JPH06244047A - Manufacture of resin bonded permanent magnet - Google Patents

Manufacture of resin bonded permanent magnet

Info

Publication number
JPH06244047A
JPH06244047A JP5328830A JP32883093A JPH06244047A JP H06244047 A JPH06244047 A JP H06244047A JP 5328830 A JP5328830 A JP 5328830A JP 32883093 A JP32883093 A JP 32883093A JP H06244047 A JPH06244047 A JP H06244047A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
resin
powder
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5328830A
Other languages
Japanese (ja)
Other versions
JP2516176B2 (en
Inventor
Ryuichi Ozaki
隆一 尾崎
Itaru Okonogi
格 小此木
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5328830A priority Critical patent/JP2516176B2/en
Publication of JPH06244047A publication Critical patent/JPH06244047A/en
Application granted granted Critical
Publication of JP2516176B2 publication Critical patent/JP2516176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide sufficient orientation in relatively low magnetic fields by magnetizing a magnet powder in a magnetic field higher than the molding magnetic field, and molding a mixture of the magnet powder and thermoplastic resin by injection while applying the magnetic field. CONSTITUTION:A magnet powder is magnetized in a magnetic field higher than the molding magnetic field, and a mixture of the magnet powder and thermoplastic resin is molded by injection while applying the magnetic filed, to obtain a resin bonded permanent magnet. The magnet powder uses at least one kind of hard ferrite and rare-earth cobalt magnet powders. In this method of manufacture the quantity of magnet powder should be 50-96wt.%; the mixture should be molded by injection while applying the magnetic field within the temperature range of 180-350 deg.C; and the magnetization magnetic field should be 150Koe or above. This achieves sufficient orientation in relatively low magnetic fields, and improves the magnetic capability and temperature characteristic of resin bonded magnets without need for varying their component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の概要】本発明は形成磁場より高い磁場で着磁さ
れた磁石粉末と樹脂からなる混合物を使用した、樹脂結
合型磁石の製造方法に関するものである。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a resin-bonded magnet, which uses a mixture of a magnet powder magnetized at a magnetic field higher than the forming magnetic field and a resin.

【0002】[0002]

【発明が解決しようとする課題】樹脂磁石は焼結磁石に
比べて (1)形成品の寸法精度が良い。 (2)強度が向上する。 (3)磁気性能が安定する (4)キズ・ワレの発生が少ない。 (5)薄肉・円筒形などの複雑形状が可能。 (6)作業性がよい。 などの利点があり、現在非常に注目されている。
The resin magnet has a better dimensional accuracy of the formed product than the sintered magnet. (2) Strength is improved. (3) Stable magnetic performance (4) Less scratches and cracks. (5) Complex shapes such as thin and cylindrical shapes are possible. (6) Good workability. There are advantages such as these, and they are currently receiving much attention.

【0003】しかし、樹脂磁石の磁気特性は焼結磁石の
それと比べて、非磁性体である樹脂を含んでいるため大
巾に低下するという欠点があった。また、一般に磁場成
形時に充分な配向を行なわせるためには、磁石の保磁力
(以下iHCと記す)の3〜5倍程度の磁場が必要とい
われている。しかし、樹脂結合型磁石は焼結磁石より大
きなiHcをもっているため、配向を充分に行うには、
希土類コバルト系で30〜50KOeの磁場が必要にな
る。現在一般に使用されている成形機では、これだけの
磁場を得ることは困難であり、このためこれまでは充分
に配向させない状態で成形を行ってきた。
However, the magnetic characteristics of the resin magnet have a drawback that they are significantly lower than those of the sintered magnet because they contain a non-magnetic resin. Further, it is generally said that a magnetic field of about 3 to 5 times the coercive force of the magnet (hereinafter referred to as iHC) is required to achieve sufficient orientation during magnetic field molding. However, since the resin-bonded magnet has a larger iHc than the sintered magnet, in order to perform sufficient orientation,
A rare earth cobalt system requires a magnetic field of 30 to 50 KOe. It is difficult to obtain such a magnetic field with a molding machine which is generally used at present, and therefore, until now, molding has been carried out in a state where it is not sufficiently oriented.

