JP7356003B2 - Method for manufacturing a mold for a polar anisotropic annular bonded magnet body - Google Patents

Method for manufacturing a mold for a polar anisotropic annular bonded magnet body Download PDF

Info

Publication number
JP7356003B2
JP7356003B2 JP2019162122A JP2019162122A JP7356003B2 JP 7356003 B2 JP7356003 B2 JP 7356003B2 JP 2019162122 A JP2019162122 A JP 2019162122A JP 2019162122 A JP2019162122 A JP 2019162122A JP 7356003 B2 JP7356003 B2 JP 7356003B2
Authority
JP
Japan
Prior art keywords
bonded magnet
mold
molded body
polar anisotropic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019162122A
Other languages
Japanese (ja)
Other versions
JP2020079443A (en
Inventor
将裕 阿部
公平 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to US16/584,887 priority Critical patent/US11651893B2/en
Publication of JP2020079443A publication Critical patent/JP2020079443A/en
Priority to US18/296,959 priority patent/US20230245820A1/en
Application granted granted Critical
Publication of JP7356003B2 publication Critical patent/JP7356003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、極異方性環状ボンド磁石成形体用金型の製造方法に関する。 The present invention relates to a method for manufacturing a mold for a polar anisotropic annular bonded magnet molded body.

ボンド磁石用組成物を射出成形して極異方性環状ボンド磁石成形体を作製する場合、溶融させたボンド磁石用組成物を金型内に射出し、金型内で固化する際に体積が収縮する。その収縮度合は、該組成物中の温度に対する収縮率が大きい熱可塑性樹脂の含有量により変化する。加えて、ボンド磁石用組成物が磁性粉末を含有するため、磁場により収縮に異方性が生じて成形体が歪み、金型の形状がそのまま転写された成形体を得ることができない。そのため、真円の成形体を得るために、成形したボンド磁石成形体がどの程度歪んでいるのかを測定した後に、熟練者が金型を修正することが行われていた。 When injection molding a bonded magnet composition to produce a polar anisotropic annular bonded magnet molded body, the molten bonded magnet composition is injected into a mold, and when it solidifies in the mold, the volume increases. Shrink. The degree of shrinkage changes depending on the content of the thermoplastic resin in the composition, which has a large shrinkage rate with respect to temperature. In addition, since the composition for a bonded magnet contains magnetic powder, the magnetic field causes anisotropy in contraction, causing distortion of the molded body, making it impossible to obtain a molded body in which the shape of the mold is directly transferred. Therefore, in order to obtain a perfectly circular molded product, an expert has to correct the mold after measuring how much the molded bonded magnet molded product is distorted.

一方、特許文献1には、等間隔に設定した磁石コンパウンドの押し込み深さとなるように、金型内に充填された磁石コンパウンドにそれぞれ外力を加えて磁石コンパウンドの充填密度を増加させる、磁場中で圧縮成形する長尺磁石成形体の製造方法が開示されている。しかしながら、長尺磁石成形体を対象とするものであり、極異方性環状ボンド磁石成形体用金型に適用することはできない。 On the other hand, Patent Document 1 discloses that in a magnetic field, an external force is applied to each of the magnetic compounds filled in a mold to increase the packing density of the magnetic compounds so that the indentation depth of the magnetic compounds is set at equal intervals. A method for manufacturing a long magnet molded body by compression molding is disclosed. However, this method is intended for long magnet moldings, and cannot be applied to a mold for a polar anisotropic annular bonded magnet molding.

また、特許文献2には、樹脂の流動解析より作製した樹脂成形用の試験金型を用いて試験樹脂成形品を作製し、寸法の実測値をもとにして金型を作製する方法が開示されている。しかしながら、該方法では、試験用金型を予め作製する必要がある。 Furthermore, Patent Document 2 discloses a method in which a test resin molded product is manufactured using a test mold for resin molding created by resin flow analysis, and the mold is manufactured based on the actual measured values of the dimensions. has been done. However, in this method, it is necessary to prepare a test mold in advance.

特開2006-11312号公報Japanese Patent Application Publication No. 2006-11312 特開2006-142678号公報Japanese Patent Application Publication No. 2006-142678

本発明は、金型修正や試験金型を作製することなく、歪が小さく真円度の高いボンド磁石成形体を作製することができる極異方性環状ボンド磁石成形体用金型と、その製造方法を提供することを目的とする。 The present invention provides a mold for a polar anisotropic annular bonded magnet molded body that can produce a bonded magnet molded body with small distortion and high roundness without modifying the mold or creating a test mold, and the mold. The purpose is to provide a manufacturing method.

本発明者は、極異方性環状ボンド磁石成形体用金型について種々検討したところ、成形体の収縮長、磁極部半径、成形体の磁極数から、金型キャビティの外周形状を規定すれば、金型の修正や、試験用金型を予め作製することなく、真円度の高い成形体を作製できるボンド磁石成形体用金型を見出し、本発明を完成した。 The present inventor has conducted various studies on molds for forming polar anisotropic annular bonded magnets, and has determined that the outer circumferential shape of the mold cavity can be defined from the contracted length of the formed object, the radius of the magnetic pole portion, and the number of magnetic poles of the formed object. discovered a mold for a bonded magnet molded body that can produce a molded body with high roundness without modifying the mold or preparing a test mold in advance, and completed the present invention.

すなわち、本発明は、(1)磁場に垂直方向の成形品の収縮率α1、平行方向の収縮率α2、作製しようとする極異方性環状ボンド磁石成形体の肉厚Tから、下記式:
Tc=T×(α1/100-α2/100)
により成形体の収縮長Tcを求める工程、
(2)収縮率α2と、作製しようとする極異方性環状ボンド磁石成形体の半径Dから、下記式:
Dm=D/(1-α2/100)
により金型キャビティの磁極部半径Dmを求める工程、および、
(3)Tc、Dmおよび作製しようとする極異方性環状ボンド磁石成形体の磁極数Pから金型キャビティの外周形状を規定する工程
を含む極異方性環状ボンド磁石成形体用金型の製造方法に関する。
That is, the present invention (1) calculates the following formula from the shrinkage rate α1 of the molded article in the direction perpendicular to the magnetic field, the contraction rate α2 in the parallel direction, and the wall thickness T of the polar anisotropic annular bonded magnet molded body to be manufactured:
Tc=T×(α1/100-α2/100)
A step of determining the shrinkage length Tc of the molded body by
(2) From the shrinkage rate α2 and the radius D of the polar anisotropic annular bonded magnet molded body to be produced, the following formula:
Dm=D/(1-α2/100)
a step of determining the radius Dm of the magnetic pole part of the mold cavity, and
(3) A mold for a polar anisotropic bonded annular magnet including the step of defining the outer peripheral shape of the mold cavity from Tc, Dm and the number of magnetic poles P of the polar anisotropic bonded bonded magnet to be produced. Regarding the manufacturing method.

