JP2003088057A - Motor field magnet and its manufacturing method - Google Patents

Motor field magnet and its manufacturing method

Info

Publication number
JP2003088057A
JP2003088057A JP2001280273A JP2001280273A JP2003088057A JP 2003088057 A JP2003088057 A JP 2003088057A JP 2001280273 A JP2001280273 A JP 2001280273A JP 2001280273 A JP2001280273 A JP 2001280273A JP 2003088057 A JP2003088057 A JP 2003088057A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
flux density
magnetic powder
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001280273A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tada
宣行 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001280273A priority Critical patent/JP2003088057A/en
Publication of JP2003088057A publication Critical patent/JP2003088057A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pole magnetizing annular magnet for a small motor field wherein superior magnetic characteristic and a smooth surface magnetic flux density waveform are obtained, and to provide a manufacturing method of the magnet. SOLUTION: In the motor field magnet, a plane magnet molded body has two main surfaces composed of magnetic powder and binder having flexibility. In the pole magnetizing annular magnet, the magnetic powder is orientated only on a first main surface in such a manner that at least two magnetic poles are generated in stripe shapes, and the plane magnet molded body is bent annularly in such a manner that the stripe-shaped magnetic poles are arranged at an equal interval on a side surface of an annulur ring. At least 40 vol.% of anisotropic rare earth magnetic powder whose remanent magnetic flux density is at least 10 kG is contained, a thickness of the plane magnet molded body is at most 2 mm, an outer diameter of the annular magnet is at most 50 mm, and at least four poles are installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高性能の小型モータ界磁
用の永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance permanent magnet for a small motor field.

【0002】[0002]

【従来の技術】永久磁石界磁型のモータは小型になると
強い磁束密度が必要になることから、磁束密度が高く、
成形加工性に優れた希土類ボンド磁石がよく使用され
る。またモータ用永久磁石は環状で使用されることが多
いが環形状の場合、図1に示すように、外周面又は内周
面の片側から入り同一面へと磁束が出ていくように異方
化し着磁する極異方性磁石が、漏洩磁束が少なく一般的
に同一寸法では最も高い磁束密度を期待できる。
2. Description of the Related Art Since a permanent magnet field type motor requires a strong magnetic flux density when it becomes small, the magnetic flux density is high.
Rare earth bonded magnets, which have excellent moldability, are often used. In addition, motor permanent magnets are often used in an annular shape, but in the case of an annular shape, as shown in Fig. 1, it is anisotropic so that magnetic flux comes out from one side of the outer peripheral surface or inner peripheral surface and goes out to the same surface. A polar anisotropic magnet that is magnetized and magnetized has little leakage magnetic flux, and generally the highest magnetic flux density can be expected with the same size.

【0003】しかしながらモータが小径化すると磁石の
径が小さくなり、極異方化磁場発生用の磁石又はコイル
の配置が困難であり、産業上はほとんど利用されていな
い。そこで小径の環形状磁石には、主に等方性希土類磁
石又は図2に示すラジアル異方性希土類磁石が、産業上
もっぱら使用されているが、いづれも希土類磁性粉末の
高い磁束密度を十分に利用しているとは言えない。更に
等方性磁石及びラジアル異方性磁石は、着磁ヨークによ
って磁束密度分布が決まるため、磁束密度曲線が磁極境
界近傍で急激に変化する矩形波になり、磁石を界磁子と
してモータにした場合コギングトルクが大きくなるとい
う問題がある。
However, as the diameter of the motor becomes smaller, the diameter of the magnet becomes smaller, and it is difficult to dispose the magnet or coil for generating the polar anisotropic magnetic field, and it is hardly used industrially. For this reason, isotropic rare earth magnets or radial anisotropic rare earth magnets shown in FIG. 2 are mainly used for small-diameter ring-shaped magnets in the industry, but in either case, the high magnetic flux density of the rare earth magnetic powder is sufficient. I can't say I'm using it. Further, in isotropic magnets and radial anisotropic magnets, the magnetic flux density distribution is determined by the magnetizing yoke, so the magnetic flux density curve becomes a rectangular wave that changes rapidly near the magnetic pole boundary, and the magnet was used as a field element for the motor. In this case, there is a problem that the cogging torque becomes large.

【0004】[0004]

【発明が解決しようとする課題】従って本発明は上記し
た問題を解決することを目的とし、希土類磁石におい
て、極異方化することで従来の等方性希土類磁石やラジ
アル異方性希土類磁石より磁束密度が高く、モータにし
た場合のコギングトルクが低い小型のモータ界磁用環状
磁石とその製造方法を提供する。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and in rare earth magnets, by making them anisotropic, conventional isotropic rare earth magnets and radial anisotropic rare earth magnets are provided. Provided are a small-sized annular magnet for a motor field, which has a high magnetic flux density and a low cogging torque when used as a motor, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者等は先に特願2
000−396393号公報において、磁性粉末を片面
に極異方化配向させながら平板シート形状に一旦成形
し、その後環状に変形することで環状の極異方性磁石を
得る方法を開示したが、この方法を異方性希土類磁性粉
末に採用し、更に研究を進めた結果、本発明を成すに至
った。
Means for Solving the Problem The present inventors previously filed a patent application 2
In Japanese Patent Laid-Open No. 000-396393, there is disclosed a method in which a magnetic powder is once formed into a flat sheet shape while being extremely anisotropically oriented on one side and then deformed into an annular shape to obtain an annular polar anisotropic magnet. As a result of applying the method to anisotropic rare earth magnetic powder and further researching, the present invention has been accomplished.

