JPS6010278A - Manufacture of anisotropic cylindrical magnet - Google Patents

Manufacture of anisotropic cylindrical magnet

Info

Publication number
JPS6010278A
JPS6010278A JP11786383A JP11786383A JPS6010278A JP S6010278 A JPS6010278 A JP S6010278A JP 11786383 A JP11786383 A JP 11786383A JP 11786383 A JP11786383 A JP 11786383A JP S6010278 A JPS6010278 A JP S6010278A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
magnetic field
cylindrical
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11786383A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Shuichi Shiina
椎名 修一
Kimio Uchida
内田 公穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11786383A priority Critical patent/JPS6010278A/en
Publication of JPS6010278A publication Critical patent/JPS6010278A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration

Abstract

PURPOSE:To obtain a sufficiently anisotropic cylindrical resin magnet by using a die having a permanent magnet and a magnetic circuit including a yoke. CONSTITUTION:The die consists of rare earth cobalt magnets 31-34 magnetized radially around a cylindrical space 1 having a core 2 at the inside concentrically, magnetic field coils 41-44 and soft magnetic bodies 5, 6. A material made by adding polyamide resin to ferrite particles of average grain size 1mum and mixing at, for instance, 250 deg.C, is put in the die and cooled and solidified at a temperature of 270 deg.C and at a pressure of 70kg/cm<2>. This is formed, for instance, to 30mm.phi in outer diameter and 12mm.phi in inner diameter, and worked to the external form of 24mm.phi. Thus, a magnet having magnetic flux density distribution of an anisotropic cylindrical magnet can be obtained.

Description

【発明の詳細な説明】 本発明は強磁性粉末と高分子化合物を含む混線物を磁場
中で加圧成形する工程を含む異方性円筒磁石の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anisotropic cylindrical magnet, which includes a step of press-molding a mixed material containing a ferromagnetic powder and a polymer compound in a magnetic field.

電子写真複写機、ファクシミリ、プリンター等の画像再
生装置(乾式)においては、磁性現像剤(磁性キャリア
とトナーとの混合粉体である二成分現像剤あるいは一成
分系の磁性トナー等)の搬送手段(例えば現像ロールあ
るいはクリーニングロール等)として、非磁性スリーブ
の内部に複数個の磁極を有する永久磁石部材を設置し1
両者を相対的に回転させるように構成したマグネットロ
ールが一般に使用されている。
In image reproducing devices (dry type) such as electrophotographic copying machines, facsimile machines, and printers, a means for transporting magnetic developer (two-component developer that is a mixed powder of magnetic carrier and toner, or one-component magnetic toner, etc.) A permanent magnet member having a plurality of magnetic poles is installed inside a non-magnetic sleeve as a developing roll or cleaning roll, etc.
A magnetic roll configured to rotate the two relative to each other is generally used.

上記のマグネットロールにも種々の構造のものがあり5
例えば実公昭57−9798号公報に記載されているよ
うな、フェライト粉末を磁場中でプレス成形後焼結して
得られる長尺の異方性ブロック磁石を軸の周囲に固定し
て形成した永久磁石部材を用いるもの、あるいはハード
フェライトからなる円筒状永久磁石を軸に固着して形成
した永久磁石部材を用いるもの(例えば特公昭55−6
907号公報、特公昭55−47045号公報参照)な
どが挙げられる。しかるに前者の場合は1組立工数が大
となるおよび低温減磁が生ずるなどの問題があり。
The magnetic rolls mentioned above also have various structures5.
For example, as described in Utility Model Publication No. 57-9798, a permanent magnet is formed by fixing a long anisotropic block magnet obtained by press-molding ferrite powder in a magnetic field and then sintering it around a shaft. Those using a magnetic member, or those using a permanent magnet member formed by fixing a cylindrical permanent magnet made of hard ferrite to a shaft (for example,
907, and Japanese Patent Publication No. 55-47045). However, in the former case, there are problems such as a large number of assembly steps and low-temperature demagnetization.