本発明の製造方法によれば、金型の修正や試験用金型の作製が必要なく、真円度の高いボンド磁石成形体が得られる極異方性環状ボンド磁石成形体用金型を作製することができる。 According to the manufacturing method of the present invention, a mold for a polar anisotropic annular bonded magnet molded body that can obtain a bonded magnet molded product with high roundness without the need to modify the mold or create a test mold can be produced. can do.

磁場存在下におけるボンド磁石成形体の収縮方向を表す概念図である。FIG. 2 is a conceptual diagram showing the direction of contraction of a bonded magnet molded body in the presence of a magnetic field. 極異方性環状ボンド磁石成形体の磁極部と磁極間部を表す模式図である。It is a schematic diagram showing the magnetic pole part and the part between magnetic poles of a polar anisotropic annular bonded magnet molded object. ボンド磁石用樹脂組成物の充填方向から見た極異方性環状ボンド磁石成形体用金型の模式図である。FIG. 2 is a schematic diagram of a mold for a polar anisotropic annular bonded magnet molded body as viewed from the filling direction of a resin composition for a bonded magnet. ボンド磁石用樹脂組成物の充填方向から見た極異方性環状ボンド磁石成形体用金型と、金型内で成形された成形体の模式図である。FIG. 2 is a schematic diagram of a mold for a polar anisotropic annular bonded magnet molded body and a molded body molded within the mold as seen from the filling direction of a resin composition for a bonded magnet.

以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 Embodiments of the present invention will be described in detail below. However, the embodiment shown below is an example for embodying the technical idea of the present invention, and the present invention is not limited to the following. Note that in this specification, the term "process" is used not only to refer to an independent process, but also to include a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved. included.

本実施形態の極異方性環状ボンド磁石成形体用金型の製造方法は、
(1)磁場に垂直方向の成形品の収縮率α1、平行方向の収縮率α2、作製しようとする極異方性環状ボンド磁石成形体の肉厚Tから、下記式:
Tc=T×(α1/100-α2/100)
により成形体の収縮長Tcを求める工程、
(2)収縮率α2と、作製しようとする極異方性環状ボンド磁石成形体の半径Dから、下記式:
Dm=D/(1-α2/100)
により金型キャビティの磁極部半径Dmを求める工程、および、
(3)Tc、Dmおよび作製しようとする極異方性環状ボンド磁石成形体の磁極数Pから金型キャビティの外周形状を規定する工程
を含むことを特徴とする。
The method for manufacturing a mold for a polar anisotropic annular bonded magnet molded body of this embodiment is as follows:
(1) From the shrinkage rate α1 of the molded product in the direction perpendicular to the magnetic field, the shrinkage rate α2 in the parallel direction, and the wall thickness T of the polar anisotropic annular bonded magnet molded body to be manufactured, the following formula:
Tc=T×(α1/100-α2/100)
A step of determining the shrinkage length Tc of the molded body by
(2) From the shrinkage rate α2 and the radius D of the polar anisotropic annular bonded magnet molded body to be produced, the following formula:
Dm=D/(1-α2/100)
a step of determining the radius Dm of the magnetic pole part of the mold cavity, and
(3) It is characterized by including the step of defining the outer peripheral shape of the mold cavity from Tc, Dm, and the number P of magnetic poles of the polar anisotropic annular bonded magnet molded body to be produced.

図1に、磁場方向に対する収縮の概念図を示す。磁場が存在しない場合には縦横両方向に均等に収縮するが、磁場が存在すると、磁場に垂直方向では磁場による収縮が大きく、磁場に平行方向では、磁場による収縮は小さい。たとえば、図1のような10×10mmの成形体を成形する場合、磁場に平行方向の収縮率が0.3%、磁場に垂直方向の収縮率が0.9%とすると、磁場に平行方向の寸法を10/(1-0.003)=10.03mmとし、また、磁場に垂直方向の寸法を10/(1-0.009)=10.09mmとする金型を作製すれば、該金型で完全な正方形の成形体を成形することができる。 FIG. 1 shows a conceptual diagram of contraction in the direction of the magnetic field. In the absence of a magnetic field, it contracts equally in both the vertical and horizontal directions, but in the presence of a magnetic field, the contraction due to the magnetic field is large in the direction perpendicular to the magnetic field, and small in the direction parallel to the magnetic field. For example, when molding a 10 x 10 mm compact as shown in Figure 1, if the shrinkage rate in the direction parallel to the magnetic field is 0.3% and the shrinkage rate in the direction perpendicular to the magnetic field is 0.9%, then If a mold is made with dimensions of 10/(1-0.003) = 10.03 mm and dimensions perpendicular to the magnetic field of 10/(1-0.009) = 10.09 mm, the A perfect square shaped body can be formed using a mold.