【0006】すなわち本発明のモータ界磁用磁石は、磁
性粉末と可撓性を有するバインダとからなる2つの主面
を有する平板状磁石成形体を、第1の主面にのみ少なく
とも2つ以上の磁極がストライプ状に発生するように該
磁性粉末を配向し、該ストライプ状の磁極が円環の側面
に等間隔に配置するように該平板状磁石成形体を環状に
曲げてなる極着磁環状磁石において、残留磁束密度が1
0kG以上の異方性希土類磁性粉末を40体積%以上含
有し、かつ該平板状磁石成形体の厚さが2mm以下であ
り、かつ該環状磁石の外径が50mm以下であり、かつ
4極以上の磁極を有することを特徴とし、更には表面磁
束密度曲線を以下の式(I)で表されるフーリエ級数に
展開して得られる3次以上の高調波成分の係数b
2k+1(kは1以上の自然数を示す。)及び1次成分
の係数bは、以下の式(II)を満たすことを特徴とす
る。
That is, the motor field magnet of the present invention has at least two flat magnet moldings having only two main surfaces, each of which has a magnetic powder and a flexible binder. Of the magnetic powder are oriented so that the magnetic poles are generated in stripes, and the flat magnet molding is bent in an annular shape so that the magnetic poles in stripes are arranged at equal intervals on the side surface of the ring. In a ring magnet, the residual magnetic flux density is 1
An anisotropic rare earth magnetic powder of 0 kG or more is contained in an amount of 40% by volume or more, the thickness of the flat magnet molding is 2 mm or less, the outer diameter of the annular magnet is 50 mm or less, and 4 poles or more. And the coefficient b of the third or higher harmonic component obtained by expanding the surface magnetic flux density curve into a Fourier series represented by the following formula (I).
2k + 1 (k represents a natural number of 1 or more) and the coefficient b 1 of the first-order component satisfy the following expression (II).

【0007】[0007]

【数3】 (式中のf(θ)は該モータ界磁用磁石の表面磁束密度
曲線を示す。)
[Equation 3] (F (θ) in the formula represents a surface magnetic flux density curve of the motor field magnet.)

【0008】[0008]

【数4】 [Equation 4]

【0009】また本発明のモータ界磁用磁石は、表面磁
束密度の最大値が1650G以上であることを特徴とす
る。更に該異方性希土類磁性粉末は異方性Sm−Fe−
N系磁性粉末であることを特徴とする。
The motor field magnet of the present invention is characterized in that the maximum value of the surface magnetic flux density is 1650 G or more. Further, the anisotropic rare earth magnetic powder is anisotropic Sm-Fe-
It is characterized by being an N-based magnetic powder.

【0010】なお異方性希土類磁性粉末の残留磁束密度
は、あらかじめ磁性粉末を異方化配向した測定用試料を
作製し、振動試料型磁力計により測定することで得られ
る。また表面磁束密度曲線及び表面磁束密度の最大値
は、以下の方法によって測定される。まずガウスメータ
の測定部をモータ界磁用磁石の磁極が発生している円環
の側面にあてて、各回転角度と表面磁束密度との関係を
ガウスメーターにて測定する。表面磁束密度を回転角度
でプロットすることで表面磁束密度曲線が得られる。ま
た表面磁束密度曲線における表面磁束密度の最大値を求
める。
The residual magnetic flux density of the anisotropic rare earth magnetic powder can be obtained by preparing a measurement sample in which the magnetic powder is anisotropically oriented in advance and measuring it with a vibrating sample magnetometer. The maximum value of the surface magnetic flux density curve and the surface magnetic flux density is measured by the following method. First, the measuring portion of the Gauss meter is applied to the side surface of the ring where the magnetic poles of the motor field magnet are generated, and the relationship between each rotation angle and the surface magnetic flux density is measured with the Gauss meter. A surface magnetic flux density curve is obtained by plotting the surface magnetic flux density by the rotation angle. In addition, the maximum value of the surface magnetic flux density on the surface magnetic flux density curve is obtained.

【0011】表面磁束密度が0となる点を磁極の境界点
とし、隣接する磁極の境界点2点間の表面磁束密度曲線
を1極の磁極から得られる表面磁束密度曲線とする。次
に1極の磁極から得られる表面磁束密度曲線の回転角
(radian)が0〜πとなるようにスケールを変更
し、複数の磁極から得られる表面磁束密度曲線を周期関
数f(θ)とする。以下の式(I)で表されるフーリエ
級数に展開し、1次成分の係数b、3次以上の高調波
成分の係数b2k+1(kは1以上の自然数)を算出す
る。そして3次以上の各高調波成分の係数b2k+1
基本波である1次成分の係数bとの比(b2k+1
)を求める。
A point at which the surface magnetic flux density is 0 is defined as a boundary point between magnetic poles, and a surface magnetic flux density curve between two boundary points between adjacent magnetic poles is defined as a surface magnetic flux density curve obtained from a single magnetic pole. Next, the scale is changed so that the rotation angle (radian) of the surface magnetic flux density curve obtained from one magnetic pole is 0 to π, and the surface magnetic flux density curve obtained from a plurality of magnetic poles is defined as a periodic function f (θ). To do. It is expanded to the Fourier series represented by the following equation (I), and the coefficient b 1 of the first-order component and the coefficient b 2k + 1 of the harmonic component of the third or higher order (k is a natural number of 1 or higher) are calculated. The coefficients of the third order or more each harmonic component b 2k + 1 and the ratio of the coefficient b 1 of the first-order component which is a basic wave (b 2k + 1 /
b 1 ) is calculated.

【0012】[0012]

【数5】 (式中のf(θ)は該モータ界磁用磁石の表面磁束密度
曲線を示す。)
[Equation 5] (F (θ) in the formula represents a surface magnetic flux density curve of the motor field magnet.)

【0013】また本発明のモータ界磁用磁石の製造方法
は、異方性希土類磁性粉末と可撓性を有するバインダと
からなる2つの主面を有する平板状磁石成形体を、第1
の主面にのみ少なくとも2つ以上の磁極がストライプ状
に発生するように磁性粉末を配向する工程と、該ストラ
イプ状の磁極が円環の側面に等間隔に配置するように該
平板状磁石成形体を環状に曲げる工程とを有する極着磁
環状磁石の製造方法において、残留磁束密度が10kG
以上の異方性希土類磁性粉末を40体積%以上と可撓性
を有するバインダとを混合し、次に極異方性に磁場成形
して第1の主面にのみ4極以上の磁極を有し厚さが2m
m以下の2つの主面を有する平板状磁石成形体とし、該
平板状磁石成形体を環状に曲げて外径が50mm以下の
極着磁環状磁石とすることを特徴とする。
The method of manufacturing a magnet for a motor field according to the present invention further comprises a step of forming a flat magnet molded body having two main surfaces composed of anisotropic rare earth magnetic powder and a binder having flexibility.
Of orienting the magnetic powder so that at least two or more magnetic poles are generated in stripes only on the main surface of the plate, and the flat magnet molding is performed so that the stripes of magnetic poles are arranged at equal intervals on the side surface of the ring. In a method for manufacturing a poled annular magnet having a step of bending a body in an annular shape, the residual magnetic flux density is 10 kG.
The anisotropic rare earth magnetic powder described above is mixed with 40% by volume or more and a flexible binder, and then magnetic field molding is performed to polar anisotropy so that only the first main surface has magnetic poles of 4 poles or more. Thickness is 2m
It is characterized in that a flat magnet molding having two main surfaces of m or less is formed, and the flat magnet molding is bent in an annular shape to form a pole magnetized annular magnet having an outer diameter of 50 mm or less.

