WO1991001562A1 - Anisotropic plastic-bonded magnet - Google Patents

Anisotropic plastic-bonded magnet Download PDF

Info

Publication number
WO1991001562A1
WO1991001562A1 PCT/JP1990/000827 JP9000827W WO9101562A1 WO 1991001562 A1 WO1991001562 A1 WO 1991001562A1 JP 9000827 W JP9000827 W JP 9000827W WO 9101562 A1 WO9101562 A1 WO 9101562A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
magnetic
mold
powder
magnet
Prior art date
Application number
PCT/JP1990/000827
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Matsuyama
Original Assignee
Yuugen Kaisha Kanex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8574189U external-priority patent/JPH0325220U/ja
Priority claimed from JP9386490A external-priority patent/JPH03292702A/en
Priority claimed from JP2111705A external-priority patent/JPH0411701A/en
Application filed by Yuugen Kaisha Kanex filed Critical Yuugen Kaisha Kanex
Publication of WO1991001562A1 publication Critical patent/WO1991001562A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Definitions

  • the present invention relates to a polar anisotropic mold having a magnetizing function of a plastic magnet and a magnetic powder or hard ferrite powder.
  • N d — F e — B-based magnetic powder or S m — Co-based magnetic powder has been improved in shape and a combination of three types of magnetic powders of different sizes has resulted in a conventional flywheel.
  • Height not seen with plastic magnets or Nd-Fe-B plastic magnets or Sm-Co plastic magnets Proposal of a polar anisotropic plastic magnet manufactured with a plastic magnet material that has the highest energy and has a high residual magnetic flux density and is suitable for this mold.
  • the strontium ferrite or barium ferrite After kneading the strontium ferrite or barium ferrite with a small amount of plasticizer and release agent, knead it with the resin.
  • this pellet injection molding in a magnetic field, or shrinking molding in a magnetic field, a fly plastic bonded magnet can be formed. It was being processed.
  • the residual magnetic flux density which is the magnetic property, is from 1,700 Gauss to 1,800 Gauss, and it is difficult to further improve the property.
  • the above-mentioned flat plastic bonded magnet is formed after molding. Then, a method was taken to evaporate the resin and approach the microstructure of the ferrite sintered magnet.
  • rare earth plastic magnets Nd-Fe-B or Sm-Co magnetic powder is mixed with a small amount of plasticizer and mold release agent, kneaded with resin, and then the pellet is removed.
  • Rare earth plastic bonded magnets have been processed by injection molding in a magnetic field or compression molding in a magnetic field.
  • the above-mentioned rare-earth plastic box is used. After the forming process of the magnet, the resin was evaporated to make it close to the structure of the rare earth sintered magnet.
  • the polar anisotropy of 10 poles as shown in Fig. 1 of the above-mentioned flat plastic magnet or rare earth plastic magnet is used.
  • a rotor having a magnetic field is manufactured, it is composed of a molding die as shown in FIG. 2 and 10 rare-earth magnets having the highest magnetic energy are embedded therein.
  • the magnet was formed using a magnetizing coil with a rotor alignment function. Disclosure of the invention
  • the solution is to maximize the crystal anisotropy effect and shape anisotropy effect in order to improve the magnetic properties of the magnetic powder.
  • the crystal powder of the strontium ferrite or the magnetic powder of the rhodium ferrite is grown in the direction of the crystal axis (C axis), and the crystal face is formed.
  • C plane The aspect ratio of the length of the crystal axis (C axis) to the diameter is 1; 1 to 1; 5 and the magnetic anisotropy It has the effect and the shape anisotropy effect.
  • the magnetic powder of 3 to 5 m having the crystal anisotropy effect and the shape anisotropy effect is used as a base material, and the magnetic powder of l to 3 m ju, which is smaller in shape than the magnetic powder, is used.
  • Powder and magnetic powder of less than lm are mixed according to the desired magnetic properties and surface-treated with a silane coupling agent, or without surface treatment, and with a small amount of plasticizer.
  • a molding agent is added and kneaded with 8 to 21% thermoplastic resin or 4 to 5% thermosetting resin to form a pellet.
  • mechanical molding with a high residual magnetic flux density can be achieved by injection molding or compression molding in a polar anisotropic magnetic field or magnetic field, or by injection molding or a polar anisotropic magnetic field. It provides a strong plastic bonded magnet.
  • the magnetic material is excited by a polar anisotropic magnetic field and molded, so that the content of the magnetic powder is reduced to about 80%, and the iHc of the magnetic material pellet is relatively small.
  • the present invention has been made by using any of them.
  • the solution is to maximize the crystal anisotropy effect and shape anisotropy effect in order to improve the magnetic properties of the magnetic powder.
  • Nd_Fe—B-based magnetic powder or Sm_Co-based magnetic powder is grown in the crystal axis (C-axis) direction, and the crystal axis (C-plane) diameter is determined by the crystal axis (C-plane) diameter.
  • the magnetic powder has a crystal anisotropy effect and a shape anisotropy effect by machining the length ratio (C-axis) to 1; 1 to 1; 5 It is a thing.
  • the magnetic powder having a crystal anisotropy effect and a shape anisotropy effect of 3 to 5 mja is used as a base material.
  • Three types of magnetic powder, l to 3 m / i and smaller than lm / i, which are smaller in shape than the magnetic powder, are mixed in proportions according to the desired magnetic properties.
  • Surface treated with a ringing agent or without surface treatment add a small amount of plasticizer and release agent, and add 8 to 20 * t% of thermoplastic resin or 4 to 5, It is kneaded with a thermosetting resin of% to make a pellet.
  • a magnetic powder of 0.05 to 0.1 m # having the crystal anisotropy effect and the shape anisotropy effect is used as a base material.
  • the desired magnetic properties of a magnetic powder having a smaller shape of 0.33 to 0.05 m # and a magnetic powder of 0.03 HI # or less than this magnetic powder are desired.
  • surface-treated with a silane coupling agent, or without a surface treatment add a small amount of plasticizer and molding agent, and add 8 to 20% thermoplasticity. It is kneaded with a resin or 4 to 5 thermosetting resin to make a pellet.
  • mechanical molding with a high residual magnetic flux density can be achieved by injection molding or compression molding in a polar anisotropic magnetic field or a magnetic field.
  • Offers strong plastic bonded magnets in particular, in the present invention, when magnetized with a polar anisotropic magnetic field and molded into a thermoplastic resin, the content of the magnetic powder is set to 890 wt%, and the magnetic material pellet is formed. The effect of the present invention was improved by using a relatively small value of iHc.
  • the forming is repeated. Each time it is returned, there is a mold temperature of 100 to 1303 ⁇ 4, and a high temperature near 300 ° is applied, so that the embedded permanent magnets are demagnetized and anisotropic. It is known that the sexual orientation effect decreases. Therefore, the conventionally embedded permanent magnets are removed from the mold, re-magnetized, and assembled into the mold so that the anisotropic effect can be stably maintained. Yes. As shown in Fig. 3, one or several turns are required inside the mold to solve such problems and further increase the productivity of the rotor. The coil is retracted and the coil is excited with a pulse current of 10,000 amperes or more by the magnetizing power supply (power supply such as capacitor charging and discharging). is there .
  • the magnetizing power supply power supply such as capacitor charging and discharging
  • Magnetization by this excitation is performed in the cooling stage after the injection compression and pressurization in the forming stage.
  • Fig. 1 is a side view showing a rotor with 10 poles of polar anisotropy.
  • Figure 2 shows the structure of a conventional polar anisotropic rotor mold.
  • FIG. 3 is a structural diagram of a mold of the polar anisotropic rotor according to the present invention.
  • FIG. 4 is an explanatory diagram showing a crystal structure of the magnetic powder of the graphite according to the present invention.
  • Fig. 1 is a diagram schematically showing an arrangement of magnetic particles of a polar plastic magnet formed according to the present invention and formed by polar anisotropy.
  • D Fig. 6 is an explanatory diagram showing the crystal structure of the rare earth magnetic powder according to the present invention.
  • FIG. 7 is a diagram schematically showing an arrangement of magnetic particles of a rare earth plastic magnet formed by polar anisotropy according to the present invention.
  • FIG. 4 is a graph showing the relationship between the diameter of the C-face diameter D of the magnetic powder of the strontium filament and the magnet powder of the present invention. This shows the magnetic powder structure in which the ratio (axial ratio) of the shaft length L is from 1; 1 to 1; 5.