一方後者の場合は磁極間部分にも磁石材料が使用されか
つ焼結体の密度も約517cdと大きいため重量が犬と
なるという問題がある。またフェライト磁石は、一般に
、材料自体が脆弱であることから焼結時あるいは焼結後
にクラックや割れが発生し易く1歩留が悪いという問題
もある。
On the other hand, in the latter case, the magnet material is also used in the part between the magnetic poles, and the density of the sintered body is as high as about 517 cd, so there is a problem in that it is heavy. In addition, ferrite magnets generally have a problem in that since the material itself is brittle, cracks are likely to occur during or after sintering, resulting in poor yield.

これに対して、主として軽量化のために強磁性粉末(一
般にはフェライト粉末が使用される)と高分子化合物(
一般にはゴム又はプラスチ・ツク材料が使用される)を
主体とする混線物を押出成形あるいは射出成形の手法に
より円筒状に一体に成形しついで冷却固化後着磁したい
わゆる樹脂磁石を用いたマグネットロールが提案され、
実用化が。
On the other hand, ferromagnetic powder (generally ferrite powder is used) and polymer compounds (
A magnet roll using a so-called resin magnet, which is made by integrally molding a mixed wire material (generally made of rubber or plastic material) into a cylindrical shape by extrusion molding or injection molding, and magnetizing it after cooling and solidifying it. is proposed,
Practical use.

検討されている。(例えば特開昭56−108207号
It is being considered. (For example, JP-A-56-108207.

同57−150407号、同57−164509号等の
各公報参照) この円筒状磁石を製造する場合、樹脂磁石は焼結磁石よ
りも密度が低いのでフェライト磁石と同等の磁気特性を
得るためには、冷却固化が完了するまでの間に強磁性粉
末の磁化容易軸を着磁後の磁石内部の磁力線方向に一致
させる。いわゆる異方性化の工程が必要なことは周知で
ある。(例えば実開昭51−62396号公報参照)異
方性を有する円筒状樹脂磁石(以下単に異方性円筒磁石
という)の製造方法についても種々の提案がなされてい
るが1例えば特公昭57−170501号公報に記載さ
れているような、成形空間を取囲んで磁性体ヨークと非
磁性スペーサを交互に組合せかつ外側に磁化コイルを設
置した金型を用いるかあるいは、成形空間の外周に磁化
コイルを埋設した金型を用いるのが一般的である。
(Refer to publications such as No. 57-150407 and No. 57-164509) When manufacturing this cylindrical magnet, resin magnets have lower density than sintered magnets, so in order to obtain magnetic properties equivalent to ferrite magnets, The axis of easy magnetization of the ferromagnetic powder is made to coincide with the direction of the lines of magnetic force inside the magnet after magnetization until cooling and solidification are completed. It is well known that a so-called anisotropy process is necessary. (For example, see Japanese Utility Model Publication No. 51-62396) Various proposals have been made regarding the manufacturing method of cylindrical resin magnets having anisotropy (hereinafter simply referred to as anisotropic cylindrical magnets). Use a mold in which magnetic yokes and non-magnetic spacers are alternately combined surrounding the molding space and magnetized coils are installed on the outside, as described in Japanese Patent No. 170501, or alternatively, magnetized coils are installed around the outer periphery of the molding space. It is common to use a mold in which the

しかしながら前者の金型を用いる場合は、成形空間内に
所定の強さの磁界を発生させるために。
However, when using the former mold, in order to generate a magnetic field of a predetermined strength within the molding space.

大電圧低電流型の電源を用いかつ磁化コイルの巻数を多
くして起磁力を大きくすることが行なわれるが1次のよ
うな欠点がある。すなわちコイル収容スペースが大とな
り設備が大型化してしまい。
The magnetomotive force is increased by using a high-voltage, low-current type power source and by increasing the number of turns of the magnetizing coil, but this method has disadvantages such as first order. In other words, the coil housing space becomes large and the equipment becomes larger.