ところで、環状ボンド磁石成形体では、正方形の成形体とは異なり、複雑な要因が存在する。図2に、直径2D、内径2I、肉厚T(=D-I)、磁極数Pが8の極異方性環状ボンド磁石成形体の上面図を示す。ここで、図2中の矢印は、磁界方向を表す。このような成形体は、図3に示すような配向用磁石を配した金型を使用して射出成形する。N極やS極という磁極が存在する磁極部では、磁場による収縮が小さく、磁極が存在しない磁極間部では磁場による収縮が大きい。そのため、この例では、収縮が大きい部分が8か所、収縮が小さい部分が8か所形成される。これらの磁場による収縮を考慮して、収縮が大きい磁極間部の径を大きくし、収縮が小さい磁極部の径を小さくすることによって、金型キャビティの外周形状、すなわち、図3における隔壁部4において、成型時にボンド磁石用組成物が接する内面側の形状を規定すれば、真円度が高いボンド磁石成形体を成形できる金型を作製することができる。また、図4は、金型に射出したボンド磁石用組成物が充填された状態を示す。 By the way, in the case of an annular bonded magnet molded body, there are complicated factors, unlike a square molded body. FIG. 2 shows a top view of a polar anisotropic annular bonded magnet molded body having a diameter of 2D, an inner diameter of 2I, a wall thickness of T (=DI), and a number of magnetic poles of 8. Here, the arrow in FIG. 2 represents the direction of the magnetic field. Such a molded body is injection molded using a mold equipped with orientation magnets as shown in FIG. In the magnetic pole part where magnetic poles such as N and S poles exist, the contraction due to the magnetic field is small, and in the part between the magnetic poles where no magnetic pole exists, the contraction due to the magnetic field is large. Therefore, in this example, there are eight parts where the shrinkage is large and eight parts where the shrinkage is small. Taking into account the contraction caused by these magnetic fields, the outer peripheral shape of the mold cavity, that is, the partition wall 4 in FIG. In this case, if the shape of the inner surface that is in contact with the bonded magnet composition during molding is specified, a mold that can mold a bonded magnet molded body with high roundness can be produced. Moreover, FIG. 4 shows a state in which the bonded magnet composition injected into the mold is filled.

極異方性環状ボンド磁石成形体の形状について、外半径Dは特に限定されないが、ボンド磁石組成物の流動性より射出成形時金型にボンド磁石組成物を充填しやすい点から10mm以上80mm以下が好ましく、20mm以上50mm以下がより好ましい。また、成形体の内半径Iは、外半径Dと肉厚Tにより定められる。 Regarding the shape of the polar anisotropic annular bonded magnet molded body, the outer radius D is not particularly limited, but it is 10 mm or more and 80 mm or less, from the viewpoint of ease of filling the bonded magnet composition into a mold during injection molding due to the fluidity of the bonded magnet composition. is preferable, and more preferably 20 mm or more and 50 mm or less. Further, the inner radius I of the molded body is determined by the outer radius D and the wall thickness T.

成形体の肉厚Tは特に限定されないが、配向性、残留磁束密度、磁束密度の正弦波性を十分に満たすボンド磁石が得やすいことから2mm以上10mm以下が好ましく、4mm以上8mm以下がより好ましい。なお、肉厚Tは、磁極ピッチ(磁極間の距離)長さの1/2以上であることが好ましい。肉厚Tが磁極ピッチ長さの1/2以上の場合、幾何学的な磁力線半円がボンド磁石内に収まるため、磁路が途切れることによる磁力の低下を抑制することができる。 The wall thickness T of the molded body is not particularly limited, but it is preferably 2 mm or more and 10 mm or less, and more preferably 4 mm or more and 8 mm or less, because it is easy to obtain a bonded magnet that satisfies the orientation, residual magnetic flux density, and sinusoidal magnetic flux density. . Note that the wall thickness T is preferably 1/2 or more of the length of the magnetic pole pitch (distance between magnetic poles). When the wall thickness T is 1/2 or more of the magnetic pole pitch length, the geometric semicircle of the lines of magnetic force is contained within the bonded magnet, so it is possible to suppress a decrease in magnetic force due to interruption of the magnetic path.

成形体の肉厚方向に垂直方向の高さは特に限定されないが、ボンド磁石組成物の流動性より射出成形時金型にボンド磁石組成物を充填しやすい点から5mm以上30mm以下が好ましく、10mm以上20mm以下がより好ましい。 The height in the direction perpendicular to the thickness direction of the molded body is not particularly limited, but from the viewpoint of ease of filling the bonded magnet composition into a mold during injection molding due to the fluidity of the bonded magnet composition, it is preferably 5 mm or more and 30 mm or less, and 10 mm or more. More preferably, the distance is 20 mm or less.

[工程(1)]
工程(1)では、磁場に垂直方向の成形品の収縮率α1、平行方向の収縮率α2、作製しようとする極異方性環状ボンド磁石成形体の肉厚T(=D-I)から、下記式:
Tc=T×(α1/100-α2/100)
により成形体の収縮長Tcを求める。収縮長Tcは、磁極部と磁極間部の収縮差を表す。計算に用いる磁場に垂直方向の収縮率α1(%)、平行方向の収縮率α2(%)は、金型内で実際の成形時に印加する磁場を印加しながら、ボンド磁石成形体用組成物を同じような射出成形温度で成形して得られた成形品の寸法と金型寸法から求める。使用する樹脂組成物は、該金型で実際に成形するボンド磁石成形用組成物と実質的に同じ組成物であれば良い。実質的に同じとは、同じマトリックス樹脂と、同じ磁性材料を使用し、該磁性材料を同程度の含有量で含有することを意味する。任意成分等は配合量も少なく、収縮率に大きな影響を与えないため、必ずしも同じ成分を同量含む必要はない。収縮率の測定に使用する成形品の形状は、配向磁場に垂直方向および平行方向の収縮率が測定できれば特に限定されず、例えば角柱、円柱、球状、環状等が挙げられる。印加する磁場強度も、該金型で実際に成形する際に印加する磁場強度と同程度であれば問題ない。
[Step (1)]
In step (1), from the shrinkage rate α1 of the molded article in the direction perpendicular to the magnetic field, the contraction rate α2 in the parallel direction, and the wall thickness T (=DI) of the polar anisotropic annular bonded magnet molded body to be manufactured, The following formula:
Tc=T×(α1/100-α2/100)
The shrinkage length Tc of the molded body is determined by: The contraction length Tc represents the difference in contraction between the magnetic pole part and the part between the magnetic poles. The contraction rate α1 (%) in the direction perpendicular to the magnetic field and the contraction rate α2 (%) in the parallel direction to the magnetic field used in the calculation are calculated by applying the composition for bonded magnet molded body in the mold while applying the magnetic field applied during actual molding. Determined from the dimensions of the molded product obtained by molding at similar injection molding temperatures and the mold dimensions. The resin composition used may be substantially the same as the bonded magnet molding composition actually molded using the mold. Substantially the same means that the same matrix resin and the same magnetic material are used and the magnetic material is contained in the same amount. Since the amount of optional components is small and does not have a large effect on the shrinkage rate, it is not necessary to include the same components in the same amount. The shape of the molded article used to measure the shrinkage rate is not particularly limited as long as the shrinkage rate in the directions perpendicular and parallel to the orienting magnetic field can be measured, and examples thereof include prismatic, cylindrical, spherical, and annular shapes. There is no problem as long as the applied magnetic field strength is comparable to the magnetic field strength applied during actual molding using the mold.

