or more.
円筒状キャビティの外周半径に対する外周半径と内周半径の差の比が、0.01以上0.8以下である請求項4に記載の円筒状ボンド磁石成形用金型。 The mold for forming a cylindrical bond magnet according to claim 4, wherein the ratio of the difference between the outer peripheral radius and the inner peripheral radius to the outer peripheral radius of the cylindrical cavity is 0.01 or more and 0.8 or less. 配向用磁石が、4個以上56個以下の扇形平板磁石から構成される請求項4または5に記載の円筒状ボンド磁石成形用金型。 The mold for forming a cylindrical bond magnet according to claim 4 or 5, wherein the alignment magnet is composed of 4 or more and 56 or less fan-shaped flat plate magnets. 請求項4〜6のいずれか1項に記載の円筒状ボンド磁石成形用金型を使用して、ボンド磁石用組成物を射出成形する工程を含む、円筒状ボンド磁石の製造方法。 A method for producing a cylindrical bond magnet, which comprises a step of injection molding a composition for a bond magnet using the mold for molding a cylindrical bond magnet according to any one of claims 4 to 6. 内周側の表面磁束密度が周期的に変動し、該表面磁束密度の正弦波曲線に対する歪率が22%以下であって、外周直径が100mm以上300mm以下であり、外周半径と内周半径の差が2mm以上30mm以下である円筒状ボンド磁石。 The surface magnetic flux density on the inner peripheral side fluctuates periodically, the strain rate of the surface magnetic flux density with respect to the sinusoidal curve is 22% or less, the outer peripheral diameter is 100 mm or more and 300 mm or less, and the outer peripheral radius and the inner peripheral radius are A cylindrical bond magnet with a difference of 2 mm or more and 30 mm or less. 外周半径に対する外周半径と内周半径の差の比が、0.01以上0.8以下である請求項8に記載の円筒状ボンド磁石。

The cylindrical bond magnet according to claim 8, wherein the ratio of the difference between the outer peripheral radius and the inner peripheral radius to the outer peripheral radius is 0.01 or more and 0.8 or less.

JP2019180589A 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet Active JP7381851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180589A JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180589A JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Publications (2)

Publication Number Publication Date
JP2021057488A true JP2021057488A (en) 2021-04-08
JP7381851B2 JP7381851B2 (en) 2023-11-16

Family

ID=75272769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180589A Active JP7381851B2 (en) 2019-09-30 2019-09-30 Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet

Country Status (1)

Country Link
JP (1) JP7381851B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816509A (en) * 1981-07-23 1983-01-31 Daido Steel Co Ltd Ferromagnetic substance
JP2004104143A (en) * 1992-10-29 2004-04-02 Seiko Epson Corp Resin-bonded magnet and its manufacturing method
JP2005223233A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
WO2009099054A1 (en) * 2008-02-07 2009-08-13 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP2017212863A (en) * 2016-05-26 2017-11-30 ナパック株式会社 Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2018127668A (en) * 2017-02-08 2018-08-16 住友金属鉱山株式会社 Molding die for anisotropic bonded magnet and production method using the same
JP2018148694A (en) * 2017-03-06 2018-09-20 三菱電機株式会社 Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816509A (en) * 1981-07-23 1983-01-31 Daido Steel Co Ltd Ferromagnetic substance
JP2004104143A (en) * 1992-10-29 2004-04-02 Seiko Epson Corp Resin-bonded magnet and its manufacturing method
JP2005223233A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
WO2009099054A1 (en) * 2008-02-07 2009-08-13 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP2017212863A (en) * 2016-05-26 2017-11-30 ナパック株式会社 Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2018127668A (en) * 2017-02-08 2018-08-16 住友金属鉱山株式会社 Molding die for anisotropic bonded magnet and production method using the same
JP2018148694A (en) * 2017-03-06 2018-09-20 三菱電機株式会社 Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator

Also Published As

Publication number Publication date
JP7381851B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN111886779B (en) Motor and excitation element
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
CN107967978B (en) Bonded magnet and method for producing bonded magnet
KR100981218B1 (en) Permanent magnet rotor and motor using the same
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JPS6312370B2 (en)
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP7356003B2 (en) Method for manufacturing a mold for a polar anisotropic annular bonded magnet body
JP6907742B2 (en) Magnet material manufacturing method, motor manufacturing method
JPS61237405A (en) Multipolarized magnet
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JPS58219705A (en) Anisotropic ring polymer magnet and apparatus for manufacturing the same
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JP2010252472A (en) Magnet for motor, manufacturing method and motor
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JP3049134B2 (en) 2-pole cylindrical magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPH0471205A (en) Manufacture of bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7381851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151