【0014】[0014]

【発明の実施の形態】本発明における異方性希土類磁性
粉末は、磁気異方性の硬質希土類磁性粉末でなければな
らない。等方性磁性粉末では極異方化できず、また希土
類系以外の磁性粉末は硬質希土類磁性粉末ほど高い磁化
を示さないため、極異方化により高い表面磁束密度を得
ることはできない。また異方性希土類磁性粉末の磁気特
性は残留磁束密度が10kG以上に満たないか、又は該
異方性希土類磁性粉末の含有量が40体積%未満の場
合、従来の等方性希土類磁石やラジアル異方性希土類磁
石よりも高い表面磁束密度を得ることはできない。よっ
て異方性希土類磁性粉末の磁気特性は残留磁束密度が1
0kG以上で、かつ該異方性希土類磁性粉末を40体積
%以上含有していなければ、本発明の有効性を発揮でき
ない。
BEST MODE FOR CARRYING OUT THE INVENTION The anisotropic rare earth magnetic powder according to the present invention must be hard anisotropic rare earth magnetic powder. An isotropic magnetic powder cannot be made extremely anisotropic, and magnetic powders other than rare earth-based magnetic powders do not exhibit as high magnetization as hard rare earth magnetic powders, so that it is not possible to obtain a high surface magnetic flux density due to polar anisotropy. The anisotropic rare earth magnetic powder has magnetic properties such that the residual magnetic flux density is less than 10 kG or the anisotropic rare earth magnetic powder content is less than 40% by volume. It is not possible to obtain a higher surface magnetic flux density than an anisotropic rare earth magnet. Therefore, the magnetic characteristic of anisotropic rare earth magnetic powder is that the residual magnetic flux density is 1
The effectiveness of the present invention cannot be exhibited unless it is 0 kG or more and the anisotropic rare earth magnetic powder is 40% by volume or more.

【0015】異方性希土類磁性粉末の例としては、異方
性Sm−Fe−N系磁性粉末、異方性Sm−Co系磁性
粉末、異方性Nd−Fe−B系磁性粉末、これらの構成
元素の一部を他の元素で置換した系の磁性粉末、又は前
記2種以上の系の磁性粉末が混合した系の異方性希土類
磁性粉末などであり、それぞれの用途、使用条件により
選択するべきである。また異方性希土類磁性粉末を40
体積%以上含有していれば、フェライトなどの他の磁性
粉末を混合することも可能である。
Examples of the anisotropic rare earth magnetic powder include anisotropic Sm-Fe-N magnetic powder, anisotropic Sm-Co magnetic powder, anisotropic Nd-Fe-B magnetic powder, and these. A magnetic powder of a system in which a part of the constituent elements is replaced with another element, or an anisotropic rare earth magnetic powder of a system in which two or more types of magnetic powders are mixed, and the like, which is selected according to each application and use condition. Should do. In addition, the anisotropic rare earth magnetic powder is 40
It is also possible to mix other magnetic powder such as ferrite as long as the content is at least volume%.

【0016】本発明では異方性希土類磁性粉末には異方
性Sm−Fe−N系磁性粉末を使用することが好まし
い。異方性Sm−Fe−N系磁性粉末は保磁力の発現機
構がニュークリエーション型であり、粒子径を2〜3μ
mの単磁区粒子径として使用される。このため成形加工
性に優れる。また特に原料粉末の粒度特性、製造条件な
どを精度良く制御し、粉砕を前提としない製造方法で作
製された異方性Sm−Fe−N系磁性粉末は、微小粒
子、粗大粒子を含まず、ほぼ球状である。このため磁場
配向性に優れ、本発明のように複雑な配向パターンであ
る極異方性の磁石成形体に好ましく使用できる。
In the present invention, anisotropic Sm-Fe-N magnetic powder is preferably used as the anisotropic rare earth magnetic powder. The anisotropic Sm-Fe-N magnetic powder has a coercive force development mechanism of a nucleation type and a particle size of 2 to 3 μm.
Used as a single domain particle size of m. Therefore, it is excellent in moldability. In addition, the anisotropic Sm-Fe-N-based magnetic powder produced by a production method in which the particle size characteristics of the raw material powder, the production conditions and the like are accurately controlled and which is not premised on crushing does not contain fine particles or coarse particles, It is almost spherical. Therefore, it is excellent in magnetic field orientation and can be preferably used for a polar anisotropic magnet molding having a complicated orientation pattern as in the present invention.

【0017】前記した磁性粉末を用いて可撓性を有する
磁石に成形するためには、常温で可撓性を有するバイン
ダが必要であり、いわゆるゴム又はエラストマーと呼ば
れるものが相当する。一部の例を挙げると、合成ゴムと
してはスチレン−ブタジエンゴム、ニトリルゴム、ブタ
ジエンゴム、シリコンゴム、ブチルゴム、ウレタンゴ
ム、フッ素ゴム等があり、熱可塑性樹脂としてはポリエ
チレン、ポリプロピレン、ポリブテン、塩素化ポリエチ
レン、ポリスチレンなどのポリオレフィン系樹脂、塩化
ビニル、ポリ酢酸ビニルなどのビニル樹脂、スチレン系
樹脂、ポリエステル、ポリアミド、ポリウレタン、エチ
レン酢酸ビニル共重合体などが使用可能である。
In order to form a flexible magnet by using the above-mentioned magnetic powder, a binder having flexibility at room temperature is necessary, and a so-called rubber or elastomer corresponds to the binder. As some examples, synthetic rubbers include styrene-butadiene rubber, nitrile rubber, butadiene rubber, silicone rubber, butyl rubber, urethane rubber, and fluororubber, and thermoplastic resins include polyethylene, polypropylene, polybutene, and chlorinated rubber. Polyolefin resin such as polyethylene and polystyrene, vinyl resin such as vinyl chloride and polyvinyl acetate, styrene resin, polyester, polyamide, polyurethane, ethylene vinyl acetate copolymer and the like can be used.