[工程(2)]
工程(2)では、収縮率α2と、作製しようとする極異方性環状ボンド磁石成形体の半径Dから、下記式:
Dm=D/(1-α2/100)
により金型キャビティの磁極部半径Dmを求める。
[Step (2)]
In step (2), the following formula is calculated from the shrinkage rate α2 and the radius D of the polar anisotropic annular bonded magnet molded body to be manufactured:
Dm=D/(1-α2/100)
Find the radius Dm of the magnetic pole part of the mold cavity.

[工程(3)]
工程(3)では、Tc、Dmおよび作製しようとする極異方性環状ボンド磁石成形体の磁極数Pから金型キャビティの外周形状を規定する。ここで、金型キャビティの外周形状とは、図3に示すような金型の場合、隔壁4において、射出成形する際に組成物と接する内面側の周形状をいう。
[Step (3)]
In step (3), the outer peripheral shape of the mold cavity is defined from Tc, Dm, and the number P of magnetic poles of the polar anisotropic annular bonded magnet molded body to be produced. Here, in the case of a mold as shown in FIG. 3, the outer peripheral shape of the mold cavity refers to the peripheral shape of the inner surface of the partition wall 4 that comes into contact with the composition during injection molding.

金型キャビティの外周形状を規定する方法は特に限定されないが、たとえば、極座標(r,θ)により規定する方法、直交座標(x、y)により規定する方法などが挙げられる。 The method of defining the outer peripheral shape of the mold cavity is not particularly limited, and examples thereof include a method of defining it using polar coordinates (r, θ), a method of defining it using orthogonal coordinates (x, y), and the like.

極座標(r,θ)により規定する場合、金型キャビティ中心部を原点として、外周部までの径rは、下記式:
r=(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)
(ただし、βは補正係数であり、0.7≦β≦1.0である。)
で表される。ここで、Dmは磁極部半径、(Dm+β×Tc/2)が磁極間部半径に該当する。磁極間部半径(Dm+β×Tc/2)に、磁極数Pによって周期的に変動する変動半径(β×Tc/2)sin(Pθ)を加えることにより、外周形状が極座標により規定される。
When defined by polar coordinates (r, θ), the radius r from the center of the mold cavity to the outer periphery is calculated using the following formula:
r=(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)
(However, β is a correction coefficient, and 0.7≦β≦1.0.)
It is expressed as Here, Dm corresponds to the radius of the magnetic pole portion, and (Dm+β×Tc/2) corresponds to the radius of the portion between the magnetic poles. By adding a variable radius (β×Tc/2) sin (Pθ) that periodically varies depending on the number of magnetic poles P to the radius between the magnetic poles (Dm+β×Tc/2), the outer peripheral shape is defined by polar coordinates.

βは0.7以上1.0以下であるが、0.9以上が好ましい。βが1.0の場合は、磁場に対する収縮を完全に考慮した場合に該当する。一般的な成形体の公差は±0.05mmが認められ、より厳しく、その半分を公差とすると、βは0.7以上であれば問題ない。磁極数Pは、2以上の整数であれば特に限定されないが、ボンド磁石の配向性の点より2以上12以下が好ましい。 β is 0.7 or more and 1.0 or less, preferably 0.9 or more. When β is 1.0, this corresponds to the case where contraction with respect to the magnetic field is completely taken into account. The tolerance of a general molded product is ±0.05 mm, which is even stricter, and if half of this is taken as the tolerance, there is no problem if β is 0.7 or more. The number of magnetic poles P is not particularly limited as long as it is an integer of 2 or more, but is preferably 2 or more and 12 or less from the viewpoint of the orientation of the bonded magnet.

金型キャビティの外周形状を直交座標(x、y)により規定する場合、金型キャビティ中心部を原点として、外周部の直交座標(x、y)は、下記式:
x={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(ただし、βは補正係数であり、0.7≦β≦1.0で、0≦θ≦2πである。)
で表される。βは0.7以上1.0以下であるが、0.9以上が好ましい。βの詳細は前述した通りである。
When the outer peripheral shape of the mold cavity is defined by orthogonal coordinates (x, y), the orthogonal coordinates (x, y) of the outer peripheral part, with the center of the mold cavity as the origin, are determined by the following formula:
x={(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(However, β is a correction coefficient, 0.7≦β≦1.0, and 0≦θ≦2π.)
It is expressed as β is 0.7 or more and 1.0 or less, preferably 0.9 or more. The details of β are as described above.

また、本実施形態の極異方性環状ボンド磁石成形体用金型は、
キャビティ外周部の極座標(r,θ)が、金型キャビティ中心部を原点として、下記式:
r=(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)
(式中、磁場に垂直方向の成形品の収縮率をα1、平行方向の収縮率をα2、作製する極異方性環状ボンド磁石成形体の肉厚をT、磁極数をP、極異方性環状ボンド磁石成形体の半径をDとし、得られる成形体の収縮長TcはT×(α1/100-α2/100)であり、金型キャビティの磁極部半径DmはD/(1-α2/100)で求められ、βは補正係数であり、0.7≦β≦1.0である。)
により規定されることを特徴とする。数式や、変数、定数等は前述した通りである。
Moreover, the mold for the polar anisotropic annular bonded magnet molded body of this embodiment is
The polar coordinates (r, θ) of the outer circumference of the cavity are expressed by the following formula, with the center of the mold cavity as the origin:
r=(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)
(In the formula, the shrinkage rate of the molded product in the direction perpendicular to the magnetic field is α1, the shrinkage rate in the parallel direction is α2, the wall thickness of the polar anisotropic annular bonded magnet molded body to be produced is T, the number of magnetic poles is P, the polar anisotropic The radius of the annular bonded magnet molded body is D, the shrinkage length Tc of the resulting molded body is T×(α1/100-α2/100), and the radius Dm of the magnetic pole part of the mold cavity is D/(1-α2). /100), β is a correction coefficient, and 0.7≦β≦1.0.)
It is characterized by being defined by. The formulas, variables, constants, etc. are as described above.