更に金型の外側からヨークにより、磁化コイルで励磁さ
れた磁界を成形空間内に有効に収束させるために磁路長
さを長くせざるを得す、よって起磁力のかなりの部分が
漏洩磁束として消費されてしまう。
Furthermore, in order to effectively converge the magnetic field excited by the magnetizing coil into the molding space using the yoke from the outside of the mold, the length of the magnetic path must be made longer, so a considerable portion of the magnetomotive force is lost as leakage magnetic flux. It gets consumed.

一方後者の場合は、特公昭5B −8571号公報に記
載されているように、低電圧大電流型あるいはコンデン
サー型電源を用いて、コイルの巻数を少なくして大電流
を流して所定の起磁力を得ているが1次のような欠点が
ある。すなわち磁化コイル自体は比較的小型化が可能で
ありかつ磁化コイルが金型内にあるため磁路を短くして
磁束の漏洩を防止することも可能であるが、コイルに数
千アンペアの大電流を流すとジュール熱による著しい発
熱を生じるので大がかりな冷却機構が必要となる。
On the other hand, in the latter case, as described in Japanese Patent Publication No. 5B-8571, a low voltage, large current type or capacitor type power supply is used, and the number of turns of the coil is reduced, and a large current is passed to obtain a predetermined magnetomotive force. However, there are drawbacks such as the following. In other words, the magnetizing coil itself can be made relatively small, and since the magnetizing coil is inside the mold, it is possible to shorten the magnetic path and prevent magnetic flux leakage, but the coil requires a large current of several thousand amperes. If this happens, a large amount of heat will be generated due to Joule heat, so a large-scale cooling mechanism will be required.

しかも磁気特性の点からは、配向を高めるために金型を
保温して成形体の固化時間を長くする必要がある。従っ
てこの場合は、磁気特性をある程度無視して磁化コイル
を十分に冷却するかあるいはサイクル時間を長くして成
形能率をある程度無視せざるを得ない。また、この種の
コイルにおいてコンデンサ型磁化機を用いて5〜10m
5の瞬間的な磁界により配向させる方法もあり、この方
法であればジュール熱による発熱はある程度押えること
は可能である。しかしながらこの方法においては通常1
〜2zgcの成形時間に対して磁場印加時間が5〜10
m5と短いため、配向の部分的ばらつきが大きくまた強
い異方性を付与することは困離である。
Moreover, from the viewpoint of magnetic properties, it is necessary to keep the mold warm to increase the solidification time of the molded body in order to improve the orientation. Therefore, in this case, the magnetic properties must be ignored to some extent and the magnetizing coil must be sufficiently cooled, or the cycle time must be lengthened and the molding efficiency must be ignored to some extent. In addition, this type of coil can be used for 5 to 10 m using a capacitor type magnetizer.
There is also a method of orientation using an instantaneous magnetic field as described in No. 5, and with this method, it is possible to suppress heat generation due to Joule heat to some extent. However, in this method, usually 1
The magnetic field application time is 5 to 10 times for the molding time of ~2zgc.
Since the length is as short as m5, local variations in orientation are large and it is difficult to impart strong anisotropy.

本発明の目的は、上述の従来技術の欠点を解消し、比較
的簡単な設備で所定の磁気特性を有する永久磁石が得ら
れる異方性円筒磁石を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an anisotropic cylindrical magnet that eliminates the drawbacks of the prior art described above and allows a permanent magnet having predetermined magnetic properties to be obtained with relatively simple equipment.