【0004】これらの問題に対し種々の研究を重ねた結
果、磁石粉末をあらかじめ成形磁場より高い磁場で着磁
しておけば、比較的低い配向磁場でも充分に配向させる
ことが可能となった。これにより従来の射出成形機を用
いても充分な配向が得られるようになった。また磁石粉
末の量および射出成形温度を規定することによりさらに
高性能な樹脂結合型磁石の製造が可能となった。
As a result of various studies on these problems, it has become possible to sufficiently orient the magnet powder even with a relatively low orientation magnetic field by magnetizing the magnet powder in advance with a magnetic field higher than the shaping magnetic field. As a result, sufficient orientation can be obtained even by using a conventional injection molding machine. Further, by defining the amount of magnet powder and the injection molding temperature, it becomes possible to manufacture a resin-bonded magnet with higher performance.

【0005】[0005]

【課題を解決するための手段】本発明の樹脂結合型永久
磁石の製造方法は、磁石を初めに成形磁場より高い磁場
で着磁して、この磁石粉末と熱可塑性樹脂からなる混合
物を磁界をを印加しながら射出成形することを特徴とす
る。
According to the method for producing a resin-bonded permanent magnet of the present invention, the magnet is first magnetized in a magnetic field higher than the molding magnetic field, and a mixture of the magnet powder and the thermoplastic resin is applied to the magnetic field. It is characterized by performing injection molding while applying

【0006】以下、磁石粉末をあらかじめ着磁、その後
成形する成形法「粉末着磁成形法」と称す。
Hereinafter, a molding method in which magnet powder is magnetized in advance and then magnetized is referred to as "powder magnetizing molding method".

【0007】次に実施例により本発明を詳細に説明す
る。
Next, the present invention will be described in detail with reference to examples.

【0008】[0008]

【実施例】【Example】

実施例1 フェライト系磁石粉末にストロンチウムフェライト(以
下Sr・フェライトと略)を、希土類コバルト磁石粉末
にSmSo5系およびSm2Co17系を用いたとき、30
KOeで粉末着磁を行ったものと、行わなかったものと
について磁気性能を比較した結果を表1に示す。このと
き磁石粉末の量は88Wt%、射出成形温度は290℃
とする。
Example 1 When strontium ferrite (hereinafter abbreviated as Sr. ferrite) was used for the ferrite magnet powder and SmSo 5 system and Sm 2 Co 17 system were used for the rare earth cobalt magnet powder, 30
Table 1 shows the results of comparing the magnetic performances of the powders magnetized with KOe and those not powdered. At this time, the amount of magnet powder is 88 Wt% and the injection molding temperature is 290 ° C.
And

【0009】またこのときの成形磁場は14KOeであ
る。表1より粉末着磁を行った磁石の方が、粉末着磁を
行わなかった磁石より性能がよいことが判る。これは粉
末着磁により配向度が増加した結果残留磁束密度(以下
Brと略)が増加し、これによって保磁力(以下bHc
と略)も増加、その結果最大エネルギー積(以下(B
H)maxと略)も向上したためである。またSr−フ
ェライト系およびSr−フェライト+希土類コバルト系
磁石に比べて希土類コバルト系磁石は粉末着磁の効果が
大きいことが判る。これは前述の様に、iHcが大きい
ために従来の製造法では引き出せなかった性能が粉末着
磁成形法によって引き出されたと考えられ、本発明によ
り樹脂結合型磁石の欠点であった磁気性能の低さは大き
く改善されたと言える。
The forming magnetic field at this time is 14 KOe. It can be seen from Table 1 that the powder magnetized magnet has better performance than the magnet not powder magnetized. This is because the residual magnetic flux density (hereinafter abbreviated as Br) increases as a result of an increase in the degree of orientation due to powder magnetization, which causes a coercive force (hereinafter bHc).
Also increases, and as a result, the maximum energy product (hereinafter (B
This is because H) (abbreviated as max) is also improved. It is also understood that the rare earth cobalt-based magnet has a greater effect of powder magnetization than the Sr-ferrite-based magnet and the Sr-ferrite + rare-earth cobalt-based magnet. As described above, it is considered that the performance that could not be obtained by the conventional manufacturing method due to the large iHc was brought out by the powder magnetizing molding method. According to the present invention, the magnetic performance was low, which was a drawback of the resin-bonded magnet. It can be said that it has been greatly improved.