【0018】上記以外のバインダであっても、バインダ
自身が常温で可撓性を示し、かつ磁性粉末と混合、成形
した後にも破壊することなく変形可能な可撓性を保持す
ることのできる材料であれば使用可能であって、成形方
法、用途、使用条件に応じて選択すべきである。また2
種以上の樹脂の共重合体、ポリマーアロイ、混合物を必
要に応じて使用することもできる。
Even for the binders other than the above, the binder itself is flexible at room temperature and can retain the deformable flexibility without breaking even after being mixed and molded with the magnetic powder. Therefore, it should be selected according to the molding method, application and use conditions. Again 2
Copolymers, polymer alloys, and mixtures of one or more resins can also be used if necessary.

【0019】次に異方性希土類磁性粉末とバインダとを
混合するが、このときに成形性、安定性などを改良する
目的で、滑剤、可塑剤、酸化防止剤などの添加剤をあわ
せて混合することは、本発明の有効性を失わない範囲で
必要に応じてなすべきである。
Next, the anisotropic rare earth magnetic powder and the binder are mixed. At this time, additives such as a lubricant, a plasticizer and an antioxidant are also mixed for the purpose of improving moldability and stability. What should be done should be done as needed within the range in which the effectiveness of the present invention is not lost.

【0020】本発明における成形方法は押出成形又は射
出成形が適当である。押出成形の場合はダイスに極異方
化用の配向磁界発生磁石又はコイルを必要な磁極数分配
置する。使用する磁性粉末の種類、バインダの流動性に
応じて異方化に十分な磁界を与えるように設定するべき
である。成形形状が平板シート状であるので、磁石又は
コイルの配置が容易でダイス形状も単純であり、ダイス
と付属部品の原価を低くすることができるという利点も
ある。磁性粉末とバインダの混合物を混練機で混練しな
がら、ダイスに押し出してそのまま成形することも可能
であるし、混練後一度粒状のペレットにしておいてか
ら、改めて押出成形することも可能である。
The molding method in the present invention is preferably extrusion molding or injection molding. In the case of extrusion molding, the orientation magnetic field generating magnets or coils for making the poles anisotropic are arranged in the die by the required number of magnetic poles. Depending on the type of magnetic powder used and the fluidity of the binder, it should be set so as to give a sufficient magnetic field for anisotropic formation. Since the molding shape is a flat sheet shape, the magnets or coils can be easily arranged, the die shape is simple, and the cost of the die and the accessory parts can be reduced. The mixture of the magnetic powder and the binder may be extruded into a die and molded as it is while kneading the mixture with a kneader, or it may be extruded again after once kneading into a granular pellet.

【0021】射出成形の場合は、あらかじめ磁性粉末と
バインダと添加物を混合した後、混練機で混練して粒状
のペレットにする。その後、射出成形を行うが、金型内
に極異方化用の配向磁界発生磁石又はコイルを必要な磁
極数分配置する必要がある。磁石又はコイルは、使用す
る磁性粉末の種類、バインダの流動性に応じて異方化に
十分な磁界を与えるように設定するべきである。成形形
状が平板シート状であるので、磁石又はコイルの配置が
容易で、金型形状も単純であり、シート寸法、磁極数を
大きくとっておけば目的の仕様に応じて切断すること
で、寸法の異なる複数種類の環形状に共通な金型として
使用でき、金型と付属部品の原価を低くすることができ
るという利点もある。
In the case of injection molding, magnetic powder, binder and additives are mixed in advance and then kneaded by a kneading machine to form granular pellets. After that, injection molding is performed, but it is necessary to arrange orientation magnetic field generating magnets or coils for polar anisotropy in the mold by the required number of magnetic poles. The magnet or coil should be set so as to give a sufficient magnetic field for anisotropic formation depending on the type of magnetic powder used and the fluidity of the binder. Since the molding shape is a flat sheet, it is easy to arrange magnets or coils, the shape of the mold is simple, and if the sheet size and the number of magnetic poles are large, the size can be cut according to the intended specifications. There is also an advantage that it can be used as a mold common to a plurality of different types of ring shapes, and the cost of the mold and accessory parts can be reduced.

【0022】成形する平板状磁石成形体の厚さは、2m
mを超える厚さになると可撓性が低くなり、外径が50
mm以下の環形状にできなくなる。よって成形する平板
状磁石成形体の厚みは2mm以下であることが必要であ
る。
The thickness of the flat magnet molding to be molded is 2 m.
When the thickness exceeds m, the flexibility becomes low and the outer diameter is 50
It becomes impossible to form a ring shape of mm or less. Therefore, the thickness of the flat magnet molded body to be molded needs to be 2 mm or less.

【0023】成形した平板状磁石成形体は、目的の環の
寸法に応じて切断した後、丸めて環状の磁石にする。内
面着磁の場合は、環状又は筒状の容器を用意し、その内
側に異方化した磁極が内側になるように曲げて挿入する
ことで、環状の磁石にすることができる。容器の材質は
磁性、非磁性を問わずいずれでも使用できる。また必要
に応じて適当な接着剤や粘着剤などで磁石を固定するこ
とも可能である。
The formed flat magnet molding is cut according to the size of the target ring and then rolled into an annular magnet. In the case of magnetizing the inner surface, an annular or cylindrical container is prepared, and an annular magnet can be formed by bending and inserting the container so that the anisotropic magnetic pole is located inside. The container may be magnetic or non-magnetic. If necessary, the magnet can be fixed with an appropriate adhesive or pressure sensitive adhesive.

【0024】外面着磁の場合は、環状、円筒状又は柱状
の芯棒を用意し、その外側に異方化した磁極が外側にな
るように巻き付けて、環状、円筒状又は円柱状の磁石に
することができる。芯棒の材質は、磁性、非磁性を問わ
ずいずれでも使用できる。また適当な接着剤や粘着剤な
どで芯棒に固定することが必要である。
In the case of magnetizing the outer surface, an annular, cylindrical or columnar core rod is prepared, and the outer side of the core rod is wound so that the anisotropic magnetic pole is on the outer side to form an annular, cylindrical or columnar magnet. can do. The material of the core rod may be magnetic or non-magnetic. Further, it is necessary to fix it to the core rod with an appropriate adhesive or pressure sensitive adhesive.