  • the magnetic powder particles grow in the crystal axis direction, and a crystal anisotropic effect occurs on the crystal axis.
  • the C-axis is longer than the C-plane, so that the shape anisotropy effect occurs in the crystal anisotropy direction, and the crystal anisotropy effect further increases An anisotropic effect is added.
  • the size of the long part of the magnetic powder described above is 3 to 5 mi, and three types of small magnetic powder of l to 3 m / i, medium and lm / i or less are required. Mix according to the desired magnetic and mechanical properties.
  • the medium-sized magnetic powder and the small-sized magnetic powder have the same crystal anisotropy and shape anisotropy as the large-sized magnetic powder. In the case where it cannot be performed, it is acceptable that neither crystal anisotropic effect nor shape anisotropic effect is provided.
  • the surface of the mixed magnetic powder is treated with a silane coupling agent of 0.5 to 1.5% by weight and / or a titanium coupling agent,
  • the residual magnetic flux density (Br) of the stronium film X-light has conventionally been 2276 Gauss. Is set to 3100 Gauss, and the intrinsic coercive force (iHc) is conventionally set to 311 O Oested as 264 O Oested, and H as the magnetic powder. A relatively small one was used.
  • the plasticizer and the release agent are added at the time of kneading the magnetic powder and the resin. However, these may be omitted as necessary.
  • Fig. 5 shows the arrangement of the magnetic powder inside the plastic magnet when polar anisotropic magnetization molding was performed with the N pole 18 and the S pole 19 as the magnetic poles.
  • 3 to 5 m (large) dust particles 15, medium-sized magnetic particles 16 to 1 to 3 mi, and magnetic particles 17 below Im are magnetic poles at N pole 18 and S pole 19. They are arranged neatly in the direction of the internal magnetic field.
  • Fig. 6 shows the ratio of the C sleeve length L to the C face diameter D of the Nd_Fe-B-based magnetic powder or Sm-Co-based magnetic powder according to the present invention ( The ratio of the magnetic powder is from 1; 1 to 1; 5.
  • the magnetic powder particles grow in the crystal axis direction, and a crystal anisotropic effect occurs in the crystal axis direction. Furthermore, the C-axis is longer than the C-plane, so that the shape anisotropy effect occurs in the same direction as the crystal anisotropy direction. Further, a shape anisotropy effect is added.
  • the size of the long part of the magnetic powder described above is
  • the medium and small magnetic powders have the same crystal anisotropy and shape anisotropy as large-sized powder, but they can be processed due to the manufacturing method. If they do not exist, it is acceptable if they do not have the crystal anisotropy effect and the shape irregularity effect.
  • the above-mentioned mixed magnetic powder is surface-treated with 0.5 to 1.5 nt% of a silane coupling agent and / or a titanium coupling agent,
  • thermoplastic resin 1.0-2.0, t% plasticizer and / or 0.1-0.5% of mold release agent, add 8-21% of thermoplastic resin or It is kneaded with 3 to 4 * t% of thermosetting resin to form a pellet.
  • a pellet obtained by kneading the Nd-Fe-B-based magnetic powder or the Sm-Co-based magnetic powder and the thermoplastic resin or the thermosetting resin having the above-described configuration is used.
  • an improvement of 10 to 20% of the conventional surface magnetic flux density was observed.
  • the residual magnetic flux density (B r) is large and unique among Nd-Fe-B-based magnetic powder or Sm-Co-based magnetic powder. Those with relatively low holding power (iHc) were used.
  • the plasticizer and the molding agent are added at the time of kneading the magnetic powder and the resin, but these may be removed as necessary.
  • Fig. 7 shows the arrangement of magnetic powder inside the plastic magnet when polar anisotropic magnetization molding was performed using the N pole 25 and the S pole 26 as the magnetic S.
  • Magnetic particles 23 and magnetic particles 24 of 1 m ⁇ (0.03 m ju) or less are arranged neatly in the direction of the internal magnetic field of the magnetic pole at the negative pole 25 and the south pole 26. ing . There is no arrangement of magnetic particles at neutral points 27 and 28. The one with improved residual magnetic flux density by 10 to 20% showed a magnetic particle arrangement as shown in Fig. 7.
  • FIG. 3 shows the structure of a polar anisotropic co-magnetizing mold according to the present invention.
  • Permanent magnets 2 made of rare earth magnets are arranged around the cavity 1 in a number corresponding to the number of poles of the product.
  • the permanent magnets 2, 3, and 4 are arranged in the non-magnetic material 14 so that the magnetic pole (N pole) 5 comes to the cavity 1 side.
  • the N pole and the S pole are alternately arranged toward the coil, and the coil 6 is arranged between the permanent magnet 2 and the permanent magnet 3 so that the direction of the current flowing through the coil is permanent.
  • the wiring is such that the magnetic pole 5 of the magnet 2 is set to the N pole. Since coil 6 is wound as shown in Fig. 3, an N pole is generated at the magnetic pole on the cavity side of the permanent magnet 2, and an S pole is generated at the permanent magnet 3. Then, the permanent magnet is excited.
  • the mouth of the molded product can have a uniform polarity. It was possible to accurately magnetize without having to match.
  • the respective permanent magnets for pole anisotropy 3, 4 are alternately excited with N, S, and N poles, respectively. It also has the effect of re-magnetizing the permanent magnet for pole anisotropy.
  • a magnetic field can be applied even in the injection compression / pressurization process of injection molding, and the anisotropic effect can be improved.
  • Figures 2 and 3 show the structure of the mold, and 12 shows the protruding pins.
  • 13 indicates the mold parting line
  • 14 indicates the permanent magnets 2, 3, 4
  • the figure shows the non-magnetic material part of the mold for fixing the mold.
  • Fig. 1 shows a 10-pole rotor 7 molded with polar anisotropy.
  • the molded plastic plastic magnet has a magnetic flux density improved by 10% as compared with the conventional one. I was able to do it.
  • the large, medium, and small magnetic powders of the present invention increase the density of each other in the magnets, and at the same time, combine with the surface treatment agent of the magnetic powders due to the effect of the modified 12-iron. As the force increased, it was possible to produce a plastic magnet that would not break at all, even if the press-fit for the shaft was about 0.1 mm. 3) Molded by using the magnetic powder composition as in the present invention.
  • Nd-Fe-B plastic magnets or Sm-Co plastic magnets have a 10% to 20% improvement in magnetic flux density compared to conventional magnets I was able to make it happen.
  • the present invention takes out the product by incorporating the coil into a conventional polar anisotropic mold in which a rare earth permanent magnet is embedded, and magnetizes it with a magnetizing coil with pole matching. Since the magnets can be magnetized with high precision during molding with a molding machine, productivity has improved. Furthermore, since the demagnetization of the rare-earth magnet for polar anisotropy can always be prevented, the maintainability of the mold has been significantly improved. Extremely effective because the coil-embedded mold can be applied to polar anisotropic products other than the rotor, which can improve productivity and reduce manufacturing costs. It is an important means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Hard ferrite magnetic powder of, e.g., barium ferrite or strontium ferrite, or rare earth magnetic powder of the Sm-Co or Nd-Fe-B is crystallized in a direction of crystal axis (C-axis) so that it may have the aspect ratio of the length of the crystal axis (C-axis) to the length of crystal face (C-plane) of 1:1 to 1:5. The crystalline magnetic powder possesses the effects of crystalline anisotropy and shape anisotropy. Three kinds of magnetic powders, i.e., a magnetic powder of 3 to 5 mν (0.05 to 0.1 mν) having the effects of crystalline anisotropy and shape anisotropy as a matrix, a magnetic powder of 1 to 3 mν (0.03 to 0.05 mν), and a magnetic powder of smaller than 1 mν (0.03 mν), are mixed together at a ratio that gives desired magnetic properties. The mixed powder may or may not be surface-treated with a silane coupling agent. This powder is then mixed with a small amount of a plasticizer and a parting agent, kneaded together with a thermoplastic resin or a thermosetting resin, and then pelletized. The pellets have a higher residual magnetic flux density (Br) and a smaller coercive force (Hc) than those of the general ones. Further, a rare earth permanent magnet such as SmxCoy (Sm1Co5, Sm2Co17), Nd-Fe-B is buried in a metal mold, and is anisotropically oriented during the molding. Then, the pellets are injection-molded or compression-molded using a metal mold for polar anisotropic plastic magnet that has a coil wound in the metal mold to form the polar anisotropy as well as to effect the magnetization in the same metal mold, and to remagnetize the buried permanent magnet that is demagnetized.