また、本実施形態の極異方性環状ボンド磁石成形体用金型は、
キャビティ外周部の直交座標(x、y)が、金型キャビティ中心部を原点として、下記式:
x={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(式中、磁場に垂直方向の成形品の収縮率をα1、平行方向の収縮率をα2、作製する極異方性環状ボンド磁石成形体の肉厚をT、磁極数をP、極異方性環状ボンド磁石成形体の半径をDとし、得られる成形体の収縮長TcはT×(α1/100-α2/100)であり、金型キャビティの磁極部半径DmはD/(1-α2/100)で求められ、βは補正係数であり、0.7≦β≦1.0で、0≦θ≦2πである。)
により規定されることを特徴とする。数式や、変数、定数等は前述した通りである。
Moreover, the mold for the polar anisotropic annular bonded magnet molded body of this embodiment is
The orthogonal coordinates (x, y) of the outer circumference of the cavity are determined by the following formula, with the center of the mold cavity as the origin:
x={(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(In the formula, the shrinkage rate of the molded product in the direction perpendicular to the magnetic field is α1, the shrinkage rate in the parallel direction is α2, the wall thickness of the polar anisotropic annular bonded magnet molded body to be produced is T, the number of magnetic poles is P, the polar anisotropic The radius of the annular bonded magnet molded body is D, the shrinkage length Tc of the resulting molded body is T×(α1/100-α2/100), and the radius Dm of the magnetic pole part of the mold cavity is D/(1-α2). /100), β is a correction coefficient, 0.7≦β≦1.0, and 0≦θ≦2π.)
It is characterized by being defined by. The formulas, variables, constants, etc. are as described above.

本実施形態の極異方性環状ボンド磁石成形体用金型のボンド磁石用樹脂組成物の充填方向から見た模式図を図3に示す。該金型は、磁性鋼材で作製した金属鋼材3で囲まれたキャビティ内に、配向用磁石2と、前述の方法により外周形状を規定した隔壁4を設置した構造を有している。中心部の金属鋼材3と隔壁4で形成されたキャビティ1にボンド磁石用組成物を射出して、形状を賦形する。 FIG. 3 shows a schematic diagram of the mold for a polar anisotropic annular bonded magnet molded body of the present embodiment as viewed from the filling direction of the bonded magnet resin composition. The mold has a structure in which an orienting magnet 2 and a partition wall 4 whose outer circumferential shape is defined by the method described above are installed in a cavity surrounded by a metal steel material 3 made of magnetic steel. A composition for a bonded magnet is injected into a cavity 1 formed by a metal steel material 3 and a partition wall 4 in the center to give a shape.

金属鋼材3は、磁性鋼材から作製することが好ましい。磁性鋼材としては、プリハードン鋼、焼入れ鋼、炭素鋼などが挙げられる。一方、隔壁4は、非磁性鋼材から作製することが好ましい。非磁性鋼材としては、アルミニウム合金、ステンレス鋼、時効処理鋼などが挙げられる。配向用磁石2は、磁性材料から作製することが好ましい。磁性材料としては、NdFeB焼結磁石、SmCo焼結磁石が挙げられ、配向磁場の強さの観点からNdFeB焼結磁石が好ましい。 It is preferable that the metal steel material 3 is made of magnetic steel material. Examples of magnetic steel materials include pre-hardened steel, hardened steel, and carbon steel. On the other hand, the partition wall 4 is preferably made of non-magnetic steel. Examples of non-magnetic steel materials include aluminum alloys, stainless steel, and aging treated steel. The orientation magnet 2 is preferably made of a magnetic material. Examples of the magnetic material include NdFeB sintered magnets and SmCo sintered magnets, and NdFeB sintered magnets are preferred from the viewpoint of the strength of the orienting magnetic field.

さらに、本実施形態の極異方性環状ボンド磁石成形体の製造方法は、前記極異方性環状ボンド磁石成形体用金型を使用して、ボンド磁石用組成物を射出成形する工程を含むことを特徴とする。 Furthermore, the method for manufacturing a polar anisotropic annular bonded magnet molded body of the present embodiment includes a step of injection molding a composition for a bonded magnet using the mold for the polar anisotropic annular bonded magnet molded body. It is characterized by

使用するボンド磁石用組成物は、熱可塑性樹脂と磁性粉末を含む。 The bonded magnet composition used includes a thermoplastic resin and magnetic powder.

本実施形態で用いる磁性粉末は、特に限定されないが、SmFeN系、NdFeB系、SmCo系の希土類磁性粉末が使用可能である。希土類磁性粉末は、NdFeB系と比べて耐熱性の点で、またSmCo系と比べて希少金属を使用しない点でSmFeN系磁性粉末とすることがより好ましい。SmFeN系磁性粉末としては、ThZn17型の結晶構造をもち、一般式がSmFe100-x-yで表される希土類金属Smと鉄Feと窒素Nからなる窒化物である。ここで、希土類金属Smの原子%のx値は、8.1~10%の範囲に、Nの原子%のyは、13.5~13.9(原子%)の範囲に、残部が主としてFeとされる。また、磁性粉末としてSmFeN系とともに、NdFeB系、SmCo系の希土類磁性粉末や、フェライト系磁性粉末を併用することができる。 The magnetic powder used in this embodiment is not particularly limited, but SmFeN-based, NdFeB-based, and SmCo-based rare earth magnetic powders can be used. As the rare earth magnetic powder, it is more preferable to use SmFeN-based magnetic powder because it has higher heat resistance than NdFeB-based magnetic powder, and because it does not use rare metals compared to SmCo-based magnetic powder. The SmFeN-based magnetic powder is a nitride consisting of the rare earth metal Sm, iron Fe, and nitrogen N, which has a Th 2 Zn 17 type crystal structure and whose general formula is Sm x Fe 100-xy N y . . Here, the x value of the atomic % of rare earth metal Sm is in the range of 8.1 to 10%, the y of the atomic % of N is in the range of 13.5 to 13.9 (atomic %), and the remainder is mainly It is considered to be Fe. Furthermore, in addition to SmFeN-based magnetic powder, NdFeB-based, SmCo-based rare earth magnetic powder, or ferrite-based magnetic powder can be used in combination.