【0010】[0010]

【表1】 [Table 1]

【0011】実施例2 粉末着磁成形法により磁石の温度特性も向上している。
これは配向性が向上したために反磁場の影響が少なくな
り、その結果高温での磁気性能があまり低下しなくなっ
た事によるものである。
Example 2 The temperature characteristic of the magnet is also improved by the powder magnetizing molding method.
This is because the influence of the demagnetizing field was reduced due to the improved orientation, and as a result, the magnetic performance at high temperature did not deteriorate so much.

【0012】表2に150℃、1000時間における不
可逆減磁率を示す。磁石粉末には、Sm(Co0.672
0.08 Fe0.22 Zr0.0288.2 およびSm(Co
0.614Cu0.07 Fe0.3 Zr0.0167.8 の組成からな
る粉末を用いた。この表より粉末着磁成形法は、従来の
成形法に比べて磁石の不可逆減磁率を約4%向上させて
いるのが判る。
Table 2 shows the irreversible demagnetization rate at 150 ° C. for 1000 hours. Sm (Co 0.672 C
u 0.08 Fe 0.22 Zr 0.028 ) 8.2 and Sm (Co
A powder having a composition of 0.614 Cu 0.07 Fe 0.3 Zr 0.016 7.8 was used. From this table, it is understood that the powder magnetizing molding method improves the irreversible demagnetization rate of the magnet by about 4% as compared with the conventional molding method.

【0013】[0013]

【表2】 [Table 2]

【0014】表2は磁石を150℃の恒温槽に1000
時間放置した後、図1に示した装置によって全磁束を測
定し熱減磁率を求めたものである。測定用磁石サンプル
はφ10×7mmの円柱形状をしており、異法性方向は
7mm長軸方向である。試験は次の通り行った。図1中
の試料1の磁石は、3のプラスチックで出来た測定台に
セットされ、4の円筒の先端につけられたコイル2を上
へ引き上げることにより得られた信号を、5のデジタル
磁束計で読む。
Table 2 shows a magnet in a constant temperature bath of 150 ° C.
After standing for a period of time, the total magnetic flux was measured by the device shown in FIG. 1 to obtain the thermal demagnetization rate. The measurement magnet sample has a cylindrical shape of φ10 × 7 mm, and the anisotropic direction is 7 mm in the major axis direction. The test was conducted as follows. The magnet of sample 1 in FIG. 1 was set on the measuring table made of plastic 3 and the signal obtained by pulling up the coil 2 attached to the tip of the cylinder 4 was measured by the digital magnetometer 5 Read.

【0015】[0015]

【発明の効果】以上の説明の通り、本発明は樹脂結合型
磁石の成分を変える事なく、その磁気性能および温度特
性を向上させる製造方法であり、樹脂結合型磁石が注目
されている現在その工業的意義は大きいと言える。
As described above, the present invention is a manufacturing method for improving the magnetic performance and temperature characteristics without changing the components of the resin-bonded magnet, and the resin-bonded magnet is currently attracting attention. It can be said that it has great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた熱減磁試験における磁束検出装
置を示す図。
FIG. 1 is a diagram showing a magnetic flux detection device in a thermal demagnetization test used in the present invention.

【符号の説明】[Explanation of symbols]

1・・磁石 2・・コイル 3・・測定用ケース(A) 4・・測定用ケース(B) 5・・デジタル磁束計 1 ... Magnet 2 ... Coil 3 ... Measurement case (A) 4 ... Measurement case (B) 5 ... Digital magnetometer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月21日[Submission date] January 21, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は形成磁場より高い磁場で
着磁された磁石粉末と樹脂からなる混合物を使用した、
樹脂結合型磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention uses a mixture of magnet powder and resin magnetized in a magnetic field higher than the forming magnetic field.
The present invention relates to a method for manufacturing a resin-bonded magnet.