Description

明 糸田  Akira Itoda
極異方性プ ラ ス チ ッ ク ボ ン デ ッ ト 磁石 技術分野  Technical field of polar anisotropic plastic bonded magnet
本発明 は プ ラ ス チ ッ ク 磁石の着磁機能を持たせた極異方性金型 と ハ ー ドフ ェ ラ イ ト の磁粉ま た は、  The present invention relates to a polar anisotropic mold having a magnetizing function of a plastic magnet and a magnetic powder or hard ferrite powder.
N d — F e — B 系磁粉ま た は、 S m — C o 系磁粉の形状の 改良 と 3 種類の大 き さ の異な る 磁粉の組合わせ に よ り 、 従来の フ ヱ ラ イ ト プ ラ ス チ ッ ク 磁石ま た は、 N d — F e — B 系プ ラ ス チ ッ ク 磁石、 ま た は、 S m — C o 系 プラ ス チ ッ ク 磁石 に は見 ら れな い高最大エネ ルギ 一積で、 かつ 高残留磁束密度を持たせた こ の金型に適合 し た プラ ス チ ッ ク 磁石材料 と に よ り 製作す る極異方性プラ ス チ ッ ク 磁石の提案 に関す る 。 背景技術  N d — F e — B-based magnetic powder or S m — Co-based magnetic powder has been improved in shape and a combination of three types of magnetic powders of different sizes has resulted in a conventional flywheel. Height not seen with plastic magnets or Nd-Fe-B plastic magnets or Sm-Co plastic magnets Proposal of a polar anisotropic plastic magnet manufactured with a plastic magnet material that has the highest energy and has a high residual magnetic flux density and is suitable for this mold. About. Background art
従来、 フ ヱ ラ イ ト プ ラ ス チ ッ ク 磁石の場合  Conventionally, in the case of a flat plastic magnet
ス ト ロ ン チ ュ ウ ム フ ェ ラ イ ト ま た は、 バ リ ウ ム フ ェ ラ イ ト を少量の 可塑剤、 離型剤を加え て、 撐脂 と と も に混練 し た後、 こ のペ レ ツ ト を用 いて、 磁場中で射出成形、 ま た は磁場中で庄縮成形す る こ と に よ り 、 フ ヱ ラ イ ト プラ ス チ ッ ク ボ ン デ ッ ト 磁石を加工 し て い た。 しか し、 従来の段階で は、 そ の磁気特性であ る残留磁束密度は、 1 , 7 0 0 Gauss 〜 l , 8 0 0 Gauss が最高値で、 こ れ以上特性の 改良が困難であ っ た。  After kneading the strontium ferrite or barium ferrite with a small amount of plasticizer and release agent, knead it with the resin. By using this pellet, injection molding in a magnetic field, or shrinking molding in a magnetic field, a fly plastic bonded magnet can be formed. It was being processed. However, in the conventional stage, the residual magnetic flux density, which is the magnetic property, is from 1,700 Gauss to 1,800 Gauss, and it is difficult to further improve the property. Was.
ま た、 こ の残留磁束密度を フ X ラ イ ト 焼結磁石の残留磁束密度に近 づけ る た め、 上記 フ ヱ ラ イ ト プラ ス チ ッ ク ボ ンデ ッ ト 磁石を成形加 ェ後、 樹脂を蒸発 さ せ、 フ ェ ラ イ ト 焼結磁石の組織構造に近づ け る 方法が取 ら れた。 Also, in order to make this residual magnetic flux density close to the residual magnetic flux density of the sintered X-light magnet, the above-mentioned flat plastic bonded magnet is formed after molding. Then, a method was taken to evaporate the resin and approach the microstructure of the ferrite sintered magnet.
し か し、 こ の よ う に樹脂を蒸発 さ せ る こ と に よ り 、 機械強度が低下 し、 フ ヱ ラ イ ト 焼桔磁石よ り 脆 く な る結果 と な っ て い た。 However, by evaporating the resin in this way, the mechanical strength was reduced, and the result was that the magnet became more brittle than the burned magnet.
ま た、 稀土類プ ラ ス チ ッ ク 磁石の場合、 N d - F e — B 系磁粉 ま た は、 S m — C o 系磁粉を少量の可塑剤、 離型剤を加えて、 樹脂 と と も に混練 し た後、 こ のペ レ ツ ト を用 いて、 磁場中で射出成形、 ま たは磁場中で圧縮成形す る こ と に よ り 、 稀土 類プラ ス チ ッ ク ボ ンデ ッ ト 磁石を加工 し てい た。 In the case of rare earth plastic magnets, Nd-Fe-B or Sm-Co magnetic powder is mixed with a small amount of plasticizer and mold release agent, kneaded with resin, and then the pellet is removed. Rare earth plastic bonded magnets have been processed by injection molding in a magnetic field or compression molding in a magnetic field.
し か し、 従来の段階では、 そ の磁気特性であ る B H n ax と B r と は、 第 1 表の よ う な特性値が限度で、 こ れ以上特性を改良す る こ と が困 難であ っ た。 However, at the conventional stage, the magnetic characteristics BHnax and Br are limited to the characteristic values shown in Table 1, and it is difficult to further improve the characteristics. It was difficult.
第 1 表  Table 1
B H nax B r  B H nax B r
射出成形の場合 4 MGO e 4 5 0 0 G Injection molding 4 MGO e 4 500 G
(磁気等方性) (Magnetic isotropic)
圧縮成形の場合 1 5 IGO e 8 5 0 0 G For compression molding 1 5 IGO e 8 5 0 0 G
(磁気異方性) (Magnetic anisotropy)
ま た、 こ れ ら最大エネ ルギ一積 ( B H Max ) 、 残留磁束密度 ( B r ) をそ れぞれの稀土類焼桔磁石の特性に近づけ る ため、 上記、 稀土類 プラ ス チ ッ ク ボ ンデ ッ ト磁石を成形加工後、 樹脂を蒸発さ せ、 稀土 類焼結磁石の組織構造に近づけ る 方法が取 ら れた。 In order to bring the maximum energy product (BH Max) and residual magnetic flux density (Br) closer to the characteristics of each rare-earth sintered magnet, the above-mentioned rare-earth plastic box is used. After the forming process of the magnet, the resin was evaporated to make it close to the structure of the rare earth sintered magnet.
しか し、 こ の よ う に樹脂を蒸発 さ せ る こ と に よ り 、 機械強度が低下 し、 稀土類焼桔磁石よ り 脆 く な る 結果 と な っ てい た。 However, by evaporating the resin in this way, the mechanical strength was reduced, resulting in the brittleness of the rare earth magnet.
さ ら に、 従来の技術では、 上記の フ ヱ ラ イ ト プラ ス チ ッ ク 磁石ま た は、 稀土類プラ ス チ ッ ク 磁石の第 1 図の よ う な 1 0 極の極異方性 を持 っ た ロ ー タ を製造する と き 、 第 2 図の よ う な成形金型か ら な り 、 1 0 個の磁気エネルギ一の大き な稀土類系磁石が埋め込ま れてい る 。 こ の よ う な金型で極異方性の ロ ー タ を成形 し た後、 ロ ー タ の極合わ せ機能の付い た着磁コ ィ ルで着班 し ていた。 発明の開示  Further, in the conventional technology, the polar anisotropy of 10 poles as shown in Fig. 1 of the above-mentioned flat plastic magnet or rare earth plastic magnet is used. When a rotor having a magnetic field is manufactured, it is composed of a molding die as shown in FIG. 2 and 10 rare-earth magnets having the highest magnetic energy are embedded therein. After forming a polar anisotropic rotor with such a mold, the magnet was formed using a magnetizing coil with a rotor alignment function. Disclosure of the invention
上述の よ う に従来は、 フ ヱ ラ イ ト プラ スチ ッ ク ボ ン デ ッ ト 磁石の 残留磁束密度を向上さ せる 方法に は、 磁気性能、 機械的性能がよ く 、 安定 し て生産で き る も のがな か っ た。 Conventionally, as described above, methods for improving the residual magnetic flux density of a flat plastic bonded magnet include magnetic and mechanical performances. There was nothing that could be produced stably.
そ こ で、 磁粉単体の結晶異方性 と 形状異方性の双方の効果を利用す る こ と に よ り 、 磁気特性を 向上 さ せ、 機械的 に は、 従来の プラ ス チ ッ ク ボ ン デ ッ ト 磁石 と 同等の も の にす る ため、 磁粉の充填率を従来 と 変えな い も の を提供す る こ と に あ る。  Therefore, by utilizing the effects of both the crystal anisotropy and the shape anisotropy of the magnetic powder alone, the magnetic characteristics are improved, and mechanically, the conventional plastic bob is used. In order to achieve the same quality as an indented magnet, there is a need to provide a magnet that does not change the filling rate of magnetic powder.
そ の解決手段 と し て、 磁粉の磁気特性向上の た め に 、 結晶異方性 効果 と形状異方性効果 と を最大限に利用 す る こ と に あ る。  The solution is to maximize the crystal anisotropy effect and shape anisotropy effect in order to improve the magnetic properties of the magnetic powder.