SmFeN磁性粉末は、例えば特許第3698538号で開示された方法で製造できる。これにより、SmFeN磁性粉末の平均粒径が2μm~5μmであり、標準偏差が1.5μm以内のものを好適に使用できる。 SmFeN magnetic powder can be produced, for example, by the method disclosed in Japanese Patent No. 3,698,538. As a result, SmFeN magnetic powder having an average particle size of 2 μm to 5 μm and a standard deviation of 1.5 μm or less can be suitably used.

一方で、NdFeB系磁性粉末については、例えば、特許第3565513号に記載されたHDDR法により製造できる。このNdFeB系磁性粉末は、平均粒径が40~200μm、最大エネルギー積が34~42MGOe(270~335kJ/m)のものを好適に使用できる。さらにSm-Co磁性粉末については、例えば、特許第3505261号により製造でき、上述した磁性粉末は、平均粒径10~30μmのものが使用できる。 On the other hand, NdFeB-based magnetic powder can be manufactured, for example, by the HDDR method described in Japanese Patent No. 3565513. The NdFeB magnetic powder having an average particle size of 40 to 200 μm and a maximum energy product of 34 to 42 MGOe (270 to 335 kJ/m 3 ) can be suitably used. Further, Sm--Co magnetic powder can be manufactured, for example, according to Japanese Patent No. 3505261, and the above-mentioned magnetic powder can have an average particle size of 10 to 30 μm.

熱可塑性樹脂は特に限定されないが、例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂などが挙げられる。その中でもポリアミド、特にポリアミド12が好ましい。ポリアミド12は、比較的低融点で、吸水率が低く、結晶性樹脂であるため成形性が良い。また、これらを適宜混合して使用することも可能である。 The thermoplastic resin is not particularly limited, and examples thereof include polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide, and acrylic resin. Among these, polyamide, particularly polyamide 12, is preferred. Polyamide 12 has a relatively low melting point, low water absorption, and is a crystalline resin, so it has good moldability. It is also possible to use a mixture of these as appropriate.

熱可塑性樹脂の配合量は特に限定されないが、磁性粉末100質量部に対して3質量部以上20質量部以下が好ましく、5質量部以上15質量部以下がより好ましい。20質量部を超えると、磁力が低くなり、3質量部未満では、射出成形時の流動性が不十分になる傾向がある。 The blending amount of the thermoplastic resin is not particularly limited, but is preferably 3 parts by mass or more and 20 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass or less, based on 100 parts by mass of the magnetic powder. If it exceeds 20 parts by mass, the magnetic force will be low, and if it is less than 3 parts by mass, fluidity during injection molding will tend to be insufficient.

ボンド磁石用組成物には、熱可塑性エラストマーや酸化防止剤を配合することもできる。 A thermoplastic elastomer and an antioxidant can also be blended into the bonded magnet composition.

熱可塑性エラストマーとしては、ポリスチレン系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系などが挙げられる。熱可塑性エラストマーを含むことにより、流動性を損なうことなく初期強度を向上させることができる。また、これらを適宜混合して使用してもよい。これらの中でも、耐薬品性に優れているポリアミド系熱可塑性エラストマーが好ましい。 Examples of the thermoplastic elastomer include polystyrene, polyolefin, polyester, polyurethane, and polyamide. By including a thermoplastic elastomer, initial strength can be improved without impairing fluidity. Further, these may be mixed and used as appropriate. Among these, polyamide-based thermoplastic elastomers are preferred because they have excellent chemical resistance.

酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤などが挙げられる。リン系酸化防止剤を含むことにより、複合部材が高温にさらされた場合にも強度の経時変化を小さくすることができる。リン系酸化防止剤としては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等が挙げられる。 Examples of the antioxidant include phosphorus antioxidants and phenolic antioxidants. By including the phosphorous antioxidant, even when the composite member is exposed to high temperatures, changes in strength over time can be reduced. Examples of phosphorous antioxidants include tris(2,4-di-tert-butylphenyl) phosphite and the like.

射出成形条件等は、特に限定されず、通常のボンド磁石用組成物を射出成形する際の条件をそのまま適用することができる。 The injection molding conditions and the like are not particularly limited, and the conditions used when injection molding a normal bonded magnet composition can be applied as they are.

以下、実施例について説明する。なお、特に断りのない限り、「%」は質量基準である。 Examples will be described below. Note that unless otherwise specified, "%" is based on mass.

製造例
ボンド磁石用組成物の製造
サマリウム鉄窒素磁性粉末(平均粒径3μm)91.96質量%に対して12ナイロン樹脂粉末7.74質量%、フェノール系酸化防止剤粉末0.3質量%をミキサーで混合した後、混合粉を二軸混練機に投入し、210℃にて混練して混練物を得た。得られた混練物を冷却後、適当な大きさに切断しボンド磁石用組成物を得た。
Production Example Production of a composition for bonded magnets 7.74% by mass of 12 nylon resin powder and 0.3% by mass of phenolic antioxidant powder were added to 91.96% by mass of samarium iron nitrogen magnetic powder (average particle size 3 μm). After mixing with a mixer, the mixed powder was put into a twin-screw kneader and kneaded at 210°C to obtain a kneaded product. After cooling the obtained kneaded product, it was cut into appropriate sizes to obtain a bonded magnet composition.

実施例
Φ10mm×7mmの成形品を作製する金型において、716kA/mの磁場を印加しながら、250℃で射出成形し、該組成物の収縮率を測定した。磁場に平行方向の収縮率α2は0.3%、磁場に垂直方向の収縮率α1は1.0%であった。
Example In a mold for producing a molded article with a diameter of 10 mm x 7 mm, injection molding was carried out at 250° C. while applying a magnetic field of 716 kA/m, and the shrinkage rate of the composition was measured. The contraction rate α2 in the direction parallel to the magnetic field was 0.3%, and the contraction rate α1 in the direction perpendicular to the magnetic field was 1.0%.