【0025】磁石の着磁については、平板シートの状態
で着磁してから、環状にしてもよいし、また一度脱磁し
ておいて環状にしてから着磁することもできる。
Regarding the magnetization of the magnet, it may be magnetized in the state of a flat sheet and then ring-shaped, or it may be demagnetized once and then ring-shaped and then magnetized.

【0026】外径が50mmより大きい環形状磁石の場
合、技術的には可能であるが、従来技術によって最初か
ら環状に極異方化成形することが容易であるので本発明
の優位性は失われる。よって本発明は磁石の部分の外径
が50mm以下の環形状のモータ界磁用磁石に限る。
In the case of a ring-shaped magnet having an outer diameter of more than 50 mm, it is technically possible, but the superiority of the present invention is lost because it is easy to form anisotropy into a ring from the beginning by the conventional technique. Be seen. Therefore, the present invention is limited to a ring-shaped motor field magnet having an outer diameter of the magnet portion of 50 mm or less.

【0027】磁極数が2極の環状磁石の場合も同様に可
能であるが、従来の方法で容易に製造可能であり、本発
明の優位性はない。よって本発明は磁極数が4極以上の
多極モータ界磁用磁石に限られる。
The same can be applied to the case of an annular magnet having two magnetic poles, but it can be easily manufactured by a conventional method and the present invention is not superior. Therefore, the present invention is limited to a multi-pole motor field magnet having four or more magnetic poles.

【0028】以上開示した方法によって、表面磁束密度
が1650G以上ある環形状の永久磁石を得ることがで
き、永久磁石界磁型モータのロータ又はステータなどの
界磁子として使用することができる。
By the method disclosed above, a ring-shaped permanent magnet having a surface magnetic flux density of 1650 G or more can be obtained and can be used as a field element such as a rotor or a stator of a permanent magnet field type motor.

【0029】更に本発明によると、磁場成形し極異方性
に配向したときに表面磁束の分布が決まるため、着磁後
には正弦曲線に近い滑らかな曲線になることが図3に示
したように見出された。すなわち3次以上の高調波成分
の係数が1次成分の係数の0.25倍以下である表面磁
束密度曲線が、着磁面の周に沿った方向に得られること
により、モータのコギングトルクを小さくできる。
Further, according to the present invention, since the distribution of the surface magnetic flux is determined when the magnetic field is shaped and oriented in polar anisotropy, a smooth curve close to a sine curve is obtained after magnetization, as shown in FIG. Found in. That is, the cogging torque of the motor can be reduced by obtaining the surface magnetic flux density curve in which the coefficient of the third-order or higher harmonic component is 0.25 times or less the coefficient of the first-order component in the direction along the circumference of the magnetized surface. Can be made smaller.

【0030】[0030]

【実施例】以下、本発明の実施例について説明するが、
本発明は具体的実施例のみに限定されるものではない。 〔実施例1〕実施例で用いた異方性希土類磁性粉末はS
Fe17を主相とするSm−Fe−N系磁性粉
末であり、残留磁束密度が10.5kGである。この磁
性粉末の磁気特性は振動試料型磁気測定装置(VSM)
を用いて測定し、配向磁場を10kOe、着磁磁場を2
0kOe、磁性粉末の真密度を7.66g/cmとし
た。このSm−Fe−N系磁性粉末を42体積%とし、
58体積%をポリブチレンテレフタレート(PBT)エ
ラストマーに滑剤、酸化防止剤を加えたのものを用いて
常法に従い混合、混練してコンパウンドとした。このコ
ンパウンドをキャビの片側に永久磁石を配した極異方化
磁界中で平板シート形状に射出成形した。成形後の寸法
は長さ100mm、幅10mm、厚さ1.5mmであ
り、異方化の磁極は長さ方向に磁極間距離16mmの間
隔で配した。
EXAMPLES Examples of the present invention will be described below.
The present invention is not limited to the specific examples. Example 1 The anisotropic rare earth magnetic powder used in the example is S
It is an Sm-Fe-N-based magnetic powder having m 2 Fe 17 N 3 as a main phase, and has a residual magnetic flux density of 10.5 kG. The magnetic characteristics of this magnetic powder are the vibrating sample magnetometer (VSM).
The orientation magnetic field is 10 kOe and the magnetizing magnetic field is 2
The true density of the magnetic powder was 0 kOe and 7.66 g / cm 3 . 42% by volume of this Sm-Fe-N magnetic powder,
Using 58% by volume of polybutylene terephthalate (PBT) elastomer to which a lubricant and an antioxidant were added, they were mixed and kneaded according to a conventional method to obtain a compound. This compound was injection molded into a flat sheet shape in a polar anisotropic magnetic field in which a permanent magnet was arranged on one side of the cavity. The dimension after molding was 100 mm in length, 10 mm in width, and 1.5 mm in thickness, and the anisotropic magnetic poles were arranged at intervals of 16 mm between magnetic poles in the longitudinal direction.

【0031】得られた平板シート状成形物を長さ64m
m、幅5mmで、磁極が4極になるような位置で切断し
た。更に20kOeの磁場で4極の磁極を着磁して、平
板シート状可撓性磁石を得た。この磁石を内径が22m
mの環状の樹脂製容器の内面に磁極を内側に向けなが
ら、丸めて挿入して内面着磁の円環状磁石を作製した。
得られた円環状磁石内面の表面磁束密度を内周に沿って
ガウスメータで測定した結果、最大値は1732Gであ
った。
The obtained flat sheet-shaped molded product is 64 m in length.
It was cut at a position of m, width of 5 mm, and four magnetic poles. Further, a magnetic pole of 4 poles was magnetized with a magnetic field of 20 kOe to obtain a flat sheet flexible magnet. This magnet has an inner diameter of 22m
While the magnetic poles were directed inward, they were rolled into the inner surface of the annular resin container of m to produce an inner magnetized annular magnet.
The maximum value was 1732 G as a result of measuring the surface magnetic flux density of the inner surface of the obtained annular magnet along the inner circumference with a Gauss meter.