すな わち、 ス ト ロ ン チ ュ ウ ム フ ェ ラ イ ト 磁粉 ま た はノく リ ウ ム フ ェ ラ イ ト の磁粉を結晶軸 ( C軸) 方向 に結晶成長 さ せ、 結晶面 ( C面) 径に対す る結晶軸 ( C軸) の長 さ の ァ ス ぺ ク ト比を 1 ; 1 ~ 1 ; 5 の加工をす る こ と で、 磁粉 と し て、 結晶異方性効果 と 形状異方性効 果を持つ こ と に な る 。  That is, the crystal powder of the strontium ferrite or the magnetic powder of the rhodium ferrite is grown in the direction of the crystal axis (C axis), and the crystal face is formed. (C plane) The aspect ratio of the length of the crystal axis (C axis) to the diameter is 1; 1 to 1; 5 and the magnetic anisotropy It has the effect and the shape anisotropy effect.
こ の結晶異方性効果 と 形状異方性効果を持っ た 3 〜 5 m の磁粉を 母体 と し て、 さ ら に、 こ の磁粉よ り 、 形状の小 さ い l ~ 3 m ju の磁 粉 と l m 以下の磁粉を希望す る 磁気特性に合わせて混合 し、 シ ラ ン カ ッ プ リ ン グ剤で表面処理 し 、 ま た は、 表面処理は な し で、 少量 の可塑剤 と雜型剤を加えて、 8 ~ 2 0 1^%熱可塑性樹脂 ま た は 4 〜 5冒 t%熱硬化性樹脂 と と も に、 混練 し、 ペ レ ツ ト にす る 。  The magnetic powder of 3 to 5 m having the crystal anisotropy effect and the shape anisotropy effect is used as a base material, and the magnetic powder of l to 3 m ju, which is smaller in shape than the magnetic powder, is used. Powder and magnetic powder of less than lm are mixed according to the desired magnetic properties and surface-treated with a silane coupling agent, or without surface treatment, and with a small amount of plasticizer. A molding agent is added and kneaded with 8 to 21% thermoplastic resin or 4 to 5% thermosetting resin to form a pellet.
さ ら に、 極異方性磁場 ま た は、 磁場中で、 射出成形ま た は、 極異方 性磁場ま た は、 磁場中で圧縮成形す る こ と で、 残留磁束密度の高い 機械的強度の強い プラ ス チ ッ ク ポ ンデ ッ ト 磁石を提供す る も の であ る In addition, mechanical molding with a high residual magnetic flux density can be achieved by injection molding or compression molding in a polar anisotropic magnetic field or magnetic field, or by injection molding or a polar anisotropic magnetic field. It provides a strong plastic bonded magnet.
特に、 本発明では、 極異方性磁場で励磁 し て、 成形す る た め、 磁粉 の含有率を 8 0 %前後に低下 し 、 磁材ペ レ ツ ト の i H c の比較的小 さ い も の を用 い る こ と で、 本発明がな さ れた。 In particular, in the present invention, the magnetic material is excited by a polar anisotropic magnetic field and molded, so that the content of the magnetic powder is reduced to about 80%, and the iHc of the magnetic material pellet is relatively small. The present invention has been made by using any of them.
ま た、 上述の よ う に従来は、 N d _ F e — B系ま た は  Also, as described above, conventionally, N d _ F e —B system or
S m — C o 系の プラ ス チ ッ ク ボ ン デ ッ ト 磁石の磁気特性 ( B H Max 、 B r ) を 向上 さ せ る 方法に は、 磁気性能、 機械的性能が と も に 、 よ く 、 安定 し て生産で き る も のがな か っ た。 そ こ で、 磁粉単体の結晶異方性 と形状異方性の双方の効果を利用す る こ と に よ り 、 磁気特性を向上さ せ、 機械的 に は、 従来の プラ スチ ッ ク ボ ンデ ッ ト 磁石 と 同等の も の にす る ため、 磁粉の充填率を There are two ways to improve the magnetic properties (BH Max, Br) of plastic bond magnets of the Sm-Co series, both in terms of magnetic and mechanical performance. However, there was nothing that could be produced stably. Therefore, by utilizing the effects of both the crystal anisotropy and the shape anisotropy of the magnetic powder alone, the magnetic properties are improved, and mechanically, a conventional plastic bond is used. Filling ratio of magnetic powder is set to be equivalent to that of a dead magnet.
8 0 nt% 〜 9 0 nt% と した も の を提供す る こ と に あ る 。 It is intended to provide a product having a concentration of 80 nt% to 90 nt%.
その解決手段 と し て、 磁粉の磁気特性向上の た め に、 結晶異方性 効果 と形状異方性効果 と を最大限に利用す る こ と に あ る 。  The solution is to maximize the crystal anisotropy effect and shape anisotropy effect in order to improve the magnetic properties of the magnetic powder.
すなわち 、 N d _ F e — B 系磁粉ま た S m _ C o 系磁粉を結晶軸 ( C 軸) 方向 に結晶成長させ、 結晶面 ( C面) 径の長 さ に対す る結 晶軸 ( C軸) の長さ の ァ スぺ ク ト 比を 1 ; 1 〜 1 ; 5 の加工をす る こ とで、 磁粉 と し て、 結晶異方性効果 と 形状異方性効果を持たせた も のであ る。 That is, Nd_Fe—B-based magnetic powder or Sm_Co-based magnetic powder is grown in the crystal axis (C-axis) direction, and the crystal axis (C-plane) diameter is determined by the crystal axis (C-plane) diameter. The magnetic powder has a crystal anisotropy effect and a shape anisotropy effect by machining the length ratio (C-axis) to 1; 1 to 1; 5 It is a thing.
焼結法に よ り 、 製造 し た磁粉の場合、 そ の結晶異方性効果 と形状異 方性効果を持 っ た 3 〜 5 m ja の磁粉を母体 と し て、 さ ら に、 こ の磁 粉よ り 、 形状の小 さ い l 〜 3 m /i の磁粉 と l m /i 以下の磁粉の 3 種 類の磁粉を希望す る磁気特性に合わせた割合で混合 し、 シ ラ ンカ ツ プ リ ング剤で表面処理 し、 ま た は、 表面処理はな しで、 少量の可塑 剤 と離型剤を加えて、 8 〜 2 0 *t%の熱可塑性樹脂ま た は 4 ~ 5 ,t%の熱硬化性樹脂 と と も に、 混練 し、 ペ レ ツ ト にする 。 In the case of magnetic powder produced by the sintering method, the magnetic powder having a crystal anisotropy effect and a shape anisotropy effect of 3 to 5 mja is used as a base material. Three types of magnetic powder, l to 3 m / i and smaller than lm / i, which are smaller in shape than the magnetic powder, are mixed in proportions according to the desired magnetic properties. Surface treated with a ringing agent or without surface treatment, add a small amount of plasticizer and release agent, and add 8 to 20 * t% of thermoplastic resin or 4 to 5, It is kneaded with a thermosetting resin of% to make a pellet.
ま た、 高速固化法に よ り 、 製造 し た場合、 そ の結晶異方性効果 と形 状異方性効果を持っ た 0 . 0 5 〜 0 . 1 m # の磁粉を母体 と して、 さ ら に、 こ の磁粉よ り 、 形状の小さ い 0 . 0 3 〜 0 . 0 5 m # の磁 粉 と 0 . 0 3 HI # 以下の磁粉の 3 種類の磁粉 と を希望す る磁気特性 に合わせた割合で混合 し、 シラ ンカ ッ プ リ ン グ剤で表面処理 し、 ま たは、 表面処理な しで、 少量の可塑剤 と雜型剤を加えて、 8 ~ 2 0 %熱可塑性樹脂ま た は 4 〜 5 熱硬化性樹脂 と と も に、 混 練 し、 ペ レ ツ ト にす る 。 When manufactured by the high-speed solidification method, a magnetic powder of 0.05 to 0.1 m # having the crystal anisotropy effect and the shape anisotropy effect is used as a base material. In addition, the desired magnetic properties of a magnetic powder having a smaller shape of 0.33 to 0.05 m # and a magnetic powder of 0.03 HI # or less than this magnetic powder are desired. And then surface-treated with a silane coupling agent, or without a surface treatment, add a small amount of plasticizer and molding agent, and add 8 to 20% thermoplasticity. It is kneaded with a resin or 4 to 5 thermosetting resin to make a pellet.
さ ら に、 極異方性磁場ま た は磁場中で、 射出成形ま た は、 極異方性 磁場ま た は、 磁場中で圧縮成形す る こ と で、 残留磁束密度の高い機 械的強度の強い プラ ス チ ッ ク ポ ン デ ッ ト 磁石を提供す る も のであ る 特に、 本発明で は、 極異方性磁場で励磁 し て、 熱可塑性樹脂に て、 成形す る と き は、 磁粉の含有率を 8 0 9 0 w t % に し 、 磁材ペ レ ツ ト の i H c の比較的小 さ い も の を用 い る こ と で、 本発明の効果を向 上 さ せた。 In addition, mechanical molding with a high residual magnetic flux density can be achieved by injection molding or compression molding in a polar anisotropic magnetic field or a magnetic field. Offers strong plastic bonded magnets In particular, in the present invention, when magnetized with a polar anisotropic magnetic field and molded into a thermoplastic resin, the content of the magnetic powder is set to 890 wt%, and the magnetic material pellet is formed. The effect of the present invention was improved by using a relatively small value of iHc.