【0002】[0002]

【従来の技術】従来の樹脂結合磁石の製造方法では、磁
場配向の時にそのまま磁石粉末を着磁していたため、配
向を十分に行うにはかなり高い磁場が必要であった。
2. Description of the Related Art In the conventional method for manufacturing a resin-bonded magnet, a magnet is used.
Since the magnet powder was magnetized as it was in the field orientation,
A fairly high magnetic field was required to achieve sufficient orientation.

【0003】[0003]

【発明が解決しようとする課題】樹脂磁石は焼結磁石に
比べて (1)形成品の寸法精度が良い。 (2)強度が向上する。 (3)磁気性能が安定する (4)キズ・ワレの発生が少ない。 (5)薄肉・円筒形などの複雑形状が可能。 (6)作業性がよい。 などの利点があり、現在非常に注目されている。
The resin magnet has a better dimensional accuracy of the formed product than the sintered magnet. (2) Strength is improved. (3) Stable magnetic performance (4) Less scratches and cracks. (5) Complex shapes such as thin and cylindrical shapes are possible. (6) Good workability. There are advantages such as these, and they are currently receiving much attention.

【0004】しかし、樹脂磁石の磁気特性は焼結磁石の
それと比べて、非磁性体である樹脂を含んでいるため大
巾に低下するという欠点があった。また、一般に磁場成
形時に充分な配向を行なわせるためには、磁石の保磁力
(以下iHCと記す)の3〜5倍程度の磁場が必要とい
われている。しかし、樹脂結合型磁石は焼結磁石より大
きなiHcをもっているため、配向を充分に行うには、
希土類コバルト系で30〜50KOeの磁場が必要にな
る。現在一般に使用されている成形機では、これだけの
磁場を得ることは困難であり、このためこれまでは充分
に配向させない状態で成形を行ってきた。
However, the magnetic characteristics of the resin magnet have a drawback that they are greatly reduced as compared with those of the sintered magnet because they contain a non-magnetic resin. Further, it is generally said that a magnetic field of about 3 to 5 times the coercive force of the magnet (hereinafter referred to as iHC) is required to achieve sufficient orientation during magnetic field molding. However, since the resin-bonded magnet has a larger iHc than the sintered magnet, in order to perform sufficient orientation,
A rare earth cobalt system requires a magnetic field of 30 to 50 KOe. It is difficult to obtain such a magnetic field with a molding machine which is generally used at present, and therefore, until now, molding has been carried out in a state where it is not sufficiently oriented.

【0005】これらの問題に対し種々の研究を重ねた結
果、磁石粉末をあらかじめ成形磁場より高い磁場で着磁
しておけば、比較的低い配向磁場でも充分に配向させる
ことが可能となった。これにより従来の射出成形機を用
いても充分な配向が得られるようになった。また磁石粉
末の量および射出成形温度を規定することによりさらに
高性能な樹脂結合型磁石の製造が可能となった。本発明
は、比較的低い磁場でも十分に配向させ高性能な樹脂結
合型磁石を得ることを目的とする。
As a result of various studies on these problems, it has become possible to sufficiently orient the magnet powder even with a relatively low orientation magnetic field by magnetizing the magnet powder in advance with a magnetic field higher than the shaping magnetic field. As a result, sufficient orientation can be obtained even by using a conventional injection molding machine. Further, by defining the amount of magnet powder and the injection molding temperature, it becomes possible to manufacture a resin-bonded magnet with higher performance. The present invention
Is a high-performance resin binder that is sufficiently oriented even in a relatively low magnetic field.
The purpose is to obtain a compound magnet.

【0006】[0006]

【課題を解決するための手段】本発明の樹脂結合型永久
磁石の製造方法は、磁石を初めに成形磁場より高い磁場
で着磁して、この磁石粉末と熱可塑性樹脂からなる混合
物を磁界をを印加しながら射出成形することを特徴とす
る。
In the method for producing a resin-bonded permanent magnet according to the present invention, a magnet is first magnetized in a magnetic field higher than the molding magnetic field, and a mixture of the magnet powder and a thermoplastic resin is subjected to a magnetic field. It is characterized by performing injection molding while applying

【0007】以下、磁石粉末をあらかじめ着磁、その後
成形する成形法「粉末着磁成形法」と称す。
Hereinafter, a molding method of magnetizing the magnet powder in advance and molding it will be referred to as a "powder magnetizing molding method".