【0032】〔実施例2〕実施例1と同様にして平板シ
ート状成形物を作製した。次に平板シート状成形物を長
さ65mm、幅6mmで、磁極が4極になるような位置
で切断した。そして外径が19mmの円柱状の樹脂製芯
棒の外面に磁極を外側に向けながら巻き付けて、接着剤
で固定した。これを着磁磁場20kOeで4極の磁極を
着磁し、外面着磁の円環状磁石を作製した。得られた円
環状磁石外面の表面磁束密度を外周に沿ってガウスメー
タで測定した結果、最大値は1719Gであった。
Example 2 A flat sheet-like molded product was produced in the same manner as in Example 1. Next, the flat sheet-shaped molded product was cut at a position having a length of 65 mm and a width of 6 mm and having 4 magnetic poles. Then, a magnetic pole was wound around the outer surface of a cylindrical resin core rod having an outer diameter of 19 mm, and the magnetic pole was wound outward and fixed with an adhesive. Four magnetic poles were magnetized with a magnetizing magnetic field of 20 kOe to produce an outer magnetized annular magnet. The maximum value was 1719 G as a result of measuring the surface magnetic flux density of the outer surface of the obtained annular magnet along the outer circumference with a Gauss meter.

【0033】〔実施例3〕実施例1と同様にして平板シ
ート状成形物を作製した。次に平板シート状成形物を長
さ96mm、幅10mmで、磁極が6極になるような位
置で切断した。更に着磁磁場20kOeで6極の磁極を
着磁して平板シート状可撓性磁石を得た。この磁石を内
径が32mmの環状の樹脂製容器の内面に磁極を内側に
向けながら、丸めて挿入して内面着磁の円環状磁石を作
製した。得られた円環状磁石内面の表面磁束密度を内周
に沿ってガウスメータで測定した結果、最大値は172
8Gであった。
[Example 3] A flat sheet-like molded product was produced in the same manner as in Example 1. Next, the flat sheet-shaped molded product was cut at a position having a length of 96 mm and a width of 10 mm and having 6 magnetic poles. Further, a 6-pole magnetic pole was magnetized with a magnetizing magnetic field of 20 kOe to obtain a flat sheet flexible magnet. This magnet was rolled into the inner surface of an annular resin container having an inner diameter of 32 mm, with the magnetic poles facing inward, to produce an inner magnetized annular magnet. As a result of measuring the surface magnetic flux density of the inner surface of the obtained annular magnet along the inner circumference with a Gauss meter, the maximum value was 172
It was 8G.

【0034】実施例1〜3で得られた切断前の平板シー
ト状成形物、切断後の平板シート状成形物、円環状磁石
の概略図を図3〜6に示した。なお図3〜6は概略図で
あって成形体の厚さは実寸比よりも厚く示した。
3 to 6 are schematic views of the flat sheet-shaped molded product before cutting, the flat sheet-shaped molded product after cutting, and the annular magnet obtained in Examples 1 to 3. 3 to 6 are schematic views, and the thickness of the molded body is shown thicker than the actual size ratio.

【0035】〔比較例1〕従来技術に基づいて実施例1
と同寸法の等方性円環状磁石を作製した。なおNd
14Bを主相とする等方性Nd−Fe−B系の急冷薄
帯を粉砕して作製した等方性磁性粉末を用いた。磁性粉
末の磁気特性は無配向で真密度を7.60g/cm
した以外は実施例1と同様に振動試料型磁気測定装置
(VSM)で測定し、残留磁束密度が8.8kGであっ
た。この等方性希土類磁性粉末42体積%と、エポキシ
樹脂58体積%とを従来技術に従い、混合、圧縮成形し
た。成形体の形状は外径22mm、厚さ1.5mm、高
さ5mmの環形状である。この成形体の内周面に着磁磁
場20kOeで4極の磁極を着磁して円環状磁石を得
た。得られた円環状磁石内面の表面磁束密度を内周に沿
ってガウスメータで測定した結果、最大値は1067G
であった。
Comparative Example 1 Example 1 based on the prior art
An isotropic toroidal magnet having the same size as was produced. Nd 2 F
Using isotropic magnetic powder produced by pulverizing a quenched ribbon isotropic Nd-Fe-B system to the e 14 B as a main phase. The magnetic properties of the magnetic powder were measured by a vibrating sample magnetometer (VSM) in the same manner as in Example 1 except that the true density was 7.60 g / cm 3 and the residual magnetic flux density was 8.8 kG. It was 42% by volume of this isotropic rare earth magnetic powder and 58% by volume of an epoxy resin were mixed and compression molded according to the conventional technique. The shape of the molded body is an annular shape having an outer diameter of 22 mm, a thickness of 1.5 mm and a height of 5 mm. Four magnetic poles were magnetized on the inner peripheral surface of this molded body with a magnetizing magnetic field of 20 kOe to obtain an annular magnet. As a result of measuring the surface magnetic flux density of the inner surface of the obtained annular magnet with a Gauss meter along the inner circumference, the maximum value is 1067G.
Met.

【0036】〔比較例2〕従来技術を用いて実施例1と
同寸法のラジアル異方性円環状磁石を作製した。実施例
1で用いた異方性Sm−Fe−N系磁性粉末42体積%
と、滑剤、酸化防止剤とを加えたポリアミド樹脂58体
積%とを従来技術により混合、混練、磁場中射出成形し
た。成形体は寸法が外径22mm、厚さ1.5mm、高
さ5mmの環形状であり、磁性粉末を内周面から外周面
へ放射状にラジアル異方化配向させた。この成形体の内
周面に着磁磁場20kOeで4極の磁極を着磁し、円環
状磁石を得た。得られた円環状磁石内面の表面磁束密度
を内周に沿ってガウスメータで測定した結果、最大値は
1314Gであった。
[Comparative Example 2] A radial anisotropic annular magnet having the same dimensions as in Example 1 was produced by using the conventional technique. 42% by volume of anisotropic Sm—Fe—N magnetic powder used in Example 1
And 58% by volume of a polyamide resin containing a lubricant and an antioxidant were mixed, kneaded and injection-molded in a magnetic field by a conventional technique. The compact had a ring shape having an outer diameter of 22 mm, a thickness of 1.5 mm and a height of 5 mm, and magnetic powder was radially and anisotropically oriented from the inner peripheral surface to the outer peripheral surface. Four magnetic poles were magnetized on the inner peripheral surface of this molded body with a magnetizing magnetic field of 20 kOe to obtain an annular magnet. The maximum value was 1314 G as a result of measuring the surface magnetic flux density of the inner surface of the obtained annular magnet along the inner circumference with a Gauss meter.