さ ら に、 こ れ ら の フ ヱ ラ イ ト プラ ス チ ッ ク 磁石 ま た は稀土類ブラ ス チ ッ ク 磁石を極異方性成形す る 金型の従来例で は、 成形を繰 り 返 す毎に 1 0 0 〜 1 3 0 ¾の金型温度があ る 上に 3 0 0 で近 く の高 温が加え ら れ る た め、 埋め込ま れた永久磁石が減磁 し 、 異方性配向 効果が低下 し て行 く こ と が知 ら れて い る 。 従 っ て、 従来で は埋め込 ま れた永久磁石を金型よ り 取 り 出 し 、 再着磁 し、 金型に組込み、 異 方性効果が安定 し て持続す る よ う に し て い る 。 こ の よ う な 問題点を 解決 し、 さ ら に ロ ー タ の生産性を 向上 さ せ る た め に第 3 図の よ う に 金型内部に 1 タ ー ン ま た は数タ ー ン の コ イ ルを撤回 し 、 着磁用電源 ( コ ン デ ン サ ー充電放電な どの電源) に よ り 、 1 万ア ンペ ア以上の パルス電流で コ イ ルを励磁す る も の であ る 。  In addition, in the conventional example of a die for forming these flat plastic magnets or rare earth plastic magnets in a polar anisotropic manner, the forming is repeated. Each time it is returned, there is a mold temperature of 100 to 130¾, and a high temperature near 300 ° is applied, so that the embedded permanent magnets are demagnetized and anisotropic. It is known that the sexual orientation effect decreases. Therefore, the conventionally embedded permanent magnets are removed from the mold, re-magnetized, and assembled into the mold so that the anisotropic effect can be stably maintained. Yes. As shown in Fig. 3, one or several turns are required inside the mold to solve such problems and further increase the productivity of the rotor. The coil is retracted and the coil is excited with a pulse current of 10,000 amperes or more by the magnetizing power supply (power supply such as capacitor charging and discharging). is there .
こ の励磁に よ る 着磁は成形加工段階の射出圧縮加圧後の冷却段階で 行な う も のであ る 。  Magnetization by this excitation is performed in the cooling stage after the injection compression and pressurization in the forming stage.
こ れに よ り 、 成形作業中 (射出成形中、 ま た は圧縮成形中) に着磁 が可能 と な り 、 従来の よ う に、 製品を取 り だ し 、 着磁 コ イ ルで従来 行な っ て い た極異方性であ る た め に行な う 極合わせな どの手間をか け る こ と な く 、 成形 と 同時に正確に極に合た着磁が可能 と な っ た。 図面の簡単な説明  As a result, magnetization can be performed during the molding operation (during injection molding or compression molding), and the product can be taken out as before, and the magnetized coil can be used. Because of the polar anisotropy that had been done, it was possible to accurately magnetize the poles at the same time as molding without the need for extra work such as pole alignment. . BRIEF DESCRIPTION OF THE FIGURES
第 1 図 は 1 0 極の極異方性を持 っ た ロ ー タ を示す側面図  Fig. 1 is a side view showing a rotor with 10 poles of polar anisotropy.
第 2 図 は従来の極異方性ロ ー タ の金型の構造図 Figure 2 shows the structure of a conventional polar anisotropic rotor mold.
第 3 図は本発明 に な る と こ ろ の極異方性 ロ ー タ の金型の構造図 第 4 図は本発明 よ る ド フ ラ イ ト 磁粉の結晶構造を示す説明図 第 5 図は本発明 に係わ る 極異方性成形 し た フ ヱ ラ イ ト プ ラ ス チ ッ ク 磁石の磁粉配列を図形的に示 し た も のであ る 。 D 第 6 図は本発明 よ る 稀土類磁粉の結晶構造を示す説明図 FIG. 3 is a structural diagram of a mold of the polar anisotropic rotor according to the present invention. FIG. 4 is an explanatory diagram showing a crystal structure of the magnetic powder of the graphite according to the present invention. Fig. 1 is a diagram schematically showing an arrangement of magnetic particles of a polar plastic magnet formed according to the present invention and formed by polar anisotropy. D Fig. 6 is an explanatory diagram showing the crystal structure of the rare earth magnetic powder according to the present invention.
第 7 図は本発明に係わ る極異方性成形 し た稀土類プ' ½ ス チ ッ ク 磁石 の磁粉配列を図形的に示 し た も のであ る 。 発明を実施す る た めの最良の形態 FIG. 7 is a diagram schematically showing an arrangement of magnetic particles of a rare earth plastic magnet formed by polar anisotropy according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り 詳細に説述す る た め に添付の図面に従 っ て こ れを説 明す る。  The present invention will be described in more detail with reference to the accompanying drawings.
第 4 図 は本発明に係わ る ス ト ロ ン チ ュ ウ ム フ ヱ ラ イ ト磁粉、 ま た は ノ、 * リ ゥ ム フ ヱ ラ イ ト の磁粉の C面径 D に対す る C軸長さ L の比 (ァ スぺ ク ト 比) を、 1 ; 1 か ら 1 ; 5 に し た も の の磁粉構造を示 す も のであ る 。  FIG. 4 is a graph showing the relationship between the diameter of the C-face diameter D of the magnetic powder of the strontium filament and the magnet powder of the present invention. This shows the magnetic powder structure in which the ratio (axial ratio) of the shaft length L is from 1; 1 to 1; 5.
こ の よ う な磁粉構造にする こ と で、 結晶軸方向に磁粉粒子を結晶成 長さ せ る こ と にな り 、 結晶軸に結晶異方性効果が発生す る。 By adopting such a magnetic powder structure, the magnetic powder particles grow in the crystal axis direction, and a crystal anisotropic effect occurs on the crystal axis.
さ ら に、 C面に比 し、 C軸を長 く 取る こ と にな り 、 結晶異方性方向 に、 形状異方性効果が発生 し、 結晶異方性効果に、 さ ら に形状異方 性効果が付加 さ れる。 Furthermore, the C-axis is longer than the C-plane, so that the shape anisotropy effect occurs in the crystal anisotropy direction, and the crystal anisotropy effect further increases An anisotropic effect is added.
以上、 説明 し た磁粉の長い部分の大 き さ は 3 〜 5 m iであ り 、 さ ら に、 l 〜 3 m /iの中型、 l m /i以下の小型の 3種類の磁粉、 必要と す る 磁気特性、 機械特性に合わせて、 任意の割合に混合す る。 The size of the long part of the magnetic powder described above is 3 to 5 mi, and three types of small magnetic powder of l to 3 m / i, medium and lm / i or less are required. Mix according to the desired magnetic and mechanical properties.
中型磁粉およ び小型磁粉 も、 大型磁粉 と 同 じ よ う に結晶異方性、 形 状異方性の効果を持っ た磁粉であ る こ と が望ま し いが、 製法上、 加 ェがで き な い場合は、 結晶異方性効果並びに形状異方性効果を持た な い も ので も よ い。 It is desirable that the medium-sized magnetic powder and the small-sized magnetic powder have the same crystal anisotropy and shape anisotropy as the large-sized magnetic powder. In the case where it cannot be performed, it is acceptable that neither crystal anisotropic effect nor shape anisotropic effect is provided.
上記、 混合磁粉を 0. 5 ~ 1 . 5冒 t%の シラ ンカ ッ プ リ ン グ剤、 お よび、 ま たはチ タ ン カ ッ プ リ ン グ剤で表面処理 し、 The surface of the mixed magnetic powder is treated with a silane coupling agent of 0.5 to 1.5% by weight and / or a titanium coupling agent,
1 . 0 〜 2 . 0 %可塑剤お よ び、 ま た は 1.0-2.0% plasticizer and / or