直径2Dが50mm、内径2Iが40mm、肉厚Tが5mm、肉厚方向に垂直な高さが10mm、磁極数Pが8の極異方性環状ボンド磁石成形体を作製するために、収縮率α1とα2を使用して、極座標(r,θ)により、金型キャビティ中心部を原点として、外周部までの径rを、下記式:
r=(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)
(ただし、βは1.0とした。)
で求められる内面側の外周形状を有する隔壁を作製した。Tcは0.035mm、Dmは25.075mmであった。
In order to produce a polar anisotropic annular bonded magnet molded body with a diameter 2D of 50 mm, an inner diameter 2I of 40 mm, a wall thickness T of 5 mm, a height perpendicular to the wall thickness direction of 10 mm, and a number of magnetic poles P of 8, the shrinkage rate was Using α1 and α2, calculate the radius r from the center of the mold cavity to the outer periphery using polar coordinates (r, θ) using the following formula:
r=(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)
(However, β was set to 1.0.)
A partition wall having the inner circumferential shape determined by the following was fabricated. Tc was 0.035 mm, and Dm was 25.075 mm.

作製した隔壁と、配向用磁石8個を金型内に設置して、極異方性環状ボンド磁石成形体用金型を作製した。製造例で作製したボンド磁石用組成物を使用して、成形温度250℃、金型温度90℃で射出成形し、成形体を10個作製した。得られた成形体10個について、測定顕微鏡(株式会社ミツトヨ製、型番MF-A1010)にて真円度を測定した。真円度は、10μmとなり、真円度の高い極異方性環状ボンド磁石成形体を作製することができた。 The prepared partition walls and eight orientation magnets were placed in a mold to produce a mold for a polar anisotropic annular bonded magnet molded body. Using the bonded magnet composition produced in the production example, injection molding was performed at a molding temperature of 250°C and a mold temperature of 90°C to produce 10 molded bodies. The roundness of the 10 obtained molded bodies was measured using a measuring microscope (manufactured by Mitutoyo Co., Ltd., model number MF-A1010). The roundness was 10 μm, and a polar anisotropic annular bonded magnet molded body with high roundness could be produced.

本発明の極異方性環状ボンド磁石成形体用金型の製造方法によれば、真円度の高いボンド磁石成形体を作製することができる極異方性環状ボンド磁石成形体用金型を作製できるため、金型修正や試験金型の作製が必要なく、産業上の利用価値が非常に高い。 According to the method for manufacturing a mold for a polar anisotropic annular bonded magnet molded body of the present invention, a mold for a polar anisotropic annular bonded magnet molded body that can produce a bonded magnet molded body with high roundness is produced. Since it can be manufactured, there is no need to modify the mold or create a test mold, so it has very high industrial value.

1:キャビティ
2:配向用磁石
3:金属鋼材(磁性鋼材)
4:隔壁(非磁性鋼材)
5:ボンド磁石成形体
1: Cavity 2: Orienting magnet 3: Metal steel material (magnetic steel material)
4: Partition wall (non-magnetic steel)
5: Bonded magnet molded body

Claims (6)