【0037】以上実施例1における表面磁束密度は、従
来技術を用い比較例1,2により作製した同寸法の磁石
で得られる表面磁束密度よりも高く、本発明の有効性を
示している。また実施例1及び比較例2の磁石について
表面磁束密度の周方向での測定値を図7,8にグラフ化
した。それぞれの曲線を数値的にフーリエ展開し、磁極
に一致する基本波に対して3,5,7,9倍の周期をも
つ高調波の係数を算出した。実施例1を式(III)、比
較例2を式(IV)に示した。
The surface magnetic flux density in Example 1 is higher than the surface magnetic flux density obtained by the magnets of the same size prepared in Comparative Examples 1 and 2 by using the conventional technique, which shows the effectiveness of the present invention. Further, the measured values of the surface magnetic flux density in the circumferential direction of the magnets of Example 1 and Comparative Example 2 are graphed in FIGS. Each curve was numerically Fourier expanded to calculate the coefficient of a harmonic having a period of 3, 5, 7, 9 times the fundamental wave that coincides with the magnetic pole. Example 1 is shown in formula (III), and Comparative example 2 is shown in formula (IV).

【0038】[0038]

【数6】 [Equation 6]

【0039】[0039]

【数7】 [Equation 7]

【0040】なお磁石の磁極は4極であるから、θ=2
×α(αは環における角度を示し、0〜360°であ
る。)とした。図7,8から分かるように、従来技術に
よる比較例2では磁束密度の変化が急な矩形波になって
おり、モータの界磁子にした場合コギングトルクが大き
くなるが、本発明の実施例1では滑らかな曲線になって
おりコギングトルクは小さくなる。これを3次以上の高
調波成分の係数で評価すると比較例2の式(IV)では3
次の係数が0.30と高くなっているのに対して、実施
例1の式(III)ではすべて0.25以下であり、本発
明の特徴を示している。
Since the magnet has four magnetic poles, θ = 2
X α (α represents an angle in the ring and is 0 to 360 °). As can be seen from FIGS. 7 and 8, in Comparative Example 2 according to the prior art, a rectangular wave in which the magnetic flux density changes abruptly and the cogging torque becomes large when the field element of the motor is used. In No. 1, the curve is smooth and the cogging torque is small. When this is evaluated by the coefficient of the harmonic component of the third or higher order, it is 3 in the formula (IV) of Comparative Example 2.
While the following coefficients are as high as 0.30, all of the expressions (III) in Example 1 are 0.25 or less, which is a characteristic of the present invention.

【0041】[0041]

【発明の効果】以上説明したように、本発明によって従
来工業的に実用できなかった小径で表面磁束密度の高い
モータ界磁用磁石を得ることができる。同時に本発明に
より、同一の金型又はダイスを使用して、着磁面,外
径、磁極数の異なる複数の形状の磁石を安価に製造する
ことができる。しかも得られるモータ界磁用磁石はコギ
ングトルクを低くすることが可能である。
As described above, according to the present invention, it is possible to obtain a magnet for a motor field, which has a small diameter and a high surface magnetic flux density, which could not be industrially used conventionally. At the same time, according to the present invention, it is possible to inexpensively manufacture a plurality of magnets having different magnetizing surfaces, outer diameters, and magnetic pole numbers by using the same mold or die. Moreover, the obtained motor field magnet can reduce the cogging torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】極異方性磁石の異方化の方向を示す模式図。FIG. 1 is a schematic diagram showing an anisotropic direction of a polar anisotropic magnet.

【図2】ラジアル異方性磁石の異方化の方向を示す模式
図。
FIG. 2 is a schematic diagram showing an anisotropic direction of a radial anisotropic magnet.

【図3】実施例1〜3で得られた切断前の平板シート状
成形物を示す概略図。
FIG. 3 is a schematic view showing a flat sheet-shaped molded product obtained in Examples 1 to 3 before cutting.

【図4】実施例1で得られた切断後の平板シート状成形
物(a)及び円環状磁石(b)を示す概略図。
FIG. 4 is a schematic view showing a flat sheet-shaped molded product (a) and an annular magnet (b) after cutting obtained in Example 1.

【図5】実施例2で得られた切断後の平板シート状成形
物(a)及び円環状磁石(b)を示す概略図。
FIG. 5 is a schematic view showing a flat sheet-shaped molded product (a) and an annular magnet (b) after cutting obtained in Example 2.

【図6】実施例3で得られた切断後の平板シート状成形
物(a)及び円環状磁石(b)を示す概略図。
FIG. 6 is a schematic view showing a flat sheet-shaped molded product (a) and an annular magnet (b) after cutting obtained in Example 3.

【図7】実施例1で得られた磁石成形体の表面磁束密度
曲線を示す図。
FIG. 7 is a diagram showing a surface magnetic flux density curve of the magnet molding obtained in Example 1.