0 . 1 〜 0. 5 *t%の離型剤 と を加えて、 8 〜 : L 2 *t%の熱可塑性 樹脂 ま た は 3 ~ 4 wt%の熱硬化性樹脂 と と も に、 混練 し、 ペ レ ツ ト に し た。 以上述べた構成の ス ト ロ ン チ ュ ウ ム フ ヱ ラ イ ト 磁粉 と 熱可塑性樹脂 と を混練 し て得たペ レ ツ ト を用 い て、 磁場中で射出成形 し た結果、 従来、 表面磁束密度が 1 7 0 0 Gauss であ っ た も のが 0.1 to 0.5 * t% of release agent and 8 to: L2 * t% of thermoplastic resin or 3 to 4 wt% of thermosetting resin and kneading And turned it into a pellet. As a result of injection molding in a magnetic field using a pellet obtained by kneading the strong carbon powder and thermoplastic resin having the above-described configuration, the Although the surface magnetic flux density was 170 Gauss,
2 0 0 0 Gauss に も達 し た。  It reached 200 Gauss.
特に、 磁場中での異方性効果を増強す る ため、 従来、 ス ト ロ ン チ ュ ゥ ム フ X ラ イ ト の残留磁束密度 ( B r ) が 2 2 7 6 Gauss であ っ た も の を 3 1 0 0 Gauss と し 、 固有保磁力 ( i H c ) につ い て は、 従 来、 3 1 1 O Oestedを 2 6 4 O Oestedと し て、 磁粉 と し て、 H 。 の 比較的小さ い も の を用 いた。  In particular, in order to enhance the anisotropy effect in a magnetic field, the residual magnetic flux density (Br) of the stronium film X-light has conventionally been 2276 Gauss. Is set to 3100 Gauss, and the intrinsic coercive force (iHc) is conventionally set to 311 O Oested as 264 O Oested, and H as the magnetic powder. A relatively small one was used.
上記説明 に、 可塑剤お よ び離型剤を磁粉 と樹脂の混練時に、 加え る こ と を述べたが、 必要に応 じ て、 こ れ ら を除いて も よ い。  In the above description, the plasticizer and the release agent are added at the time of kneading the magnetic powder and the resin. However, these may be omitted as necessary.
第 5 図は N極 1 8 及び S 極 1 9 を磁極 と し て、 極異方性着磁成形を し た と き の プラ ス チ ッ ク 磁石の 内部の磁粉の配列を示 し た も の であ る o  Fig. 5 shows the arrangement of the magnetic powder inside the plastic magnet when polar anisotropic magnetization molding was performed with the N pole 18 and the S pole 19 as the magnetic poles. O
第 4 図に示す 3 〜 5 m (大型) 班粉 1 5 と l 〜 3 m i の 中型の磁 粉 1 6 と I m 以下の磁粉 1 7 が N極 1 8 およ び S 極 1 9 では磁極 の 内部磁界の方向 に 向か っ て き れい に配列 し てい る 。 As shown in Fig. 4, 3 to 5 m (large) dust particles 15, medium-sized magnetic particles 16 to 1 to 3 mi, and magnetic particles 17 below Im are magnetic poles at N pole 18 and S pole 19. They are arranged neatly in the direction of the internal magnetic field.
中性点 2 0 . 2 1 にお いて は磁粉の配列 はな い。 There is no arrangement of magnetic particles at neutral point 20.21.
表面磁束密度が、 2 0 0 0 Gauss を示 し た も の は第 5 図の よ う な磁 粉配列を示 し てい た。 Those having a surface magnetic flux density of 2000 Gauss showed a magnetic particle arrangement as shown in FIG.
ま た第 6 図は本発明 に係わ る N d _ F e — B 系の磁粉、 ま た は S m — C o 系の磁粉の C 面径 D に対す る C 袖長 さ L の比 (ァ スぺ ク ト 比) を、 1 ; 1 か ら 1 ; 5 に し た も の の磁粉構造を示す も の であ る o  Fig. 6 shows the ratio of the C sleeve length L to the C face diameter D of the Nd_Fe-B-based magnetic powder or Sm-Co-based magnetic powder according to the present invention ( The ratio of the magnetic powder is from 1; 1 to 1; 5.
こ の よ う な磁粉構造にす る こ と で、 結晶軸方向 に磁粉粒子を結晶成 長 さ せ る こ と に な り 、 結晶軸方向 に結晶異方性効果が発生す る 。 さ ら に、 C 面に比 し 、 C 軸を長 く 取 る こ と に な り 、 結晶異方性方向 と 同一方向に、 形状異方性効果が発生 し 、 結晶異方性効果 に、 さ ら に形状異方性効果が付加 さ れ る 。 以上、 説明 し た磁粉の長い部分の大 き さ は、 By adopting such a magnetic powder structure, the magnetic powder particles grow in the crystal axis direction, and a crystal anisotropic effect occurs in the crystal axis direction. Furthermore, the C-axis is longer than the C-plane, so that the shape anisotropy effect occurs in the same direction as the crystal anisotropy direction. Further, a shape anisotropy effect is added. The size of the long part of the magnetic powder described above is
焼結法に よ り 、 製造 し た場合、 When manufactured by the sintering method,
4 〜 5 m # であ り 、 さ ら に、 l 〜 3 m ^ の 中型、  4 to 5 m #, and medium to l to 3 m ^
l m // 以下の小型の 3 種類の磁粉を必要 とす る磁気特性、 機械特性 に合わせて、 任意の割合に混合す る 。 l m // Mix the following three types of small magnetic powders in an arbitrary ratio according to the required magnetic and mechanical properties.
ま た、 高速固化法に よ り 、 製造 し た場合、 Also, when manufactured by the high-speed solidification method,
0 . 0 5 〜 0 . l m / であ り 、 さ ら に、 0 . 0 3 〜 0 . 0 5 m /i の 中型、 0 . 0 3 m j ^ 以下の小型の 3 種類の磁粉を必要 とす る磁気特 性、 機械特性に合わせて、 任意の割合に混合す る 。  0.05 to 0.05 lm /, and also requires three types of small magnetic powder of 0.33 to 0.05 m / i, medium size and 0.03 mj ^ or less. Mix in an arbitrary ratio according to the magnetic and mechanical properties.
中型およ び小型磁粉 も 大型班粉 と 同 じ よ う に結晶異方性、 形状異方 性の効果を持 っ た磁粉であ る こ とが望ま し いが、 製法上、 加工がで き な い場合は、 結晶異方性効果並びに形伏異法性効果を持たな い も ので も よ い。 It is desirable that the medium and small magnetic powders have the same crystal anisotropy and shape anisotropy as large-sized powder, but they can be processed due to the manufacturing method. If they do not exist, it is acceptable if they do not have the crystal anisotropy effect and the shape irregularity effect.
上記の混合磁粉を 0 . 5 〜 1 . 5 nt%の シラ ン カ ッ プ リ ン グ剤、 お よ び、 ま たはチ タ ン カ ッ プ リ ン グ剤で表面処理 し、 The above-mentioned mixed magnetic powder is surface-treated with 0.5 to 1.5 nt% of a silane coupling agent and / or a titanium coupling agent,
1 . 0 〜 2 . 0 ,t%可塑剤およ び、 ま た は 0 . 1 〜 0 , 5 %の離 型剤 と を加えて、 8 〜 2 0 1^%の熱可塑性樹脂ま た は 3 〜 4 *t%の 熱硬化性樹脂 と と も に、 混練 し、 ペ レ ツ ト にす る 。  1.0-2.0, t% plasticizer and / or 0.1-0.5% of mold release agent, add 8-21% of thermoplastic resin or It is kneaded with 3 to 4 * t% of thermosetting resin to form a pellet.
以上述べた構成の N d — F e — B 系磁粉、 ま た は S m — C o 系磁粉 と熱可塑性樹脂ま た は熱硬化性樹脂 と を混練 し て得たペ レ ツ ト を用 いて、 磁場中で射出成形、 ま た は圧縮成形 し た結果、 従来の表面磁 束密度の 1 〜 2 割の向上が認め ら れた。 A pellet obtained by kneading the Nd-Fe-B-based magnetic powder or the Sm-Co-based magnetic powder and the thermoplastic resin or the thermosetting resin having the above-described configuration is used. However, as a result of injection molding or compression molding in a magnetic field, an improvement of 10 to 20% of the conventional surface magnetic flux density was observed.
特に、 磁場中での異方性効果を増強する ため、 N d — F e — B 系磁 粉、 ま た は S m — C o 系磁粉の中で残留磁束密度 ( B r ) が大き く 固有保持力 ( i H c ) の比較的小さ い も のを用 い た。 In particular, in order to enhance the anisotropy effect in a magnetic field, the residual magnetic flux density (B r) is large and unique among Nd-Fe-B-based magnetic powder or Sm-Co-based magnetic powder. Those with relatively low holding power (iHc) were used.
上記説明 に、 可塑剤およ び雜型剤を磁粉 と樹脂の混練時に、 加え る こ と を述べたが、 必要に応 じ て、 こ れ ら を除いて も よ い。 In the above description, the plasticizer and the molding agent are added at the time of kneading the magnetic powder and the resin, but these may be removed as necessary.
第 7 図は N極 2 5 及び S 極 2 6 を磁 Sと して、 極異方性着磁成形を し た と き の プラ ス チ ッ ク 磁石の内部の磁粉の配列を示 し た も の であ る Q Fig. 7 shows the arrangement of magnetic powder inside the plastic magnet when polar anisotropic magnetization molding was performed using the N pole 25 and the S pole 26 as the magnetic S. In Q