【0008】次に実施例により本発明を詳細に説明す
る。
Next, the present invention will be described in detail with reference to examples.

【0009】[0009]

【実施例】 実施例1 フェライト系磁石粉末にストロンチウムフエライト(以
下Sr・フェライトと略)を、希土類コバルト磁石粉末
にSmSo系およびSmCo17系を用いたとき、
30KOeで粉末着磁を行ったものと、行わなかったも
のとについて磁気性能を比較した結果を表1に示す。こ
のとき磁石粉末の量は88Wt%、射出成形温度は29
0℃とする。
Example 1 When strontium ferrite (hereinafter abbreviated as Sr. ferrite) was used for the ferrite magnet powder and SmSo 5 system and Sm 2 Co 17 system were used for the rare earth cobalt magnet powder,
Table 1 shows the results of comparing the magnetic performances of the powder magnetized with 30 KOe and the powder magnetized without. At this time, the amount of magnet powder is 88 Wt% and the injection molding temperature is 29
Set to 0 ° C.

【0010】またこのときの成形磁場は14KOeであ
る。表1より粉末着磁を行った磁石の方が、粉末着磁を
行わなかった磁石より性能がよいことが判る。これは粉
末着磁により配向度が増加した結果残留磁束密度(以下
Brと略)が増加し、これによって保磁力(以下bHc
と略)も増加、その結果最大エネルギー積(以下(B
H)maxと略)も向上したためである。またSr−フ
ェライト系およびSr−フェライト+希土類コバルト系
磁石に比べて希土類コバルト系磁石は粉末着磁の効果が
大きいことが判る。これは前述の様に、iHcが大きい
ために従来の製造法では引き出せなかった性能が粉末着
磁成形法によって引き出されたと考えられ、本発明によ
り樹脂結合型磁石の欠点であった磁気性能の低さは大き
く改善されたと言える。
The forming magnetic field at this time is 14 KOe. It can be seen from Table 1 that the powder magnetized magnet has better performance than the magnet not powder magnetized. This is because the residual magnetic flux density (hereinafter abbreviated as Br) increases as a result of an increase in the degree of orientation due to powder magnetization, which causes a coercive force (hereinafter bHc).
Also increases, and as a result, the maximum energy product (hereinafter (B
This is because H) (abbreviated as max) is also improved. It is also understood that the rare earth cobalt-based magnet has a greater effect of powder magnetization than the Sr-ferrite-based magnet and the Sr-ferrite + rare-earth cobalt-based magnet. As described above, it is considered that the performance that could not be obtained by the conventional manufacturing method due to the large iHc was brought out by the powder magnetizing molding method. According to the present invention, the magnetic performance was low, which was a drawback of the resin-bonded magnet. It can be said that it has been greatly improved.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 粉末着磁成形法により磁石の温度特性も向上している。
これは配向性が向上したために反磁場の影響が少なくな
り、その結果高温での磁気性能があまり低下しなくなっ
た事によるものである。
Example 2 The temperature characteristic of the magnet is also improved by the powder magnetizing molding method.
This is because the influence of the demagnetizing field was reduced due to the improved orientation, and as a result, the magnetic performance at high temperature did not deteriorate so much.

【0013】表2に150℃、1000時間における不
可逆減磁率を示す。磁石粉末には、Sm(Co
0.672Cu0.08Fe0.22Zr0.028
8.2およびSm(Co0.614Cu0.07Fe
0.3Zr0.0167.8の組成からなる粉末を用
いた。この表より粉末着磁成形法は、従来の成形法に比
べて磁石の不可逆減磁率を約4%向上させているのが判
る。
Table 2 shows the irreversible demagnetization ratio at 150 ° C. for 1000 hours. Sm (Co
0.672 Cu 0.08 Fe 0.22 Zr 0.028 )
8.2 and Sm (Co 0.614 Cu 0.07 Fe
A powder having a composition of 0.3 Zr 0.016 ) 7.8 was used. From this table, it is understood that the powder magnetizing molding method improves the irreversible demagnetization rate of the magnet by about 4% as compared with the conventional molding method.