(1)磁場に垂直方向の成形品の収縮率α1、平行方向の収縮率α2、作製しようとする極異方性環状ボンド磁石成形体の肉厚Tから、下記式:
Tc=T×(α1/100-α2/100)
により成形体の収縮長Tcを求める工程、
(2)収縮率α2と、作製しようとする極異方性環状ボンド磁石成形体の半径Dから、下記式:
Dm=D/(1-α2/100)
により金型キャビティの磁極部半径Dmを求める工程、および、
(3)Tc、Dmおよび作製しようとする極異方性環状ボンド磁石成形体の磁極数Pから金型キャビティの外周形状を規定する工程
を含む極異方性環状ボンド磁石成形体用金型の製造方法。
(1) From the shrinkage rate α1 of the molded product in the direction perpendicular to the magnetic field, the shrinkage rate α2 in the parallel direction, and the wall thickness T of the polar anisotropic annular bonded magnet molded body to be manufactured, the following formula:
Tc=T×(α1/100-α2/100)
A step of determining the shrinkage length Tc of the molded body by
(2) From the shrinkage rate α2 and the radius D of the polar anisotropic annular bonded magnet molded body to be produced, the following formula:
Dm=D/(1-α2/100)
a step of determining the radius Dm of the magnetic pole part of the mold cavity, and
(3) A mold for a polar anisotropic bonded annular magnet including the step of defining the outer peripheral shape of the mold cavity from Tc, Dm and the number of magnetic poles P of the polar anisotropic bonded bonded magnet to be produced. Production method.
工程(3)において、金型キャビティ中心部を原点として、下記式:
r=(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)
(ただし、βは補正係数であり、0.7≦β≦1.0である。)
で表されるキャビティ外周部の極座標(r,θ)により金型キャビティの外周形状を規定する請求項1に記載の極異方性環状ボンド磁石成形体用金型の製造方法。
In step (3), with the center of the mold cavity as the origin, the following formula:
r=(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)
(However, β is a correction coefficient, and 0.7≦β≦1.0.)
2. The method for manufacturing a mold for a polar anisotropic annular bonded magnet molded body according to claim 1, wherein the outer circumferential shape of the mold cavity is defined by the polar coordinates (r, θ) of the outer circumferential portion of the cavity.
工程(3)において、金型キャビティ中心部を原点として、下記式:
x={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(ただし、βは補正係数であり、0.7≦β≦1.0で、0≦θ≦2πである。)
で表されるキャビティ外周部の直交座標(x、y)により金型キャビティの外周形状を規定する請求項1に記載の極異方性環状ボンド磁石成形体用金型の製造方法。
In step (3), with the center of the mold cavity as the origin, the following formula:
x={(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(However, β is a correction coefficient, 0.7≦β≦1.0, and 0≦θ≦2π.)
2. The method for manufacturing a mold for a polar anisotropic annular bonded magnet molded body according to claim 1, wherein the outer circumferential shape of the mold cavity is defined by the orthogonal coordinates (x, y) of the outer circumferential portion of the cavity.
キャビティ外周部の極座標(r,θ)が、金型キャビティ中心部を原点として、下記式:
r=(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)
(式中、磁場に垂直方向の成形品の収縮率をα1、平行方向の収縮率をα2、作製する極異方性環状ボンド磁石の肉厚をT、磁極数をP、極異方性環状ボンド磁石成形体の半径をDとし、得られる成形体の収縮長TcはT×(α1/100-α2/100)であり、金型キャビティの磁極部半径DmはD/(1-α2/100)で求められ、βは補正係数であり、0.7≦β≦1.0である。)
により規定される極異方性環状ボンド磁石成形体用金型。
The polar coordinates (r, θ) of the outer circumference of the cavity are expressed by the following formula, with the center of the mold cavity as the origin:
r=(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)
(In the formula, the shrinkage rate of the molded product in the direction perpendicular to the magnetic field is α1, the shrinkage rate in the parallel direction is α2, the wall thickness of the polar anisotropic annular bonded magnet to be produced is T, the number of magnetic poles is P, the polar anisotropic annular bonded magnet is The radius of the bonded magnet molded body is D, the shrinkage length Tc of the resulting molded body is T x (α1/100-α2/100), and the radius Dm of the magnetic pole part of the mold cavity is D/(1-α2/100). ), β is a correction coefficient, and 0.7≦β≦1.0.)
A mold for a polar anisotropic annular bonded magnet body defined by:
キャビティ外周部の直交座標(x、y)が、金型キャビティ中心部を原点として、下記式:
x={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(式中、磁場に垂直方向の成形品の収縮率をα1、平行方向の収縮率をα2、作製する極異方性環状ボンド磁石の肉厚をT、磁極数をP、極異方性環状ボンド磁石成形体の半径をDとし、得られる成形体の収縮長TcはT×(α1/100-α2/100)であり、金型キャビティの磁極部半径DmはD/(1-α2/100)で求められ、βは補正係数であり、0.7≦β≦1.0で、0≦θ≦2πである。)
により規定される極異方性環状ボンド磁石成形体用金型。
The orthogonal coordinates (x, y) of the outer circumference of the cavity are determined by the following formula, with the center of the mold cavity as the origin:
x={(Dm+β×Tc/2)+(β×Tc/2) sin(Pθ)}×cosθ
y={(Dm+β×Tc/2)+(β×Tc/2)sin(Pθ)}×sinθ
(In the formula, the shrinkage rate of the molded product in the direction perpendicular to the magnetic field is α1, the shrinkage rate in the parallel direction is α2, the wall thickness of the polar anisotropic annular bonded magnet to be produced is T, the number of magnetic poles is P, the polar anisotropic annular bonded magnet is The radius of the bonded magnet molded body is D, the shrinkage length Tc of the resulting molded body is T x (α1/100-α2/100), and the radius Dm of the magnetic pole part of the mold cavity is D/(1-α2/100). ), β is a correction coefficient, 0.7≦β≦1.0, and 0≦θ≦2π.)
A mold for a polar anisotropic annular bonded magnet body defined by:
請求項4または5に記載の極異方性環状ボンド磁石成形体用金型を使用して、ボンド磁石用組成物を射出成形する工程を含む極異方性環状ボンド磁石成形体の製造方法。 A method for producing a polar anisotropic annular bonded magnet molded body, comprising the step of injection molding a composition for a bonded magnet using the mold for a polar anisotropic annular bonded magnet molded body according to claim 4 or 5.
JP2019162122A 2018-09-27 2019-09-05 Method for manufacturing a mold for a polar anisotropic annular bonded magnet body Active JP7356003B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/584,887 US11651893B2 (en) 2018-09-27 2019-09-26 Method of preparing molds for polar anisotropic ring-shaped bonded magnet molded articles
US18/296,959 US20230245820A1 (en) 2018-09-27 2023-04-06 Mold for and method of producing polar anisotropic ring-shaped bonded magnet molded articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182075 2018-09-27
JP2018182075 2018-09-27

Publications (2)

Publication Number Publication Date
JP2020079443A JP2020079443A (en) 2020-05-28
JP7356003B2 true JP7356003B2 (en) 2023-10-04

Family

ID=70801502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162122A Active JP7356003B2 (en) 2018-09-27 2019-09-05 Method for manufacturing a mold for a polar anisotropic annular bonded magnet body

Country Status (1)

Country Link
JP (1) JP7356003B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115812240A (en) * 2020-12-25 2023-03-17 有限公司宫肋工房 Method for manufacturing polar anisotropic magnet, method for manufacturing magnet assembly, polar anisotropic magnet, magnet assembly, and composite magnet assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148041A (en) 2017-03-06 2018-09-20 住友金属鉱山株式会社 Mold for shaping anisotropic bond magnet, and manufacturing method by use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148041A (en) 2017-03-06 2018-09-20 住友金属鉱山株式会社 Mold for shaping anisotropic bond magnet, and manufacturing method by use thereof

Also Published As

Publication number Publication date
JP2020079443A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US5416457A (en) Lateral orientation anisotropic magnet
JP5583432B2 (en) Binding band and method for manufacturing the same
JP6870356B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
US7985363B2 (en) Method of encasing a magnet
JP2016153766A (en) Magnet structure and rotation angle detector
JP7356003B2 (en) Method for manufacturing a mold for a polar anisotropic annular bonded magnet body
JP2016153765A (en) Magnet structure and rotation angle detector
US11651893B2 (en) Method of preparing molds for polar anisotropic ring-shaped bonded magnet molded articles
CN108806913A (en) Have the composite component and its manufacturing method of cyclic adhesion magnet
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
Gardocki et al. Improvement of the filler orientability during injection molding of multi-polar SmCo-magnets by premagnetization
JPS5923445B2 (en) permanent magnet
JP6879457B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP3702036B2 (en) Method for producing anisotropic resin magnet and mold for production
JP6878882B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP2003088057A (en) Motor field magnet and its manufacturing method
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP7354729B2 (en) Mold for forming anisotropic bonded magnet and manufacturing method using the same
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JP2007266032A (en) Permanent magnet and manufacturing method therefor
JPH0471205A (en) Manufacture of bond magnet
JP2002313615A (en) Plastic magnet composition
JPS6146006A (en) Anisotropic resin magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7356003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151