第 6 図に示す 3 〜 5 m /i ( 0 . 0 5 〜 0 . l m /i ) の大型の磁粉 2 2 と l 〜 3 m / ( 0 . 0 3 〜 0 . 0 5 m // ) 中型の磁粉 2 3 と 1 m β ( 0 . 0 3 m ju ) 以下の磁粉 2 4 が Ν極 2 5 お よ び S 極 2 6 では磁極の 内部磁界の方向 に 向か っ て き れい に配列 し てい る 。 中性 点 2 7 , 2 8 に お い て は磁粉の配列 は な い。 残留磁束密度が 1 〜 2 割向上 し た も の は第 7 図の よ う な磁粉配列を示 し てい た。  Large magnetic powder 22 of 3 to 5 m / i (0.05 to 0.05 lm / i) and l to 3 m / (0.03 to 0.05 m //) shown in Fig. 6 Magnetic particles 23 and magnetic particles 24 of 1 mβ (0.03 m ju) or less are arranged neatly in the direction of the internal magnetic field of the magnetic pole at the negative pole 25 and the south pole 26. ing . There is no arrangement of magnetic particles at neutral points 27 and 28. The one with improved residual magnetic flux density by 10 to 20% showed a magnetic particle arrangement as shown in Fig. 7.
第 3 図 は本発明に よ る極異方性同時着磁金型の構造を示す。 キ ヤ ビテ ィ 1 の周 囲に稀土類系磁石か ら な る 永久磁石 2 が製品の極数に 相当す る 数だ け配置 さ れてい る 。  FIG. 3 shows the structure of a polar anisotropic co-magnetizing mold according to the present invention. Permanent magnets 2 made of rare earth magnets are arranged around the cavity 1 in a number corresponding to the number of poles of the product.
こ の永久磁石 2 、 3 、 4 はキ ヤ ビテ ィ 1 側 に磁極 ( N極) 5 が来 る よ う に非磁性材料 1 4 の中 に配置 さ れ、 こ の極は キ ヤ ビチ イ 1 に 向 けて N極、 S 極が交互に配置 さ れ、 永久磁石 2 と 永久磁石 3 と の間 に は コ イ ル 6 が配置 さ れてお り 、 コ イ ルを流れる電流の方向が永久 磁石 2 の磁極 5 を N極にす る よ う な 配線 に な っ てい る 。 ま た、 コ ィ ル 6 は第 3 図の よ う に捲回 さ れてい る た め、 永久磁石 2 の キ ヤ ビテ ィ 側の磁極に は N極、 永久磁石 3 に は S 極が発生 し、 永久磁石を励 磁す る こ と に な る 。  The permanent magnets 2, 3, and 4 are arranged in the non-magnetic material 14 so that the magnetic pole (N pole) 5 comes to the cavity 1 side. The N pole and the S pole are alternately arranged toward the coil, and the coil 6 is arranged between the permanent magnet 2 and the permanent magnet 3 so that the direction of the current flowing through the coil is permanent. The wiring is such that the magnetic pole 5 of the magnet 2 is set to the N pole. Since coil 6 is wound as shown in Fig. 3, an N pole is generated at the magnetic pole on the cavity side of the permanent magnet 2, and an S pole is generated at the permanent magnet 3. Then, the permanent magnet is excited.
射出成形加工の射出圧縮加圧後の冷却段階で コ イ ルに コ ン デ ン サ 一 放電な どの電源か ら電流を流す こ と に よ り 、 成形 さ れた製品の 口 一 夕 が何等極合わせす る こ と な し に、 正確 に着磁可能に な っ た。 By supplying current from a power source such as a capacitor and discharge to the coil at the cooling stage after injection compression in the injection molding process, the mouth of the molded product can have a uniform polarity. It was possible to accurately magnetize without having to match.
こ の よ う に コ イ ルが捲回 さ れてい る た め 、 そ れぞれの極異方化用永 久磁石 3 、 4 · · が交互に N , S , N極 と 励磁さ れ、 極異方化用永 久磁石を再着磁さ せ る 効果 も持たせ た も のであ る 。 射出成形の射出 圧縮加圧過程で も 、 磁場を加え る こ と が可能で、 さ ら に、 異方性効 果を向上 さ せ る こ と が可能に な っ た。 Since the coil is wound in this way, the respective permanent magnets for pole anisotropy 3, 4 are alternately excited with N, S, and N poles, respectively. It also has the effect of re-magnetizing the permanent magnet for pole anisotropy. A magnetic field can be applied even in the injection compression / pressurization process of injection molding, and the anisotropic effect can be improved.
第 2 図お よ び第 3 図 は金型の構造図を示 し 、 1 2 は突 き 出 し ピ ン を 示す。 Figures 2 and 3 show the structure of the mold, and 12 shows the protruding pins.
1 3 は金型のパー テ ィ グラ イ ン を示 し 、 1 4 は永久磁石 2 , 3 , 4 を固定す る金型の非磁性材料部分を示 し てい る。 13 indicates the mold parting line, and 14 indicates the permanent magnets 2, 3, 4 The figure shows the non-magnetic material part of the mold for fixing the mold.
15' は励磁コ イ ル 6 の電源端子を示す。  15 'indicates the power supply terminal of the excitation coil 6.
第 1 図 は極異方性で成形 し た 1 0極の ロ ー タ 7 を示 し 、 Fig. 1 shows a 10-pole rotor 7 molded with polar anisotropy.
N S 8、 1 0 --· S極 9、 1 1 …が施さ れて い る一実施例を示 し た 産業上の利用可能性  NS 8, 10-industrial applicability showing one embodiment with S poles 9, 11 ...
1' ) 本発明の よ う な磁粉構成とす る こ と よ り 、 成形 し た フ ユ ラ イ ト プラ スチ ッ ク 磁石は、 従来の も の に比べ、 磁束密度が 1 0 %も 向上 さ せ る こ とがで き た。 1 ') With the magnetic powder composition as in the present invention, the molded plastic plastic magnet has a magnetic flux density improved by 10% as compared with the conventional one. I was able to do it.
2 ) 本発明の大、 中、 小の磁粉が互い に磁石の中で、 く み あ い密度 を高めてい る と 同時に磁粉の表面処理剤 と変成 し た 1 2 ナ イ ロ ン の 効果で結合力が増加 し、 軸 と の圧入代 0 . 1 麗程度の強圧入を して も何等、 割れ る こ と の ない プラ ス チ ッ ク 磁石 とす る こ と がで き た。 3 ) 本発明の よ う な磁粉構成 と す る こ と によ り 、 成形 し た 2) The large, medium, and small magnetic powders of the present invention increase the density of each other in the magnets, and at the same time, combine with the surface treatment agent of the magnetic powders due to the effect of the modified 12-iron. As the force increased, it was possible to produce a plastic magnet that would not break at all, even if the press-fit for the shaft was about 0.1 mm. 3) Molded by using the magnetic powder composition as in the present invention.
N d — F e — B系プラ スチ ッ ク 磁石、 ま たは S m— C o 系プラ ス チ ッ ク 磁石は、 従来の も の に比べ、 磁束密度が 1 0 % ~ 2 0 %も 向上 さ せ る こ とがで き た。 Nd-Fe-B plastic magnets or Sm-Co plastic magnets have a 10% to 20% improvement in magnetic flux density compared to conventional magnets I was able to make it happen.
4 ) 本発明は従来の稀土類系永久磁石を埋め込んだ極異方性金型に コ イ ルを組み込む こ と に よ り 製品を取 り 出 し、 極合わせ付 き着磁コ ィ ルで着磁す る こ と な く 成形機で成形中 に精度よ く 着磁で き る の で 生産性が向上 し た。 さ ら に、 極異方性用稀土類磁石の減磁を常に、 防 ぐ こ と がで き る ので、 金型の メ ン テナ ン ス性が著 し く 向上 し た。 ロ ー タ 以外の極異方性の製品に も 、 コ ィ ル組み込み金型が応用で き 生産性の 向上、 製造コ ス ト の低減な ど図 る こ とがで き る ので、 非常 に有効な手段であ る。  4) The present invention takes out the product by incorporating the coil into a conventional polar anisotropic mold in which a rare earth permanent magnet is embedded, and magnetizes it with a magnetizing coil with pole matching. Since the magnets can be magnetized with high precision during molding with a molding machine, productivity has improved. Furthermore, since the demagnetization of the rare-earth magnet for polar anisotropy can always be prevented, the maintainability of the mold has been significantly improved. Extremely effective because the coil-embedded mold can be applied to polar anisotropic products other than the rotor, which can improve productivity and reduce manufacturing costs. It is an important means.