【0014】[0014]

【表2】 [Table 2]

【0015】表2は磁石を150℃の恒温槽に1000
時間放置した後、図1に示した装置によって全磁束を測
定し熱減磁率を求めたものである。測定用磁石サンプル
はφ10×7mmの円柱形状をしており、異法性方向は
7mm長軸方向である。試験は次の通り行った。図1中
の試料1の磁石は、3のプラスチックで出来た測定台に
セットされ、4の円筒の先端につけられたコイル2を上
へ引き上げることにより得られた信号を、5のデジタル
磁東計で読む。
Table 2 shows a magnet in a thermostatic chamber at 150 ° C.
After standing for a period of time, the total magnetic flux was measured by the device shown in FIG. 1 to obtain the thermal demagnetization rate. The measurement magnet sample has a cylindrical shape of φ10 × 7 mm, and the anisotropic direction is 7 mm in the major axis direction. The test was conducted as follows. The magnet of sample 1 in FIG. 1 is set on the measuring table made of plastic 3 and the signal obtained by pulling up the coil 2 attached to the tip of the cylinder 4 is digital magnetometer 5 Read on.

【0016】[0016]

【発明の効果】以上の説明の通り、本発明は樹脂結合型
磁石の成分を変える事なく、その磁気性能および温度特
性を向上させる製造方法であり、樹脂結合型磁石が注目
されている現在その工業的意義は大きいと言える。
As described above, the present invention is a manufacturing method for improving the magnetic performance and temperature characteristics without changing the components of the resin-bonded magnet, and the resin-bonded magnet is currently attracting attention. It can be said that it has great industrial significance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁石粉末を初めに成形磁場より高い磁場で
着磁して、この磁石粉末を熱可塑性樹脂からなる混合物
を磁界を印可しながら射出成形することを特徴とする樹
脂結合型永久磁石の製造方法。
1. A resin-bonded permanent magnet, characterized in that magnet powder is first magnetized in a magnetic field higher than the molding magnetic field, and this magnet powder is injection-molded with a mixture of thermoplastic resins while applying a magnetic field. Manufacturing method.
【請求項2】前記磁石粉末にハードフェライト系および
希土類コバルト系の磁石粉末の少なくとも1種以上を用
いることを特徴とする請求項1記載の樹脂結合型永久磁
石の製造方法。
2. The method for producing a resin-bonded permanent magnet according to claim 1, wherein at least one of hard ferrite type and rare earth cobalt type magnet powder is used as the magnet powder.
【請求項3】前記磁石粉末の量を50〜96重量%(以
下wt%と書く)とすることを特徴とする請求項1記載
の樹脂結合型永久磁石の製造方法。
3. The method for producing a resin-bonded permanent magnet according to claim 1, wherein the amount of the magnet powder is 50 to 96% by weight (hereinafter referred to as wt%).
【請求項4】前記混合物を180℃〜350℃で磁界を
印可しながら射出成形することを特徴とする請求項1な
いし請求項3もいずれかに記載の樹脂結合型永久磁石の
製造方法。
4. The method for producing a resin-bonded permanent magnet according to claim 1, wherein the mixture is injection-molded at 180 ° C. to 350 ° C. while applying a magnetic field.
【請求項5】着磁磁場を15Koe以上にすることを特
徴とする請求項1ないし請求項4のいずれかに記載の樹
脂結合型永久磁石の製造方法。
5. The method for producing a resin-bonded permanent magnet according to claim 1, wherein the magnetizing magnetic field is set to 15 Koe or more.
JP5328830A 1993-12-24 1993-12-24 Method for manufacturing resin-bonded permanent magnet Expired - Lifetime JP2516176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328830A JP2516176B2 (en) 1993-12-24 1993-12-24 Method for manufacturing resin-bonded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328830A JP2516176B2 (en) 1993-12-24 1993-12-24 Method for manufacturing resin-bonded permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57203259A Division JPS5994405A (en) 1982-11-19 1982-11-19 Manufacture of resin bonded type permanent magnet