【図8】比較例2で得られた磁石成形体の表面磁束密度
曲線を示す図。
FIG. 8 is a diagram showing a surface magnetic flux density curve of a magnet molded body obtained in Comparative Example 2.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁性粉末と可撓性を有するバインダとから
なる2つの主面を有する平板状磁石成形体を、第1の主
面にのみ少なくとも2つ以上の磁極がストライプ状に発
生するように該磁性粉末を配向し、該ストライプ状の磁
極が円環の側面に等間隔に配置するように該平板状磁石
成形体を環状に曲げてなる極着磁環状磁石において、残
留磁束密度が10kG以上の異方性希土類磁性粉末を4
0体積%以上含有し、かつ該平板状磁石成形体の厚さが
2mm以下であり、かつ該環状磁石の外径が50mm以
下であり、かつ4極以上の磁極を有することを特徴とす
るモータ界磁用磁石。
1. A flat magnet molding having two main surfaces composed of a magnetic powder and a flexible binder so that at least two magnetic poles are formed in stripes only on the first main surface. In the pole magnetized annular magnet obtained by orienting the magnetic powder in a circular shape and bending the flat magnet molded body in an annular shape so that the striped magnetic poles are arranged at equal intervals on the side surface of the ring, the residual magnetic flux density is 10 kG. 4 of the above anisotropic rare earth magnetic powder
A motor containing 0% by volume or more, the thickness of the flat magnet molded body being 2 mm or less, the outer diameter of the annular magnet being 50 mm or less, and having 4 or more magnetic poles. Field magnet.
【請求項2】表面磁束密度曲線を以下の式(I)で表さ
れるフーリエ級数に展開して得られる3次以上の高調波
成分の係数b2k+1(kは1以上の自然数を示す。)
及び1次成分の係数bは、以下の式(II)を満たすこ
とを特徴とする請求項1に記載のモータ界磁用磁石。 【数1】 (式中のf(θ)は該モータ界磁用磁石の表面磁束密度
曲線を示す。) 【数2】
2. A coefficient b 2k + 1 of a harmonic component of a third order or higher obtained by expanding a surface magnetic flux density curve into a Fourier series represented by the following formula (I) (k represents a natural number of 1 or higher).
And the coefficient b 1 of the first-order component satisfies the following formula (II): The magnet for motor field according to claim 1, wherein [Equation 1] (F (θ) in the equation represents the surface magnetic flux density curve of the motor field magnet.)
【請求項3】表面磁束密度の最大値が1650G以上で
あることを特徴とする請求項1又は2に記載のモータ界
磁用磁石。
3. The magnet for motor field according to claim 1, wherein the maximum value of the surface magnetic flux density is 1650 G or more.
【請求項4】該異方性希土類磁性粉末は異方性Sm−F
e−N系磁性粉末であることを特徴とする請求項1及至
3に記載のモータ界磁用磁石。
4. The anisotropic rare earth magnetic powder is anisotropic Sm-F.
The motor field magnet according to any one of claims 1 to 3, wherein the magnet is an e-N magnetic powder.
【請求項5】異方性希土類磁性粉末と可撓性を有するバ
インダとからなる2つの主面を有する平板状磁石成形体
を、第1の主面にのみ少なくとも2つ以上の磁極がスト
ライプ状に発生するように磁性粉末を配向する工程と、
該ストライプ状の磁極が円環の側面に等間隔に配置する
ように該平板状磁石成形体を環状に曲げる工程とを有す
る極着磁環状磁石の製造方法において、残留磁束密度が
10kG以上の異方性希土類磁性粉末を40体積%以上
と可撓性を有するバインダとを混合し、次に極異方性に
磁場成形して第1の主面にのみ4極以上の磁極を有し厚
さが2mm以下の2つの主面を有する平板状磁石成形体
とし、該平板状磁石成形体を環状に曲げて外径が50m
m以下の極着磁環状磁石とすることを特徴とする請求項
1及至4に記載のモータ界磁用磁石の製造方法。
5. A flat magnet molding having two principal surfaces composed of anisotropic rare earth magnetic powder and a flexible binder, wherein at least two magnetic poles are striped only on the first principal surface. To orient the magnetic powder so that
In a method of manufacturing a pole-magnetized annular magnet, which comprises a step of bending the flat magnet molded body in an annular shape so that the striped magnetic poles are arranged at equal intervals on the side surface of the ring, a residual magnetic flux density of 10 kG or more is different. The anisotropic rare-earth magnetic powder is mixed with 40% by volume or more and a flexible binder, and then magnetically molded into polar anisotropy to have a magnetic pole of 4 poles or more only on the first main surface and a thickness. Is a flat magnet molding having two main surfaces of 2 mm or less, and the flat magnet molding is bent into an annular shape to have an outer diameter of 50 m.
The method for producing a motor field magnet according to any one of claims 1 to 4, wherein the pole magnetized annular magnet is m or less.
JP2001280273A 2001-09-14 2001-09-14 Motor field magnet and its manufacturing method Pending JP2003088057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280273A JP2003088057A (en) 2001-09-14 2001-09-14 Motor field magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280273A JP2003088057A (en) 2001-09-14 2001-09-14 Motor field magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003088057A true JP2003088057A (en) 2003-03-20

Family

ID=19104302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280273A Pending JP2003088057A (en) 2001-09-14 2001-09-14 Motor field magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003088057A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211802A (en) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd Method for manufacturing self-organization annular anisotropic rare earth bond magnet motor
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it
JP2014027030A (en) * 2012-07-25 2014-02-06 Nichia Chem Ind Ltd Extrusion molding device and extrusion molding method of bond magnet
JP2019530421A (en) * 2016-10-06 2019-10-17 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Permanent magnet motor having segment magnet and segment magnet
CN113299477A (en) * 2021-07-01 2021-08-24 马桂英 Magnet and manufacturing process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250460A (en) * 1994-03-11 1995-09-26 C I Kasei Co Ltd Manufacture of dice for orienting magnetic field and flexible magnet
JPH11335702A (en) * 1998-05-28 1999-12-07 Nichia Chem Ind Ltd Magnetic powder
JP2002199668A (en) * 2000-12-27 2002-07-12 Nichia Chem Ind Ltd Manufacturing method of cylindrical-shaped magnet for polar magnetizing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250460A (en) * 1994-03-11 1995-09-26 C I Kasei Co Ltd Manufacture of dice for orienting magnetic field and flexible magnet
JPH11335702A (en) * 1998-05-28 1999-12-07 Nichia Chem Ind Ltd Magnetic powder
JP2002199668A (en) * 2000-12-27 2002-07-12 Nichia Chem Ind Ltd Manufacturing method of cylindrical-shaped magnet for polar magnetizing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211802A (en) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd Method for manufacturing self-organization annular anisotropic rare earth bond magnet motor
JP4577026B2 (en) * 2005-01-27 2010-11-10 パナソニック株式会社 Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it
JP2014027030A (en) * 2012-07-25 2014-02-06 Nichia Chem Ind Ltd Extrusion molding device and extrusion molding method of bond magnet
JP2019530421A (en) * 2016-10-06 2019-10-17 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Permanent magnet motor having segment magnet and segment magnet
CN113299477A (en) * 2021-07-01 2021-08-24 马桂英 Magnet and manufacturing process thereof

Similar Documents

Publication Publication Date Title
US5416457A (en) Lateral orientation anisotropic magnet
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2003088057A (en) Motor field magnet and its manufacturing method
US6190573B1 (en) Extrusion-molded magnetic body comprising samarium-iron-nitrogen system magnetic particles
JP2000060080A (en) Permanent-magnet motor and other device applied thereon
JP3007491B2 (en) Side-oriented anisotropic magnet
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JPS61237405A (en) Multipolarized magnet
JPS6134249B2 (en)
JPS6349889B2 (en)
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JP2516176B2 (en) Method for manufacturing resin-bonded permanent magnet
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPH05299221A (en) Manufacture of rare earth-iron-nitrogen bonded magnet and manufacture thereof
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JP2004087644A (en) Magnet roller
JP2003257766A (en) Resin magnet and manufacturing method therefor
JP2003151825A (en) Magnet roller
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JPS62229817A (en) Manufacture of polar anisotropic long molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301