Claims

請 求 の 範 囲 . ノ リ ウ ム フ ェ ラ イ ト ま た は、 ス ト ロ ン チ ュ ウ ム フ ェ ラ イ ト の結 晶面の径に対す る 結晶軸 ( C軸) の長 さ と の ァ ス ぺ ク ト 比を、 1 ; 1 - 1 ; 5 と し 、 結晶軸の長 さ が、 4 〜 5 m 〃 と し た磁粉 と 粉径 l ~ 3 m 〃 の磁粉 と 、 粉径 l m ju以下の磁粉 と の 3 種の磁粉につ い て、 該 3種の磁粉を任意の割合に、 混合 し た混合磁粉を製作 し 、 該混合磁粉を 0. 5 〜 1 . 5 *t%の シ ラ ン カ ッ プ リ ン グ剤 ま た は お よ びチ タ ン カ ツ プ リ ン グ剤で表面処理を し、 ま た は、 表面処理な し の ま ま で、 Scope of the claim: The length of the crystal axis (C axis) relative to the diameter of the crystal face of the normium ferrite or the stronium ferrite Magnetic powder with a crystal axis length of 4 to 5 m〃, a magnetic powder with a particle diameter of l to 3 m〃, and a particle diameter of 1; 1-1; 5; For the three types of magnetic powders of lm ju or less, mixed magnetic powders were prepared by mixing the three types of magnetic powders in an arbitrary ratio, and the mixed magnetic powders were mixed in a range of 0.5 to 1.5 * t%. Surface treatment with a silane coupling agent or titanium coupling agent of this type, or without any surface treatment,
1 . 0 ~ 2 . O wt%可塑剤 と 、  1.0 ~ 2.0 wt% plasticizer and
0. 1 〜 0. 5 冒 t%離型剤 と を加えて、  0.1 to 0.5
熱可塑性樹脂、 ま た は、 熱硬化性樹脂 と と も に混練 し、 さ ら に、 ペ レ ツ ト を製造 し、  Knead with thermoplastic resin or thermosetting resin, and further produce pellets,
ί3 m C o γ ^ o m 1 C o 5 , S ni 2 C o i 7ソ ,  ί3 m C o γ ^ o m 1 C o 5, S ni 2 C o i 7
N d _ F e _ B の稀土類永久磁石を金型中 に埋め込み、  Nd_Fe_B rare earth permanent magnets are embedded in the mold,
成形中 に、 異方性配向を さ せ、 Anisotropic orientation during molding
さ ら に金型中に コ イ ルを捲回 し、 同一金型にて極異方性成形 と 着 磁 も兼ね、 さ ら に埋め込み永久磁石の減磁に対す る 再着磁す る 効 果 も持せた極異方性プラ ス チ ッ ク 磁石用金型を用意 し、  In addition, the coil is wound in the mold, and the same mold is used for both polar anisotropic molding and magnetization, and the effect of re-magnetization against demagnetization of the embedded permanent magnet is also achieved. Prepare a mold for polar anisotropic plastic magnets
該ペ レ ツ ト を該極異方性プ ラ ス チ ッ ク 磁石用金型で射出成形ま た は、 圧縮成形 し た こ と を特徵 と す る 極異方性プラ ス チ ッ ク ボ ン デ ッ ト 磁石。 A polar anisotropic plastic box characterized in that the pellet is injection-molded or compression-molded with the polar anisotropic plastic magnet mold. Dead magnet.
. N d — F e _ B系磁粉 ま た は、 S m — C o 系磁粉の結晶面の径 に対す る結晶軸 ( C軸) の長 さ と の ア スペ ク ト 比を 、 1 ; 1 〜 1 ; 5 と し 、 The aspect ratio of the length of the crystal axis (C-axis) to the diameter of the crystal plane of the Nd-Fe_B-based magnetic powder or Sm-Co-based magnetic powder is 1; 1 ~ 1; 5 and
焼結法 に よ り 、 製造 し た磁粉の場合の結晶軸の長 さ が、 3 〜 5 m // と し た磁粉 と 、 粉径 l ~ 3 m /i の磁粉 と 、 According to the sintering method, the length of the crystal axis in the case of the manufactured magnetic powder is 3 to 5 m // Magnetic powder with a powder diameter of l ~ 3 m / i, and
粉径 l m jti 以下の磁粉 と の 3 種の磁粉につ いて、 '· For the three types of magnetic powder, magnetic powder with a particle diameter of l m jti or less,
ま た、 高速固化法に よ り 、 製造 し た場合の磁粉の結晶軸の長 さ が 0 . 0 5 〜 0 . 1 πι /ί と し た磁粉 と、 In addition, a magnetic powder in which the crystal axis length of the manufactured magnetic powder is 0.05 to 0.1 πι / ί by the high-speed solidification method,
粉径 0 . 0 3 ~ 0 . 0 5 m /i の磁粉 と 、 A magnetic powder with a particle size of 0.3 to 0.05 m / i,
粉径 0 . 0 3 m 以下の磁粉 と の 3 種の磁粉につ い て、 For the three types of magnetic powders, one with a powder diameter of 0.3 m or less,
該 3 種の磁粉を任意の割合に、 混合 し た混合磁粉を製作 し、 該混合磁粉を 0 . 5 ~ 1 . 5 wt%の シ ラ ン カ ッ プ リ ン グ剤ま た は およびチ タ ンカ ッ プ リ ン グ剤で表面処理を し、 A mixed magnetic powder is prepared by mixing the three types of magnetic powder in an arbitrary ratio, and the mixed magnetic powder is mixed with 0.5 to 1.5 wt% of a silane coupling agent or titanium. Surface treatment with coupling ring
ま たは、 表面処理な し の ま ま で、 Or, without surface treatment
1 . 0 〜 2 . 0 wt% の可塑剤 と 1.0 to 2.0 wt% plasticizer
0 . 1 〜 0 . 5 irt% の離型剤 と を加えて、 0.1 to 0.5 irt% of release agent and
熱可塑性樹脂、 ま た は、 熱硬化性樹脂 と と も に混練 し、 さ ら に、 ペ レ ツ ト を製造 し、 Kneaded with thermoplastic resin or thermosetting resin to produce pellets,
S ni x C o y ( S m i C o 5 , S m 2 C o i 7) , S ni x C oy (S mi Co 5 , S m 2 Coi 7 ),
N d — F e 一 B の稀土類永久磁石を金型中 に埋め込み、  N d — Fe-B rare earth permanent magnets are embedded in the mold,
成形中に、 異方性配向を させ、 During molding, anisotropic orientation is
さ ら に金型中に コ イ ルを捲回 し、 同一金型にて極異方性成形 と着 磁 も兼ね、 さ ら に埋め込み永久磁石の減磁に対す る再着磁す る効 果 も持せた極異方性プラ スチ ッ ク 磁石用金型を用意 し、 In addition, the coil is wound into a mold, and the same mold is used for both polar anisotropic molding and magnetization, and the effect of re-magnetization against demagnetization of embedded permanent magnets is also achieved. Prepare a mold for polar anisotropic plastic magnets
該ペ レ ツ ト を該極異方性プラ ス チ ッ ク 磁石用金型で射出成形ま た は、 圧縮成形 し た こ と を特徵 と す る 請求の範囲第 1 項記載の極 異方性プラ ス チ ッ ク ボ ン デ ッ ト 磁石。  The polar anisotropy according to claim 1, characterized in that the pellet is injection-molded or compression-molded with the mold for a polar-anisotropic plastic magnet. Plastic bonded magnet.
PCT/JP1990/000827 1989-07-24 1990-06-26 Anisotropic plastic-bonded magnet WO1991001562A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP1/85741(U) 1989-07-24
JP8574189U JPH0325220U (en) 1989-07-24 1989-07-24
JP2/93864 1990-04-11
JP9386490A JPH03292702A (en) 1990-04-11 1990-04-11 Plastic bonded magnet
JP2111705A JPH0411701A (en) 1990-05-01 1990-05-01 Plastic-bonded magnet
JP2/111705 1990-05-01

Publications (1)

Publication Number Publication Date
WO1991001562A1 true WO1991001562A1 (en) 1991-02-07

Family

ID=27304946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000827 WO1991001562A1 (en) 1989-07-24 1990-06-26 Anisotropic plastic-bonded magnet

Country Status (1)

Country Link
WO (1) WO1991001562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328500B2 (en) * 2003-08-13 2008-02-12 Jahwa Electronics Co., Ltd. Method of manufacturing laminated polar anisotropic hybrid magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589462A (en) * 1978-12-26 1980-07-07 Seiko Epson Corp Manufacturing method of intermetallic compound magnet
JPS6010278A (en) * 1983-06-29 1985-01-19 Hitachi Metals Ltd Manufacture of anisotropic cylindrical magnet
JPS61170002A (en) * 1985-01-23 1986-07-31 Matsushita Electric Ind Co Ltd Manufacture of anisotropic resin binding type magnet
JPS6448402A (en) * 1987-08-19 1989-02-22 Dainippon Ink & Chemicals Magnet
JPH01131259A (en) * 1987-11-16 1989-05-24 Chisso Corp Plastic magnet composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589462A (en) * 1978-12-26 1980-07-07 Seiko Epson Corp Manufacturing method of intermetallic compound magnet
JPS6010278A (en) * 1983-06-29 1985-01-19 Hitachi Metals Ltd Manufacture of anisotropic cylindrical magnet
JPS61170002A (en) * 1985-01-23 1986-07-31 Matsushita Electric Ind Co Ltd Manufacture of anisotropic resin binding type magnet
JPS6448402A (en) * 1987-08-19 1989-02-22 Dainippon Ink & Chemicals Magnet
JPH01131259A (en) * 1987-11-16 1989-05-24 Chisso Corp Plastic magnet composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328500B2 (en) * 2003-08-13 2008-02-12 Jahwa Electronics Co., Ltd. Method of manufacturing laminated polar anisotropic hybrid magnet

Similar Documents

Publication Publication Date Title
KR100237097B1 (en) Rare-earth magnetic powder, permanent magnet produced therefrom and process for for producing them
JP2016115923A (en) ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTY AND METHOD OF PREPARING THE SAME
Hamada et al. Development of Nd-Fe-B anisotropic bonded magnet with 27 MGOe
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JP2016066675A (en) Rare earth isotropic bond magnet
WO1991001562A1 (en) Anisotropic plastic-bonded magnet
JP2004296873A (en) Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JPH0559572B2 (en)
CN105206416A (en) Orientation press method of neodymium-iron-boron magnet
JPH0687634B2 (en) Permanent magnet type motor
JPH0471205A (en) Manufacture of bond magnet
JPH04112504A (en) Manufacture of pare-earth magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPH0786070A (en) Manufacture of bond magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JP2001185412A (en) Anisotropic bonded magnet
JPS6271201A (en) Bond magnet
JP2003257767A (en) Manufacturing method for permanent magnet, and pressing device
JPS6037112A (en) Manufacture of anisotropic composite magnet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642