Publications (2)

Publication Number Publication Date
JPH06244047A true JPH06244047A (en) 1994-09-02
JP2516176B2 JP2516176B2 (en) 1996-07-10

Family

ID=18214566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328830A Expired - Lifetime JP2516176B2 (en) 1993-12-24 1993-12-24 Method for manufacturing resin-bonded permanent magnet

Country Status (1)

Country Link
JP (1) JP2516176B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1981044A3 (en) * 2007-03-30 2008-11-05 Toda Kogyo Corporation Ferrite particles for bonded magnet resin composition for bonded magnet and molded products using the same
US7531050B2 (en) 2002-09-19 2009-05-12 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
KR20190081174A (en) * 2017-12-29 2019-07-09 현대자동차주식회사 Complex body containing magnetic substance alloy powder, Air-conditioner compressor having the same, Method for manufacturing them
US11820055B2 (en) 2013-04-03 2023-11-21 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
US11823823B2 (en) 2013-10-02 2023-11-21 Toda Kogyo Corporation Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531050B2 (en) 2002-09-19 2009-05-12 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
EP1981044A3 (en) * 2007-03-30 2008-11-05 Toda Kogyo Corporation Ferrite particles for bonded magnet resin composition for bonded magnet and molded products using the same
US8741170B2 (en) 2007-03-30 2014-06-03 Toda Kogyo Corporation Ferrite particles for bonded magnet, resin composition for bonded magnet and molded products using the same
US9607741B2 (en) 2007-03-30 2017-03-28 Toda Kogyo Corporation Ferrite particles for bonded magnet, resin composition for bonded magnet and molded products using the same
US11820055B2 (en) 2013-04-03 2023-11-21 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
US11823823B2 (en) 2013-10-02 2023-11-21 Toda Kogyo Corporation Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
KR20190081174A (en) * 2017-12-29 2019-07-09 현대자동차주식회사 Complex body containing magnetic substance alloy powder, Air-conditioner compressor having the same, Method for manufacturing them
EP3505273A3 (en) * 2017-12-29 2019-07-31 Hyundai Motor Company Plastic composite containing magnetic alloy powder, air conditioner compressor having the same and method of producing them
US10975923B2 (en) 2017-12-29 2021-04-13 Hyundai Motor Company Plastic composite containing magnetic alloy powder, air conditioner compressor having the same and method of producing them

Also Published As

Publication number Publication date
JP2516176B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
Kirchmayr Permanent magnets and hard magnetic materials
Hadjipanayis et al. Domain wall pinning versus nucleation of reversed domains in R‐Fe‐B magnets
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
Schultz et al. Magnetic hardening of Sm-Fe-Mo, Sm-Fe-V and Sm-Fe-Ti magnets
Slusarek et al. Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature
JP2516176B2 (en) Method for manufacturing resin-bonded permanent magnet
US3891476A (en) Method of magnetizing a body of M{HD 5{B R at high temperatures
JPS61237405A (en) Multipolarized magnet
JPH053124B2 (en)
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
Strnat Permanent magnets based on 4f-3d compounds
Fukuno et al. Coercivity mechanism of sintered NdFeB magnets having high coercivities
Yoshizawa et al. Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/anisotropic magnet using reduction and diffusion method
Wang et al. Magnetic properties of Nd‐Fe‐CoB permanent magnetic alloys
US2924758A (en) Method of magnetizing an anisotropic permanent magnet
Yoneyama et al. High performance RFeCoZrB bonded magnets having low Nd content
Strnat et al. Thermal stability and temperature coefficients of four rare‐earth‐cobalt matrix magnets heated in dry air
JP2004087644A (en) Magnet roller
JPH0320045B2 (en)
JPS62235704A (en) Anisotropic resin magnet
JPH0564442B2 (en)
KR970009409B1 (en) Permanent magnet material processing method
JPS59136909A (en) Manufacture of resin-bonded permanent magnet
Panchanathan Developments in rapidly solidified Nd-Fe-B Permanent Magnets
WO1991001562A1 (en) Anisotropic plastic-bonded magnet