本発明の異方性円筒磁石の製造方法は1強磁性粉末と高
分子化合物を主体とする混合物を磁場の存在下1円筒状
の成形空間を有する金型内で射出又は押出成形し、得ら
れた円筒状成形体の外周面に異方性方向と同方向の偶数
極着磁を施してなる異方性円筒磁石の製造方法において
、前記成形空間の周囲の磁極部分に対応する位置に各々
ヨークを設置しかつ各ヨークの外側にそれぞれ希土類コ
バルト磁石を設置す′ると共に、前記ヨーク間に磁場コ
イルを設置し、該磁場コイルにより前記成形空間の表面
にパルス磁場を印加しかつ前記希土類コバルト磁石によ
る静磁場を補助的に印加したどとを特徴としている。
The method for producing an anisotropic cylindrical magnet of the present invention involves injection or extrusion molding of a mixture mainly consisting of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field. In the method for manufacturing an anisotropic cylindrical magnet in which the outer peripheral surface of a cylindrical molded body is magnetized with even number of poles in the same direction as the anisotropy direction, yokes are provided at positions corresponding to magnetic pole portions around the molding space. and a rare earth cobalt magnet is installed on the outside of each yoke, and a magnetic field coil is installed between the yokes, and the magnetic field coil applies a pulsed magnetic field to the surface of the molding space, and the rare earth cobalt magnet It is characterized by the supplementary application of a static magnetic field.

以下本発明の詳細を図面により説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明に使用される金型の一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a mold used in the present invention.

第1図の金型は、内部にコア2を同心に設けてなる円筒
形の成形空間1の周囲に、半径方向に着磁された希土類
コバルト磁石51 + 32 + ’Is及び54を配
置し、これら磁石間5.−12.52−33.5.−5
4及び34−5.にはそれぞれ磁場コイル411421
4s及び44を設置し、そしてこれらの周囲を軟磁性体
からなるヨーク5で取り囲み又希土類コバルト磁石54
.52.53および34の内側にもそれぞれ軟磁性体か
らなるヨーク61.62.63および64を設けて構1
成されている。
In the mold shown in FIG. 1, radially magnetized rare earth cobalt magnets 51 + 32 + 'Is and 54 are arranged around a cylindrical molding space 1 in which a core 2 is provided concentrically. 5. Between these magnets. -12.52-33.5. -5
4 and 34-5. Each has a magnetic field coil 411421
4s and 44 are installed, and these are surrounded by a yoke 5 made of a soft magnetic material, and a rare earth cobalt magnet 54 is installed.
.. 52, 53 and 34 are also provided with yokes 61, 62, 63 and 64 made of soft magnetic material, respectively.
has been completed.

上記金型の磁気回路を説明すると次の通りである。The magnetic circuit of the above mold is explained as follows.

希土類コバルト磁石5. 、52.55.及び54は、
成形空間1内に異方性化のために必要な靜磁界を常時発
生させるのに使用され、i極面が成形空間1に対向する
如く配置されている。次にヨーク6 。
Rare earth cobalt magnet5. , 52.55. and 54 are
It is used to constantly generate a silent magnetic field necessary for anisotropy in the molding space 1, and is arranged so that the i-pole face faces the molding space 1. Next is York 6.

62、6.及び64は各々上記磁石5+ 、52 * 
55及び54から生ずる磁束を有効に成形空間1内に収
束させるために使用される。
62, 6. and 64 are the magnets 5+ and 52*, respectively.
It is used to effectively converge the magnetic flux generated from 55 and 54 into the molding space 1.

また、希土類コバルト磁石3.〜52.52〜53.5
3〜54.5.〜31間に埋設した磁場コイルは金型内
に磁性粉と高分子化合物の混線物が充填された瞬間に、
例えば商用交流電源を入力として所定の直流電圧に昇圧
整流しコンデンサー群にて充電しそしてサイリスタを経
て放電を行なう瞬間直流電源(図示せず)に接続され、
成形空間10表面にパルス磁場を印加するものである。
In addition, rare earth cobalt magnet 3. ~52.52~53.5
3-54.5. The magnetic field coil buried between
For example, it is connected to an instantaneous DC power supply (not shown) that inputs a commercial AC power supply, boosts and rectifies it to a predetermined DC voltage, charges it with a group of capacitors, and discharges it through a thyristor.
A pulsed magnetic field is applied to the surface of the molding space 10.

そしてヨーク5は磁気回路のパーミアンスを高くしかつ
閉じた磁気回路を形成するために使用される。
The yoke 5 is used to increase the permeance of the magnetic circuit and to form a closed magnetic circuit.

上記金型によれば、パルス磁場により、瞬間的に100
00〜200000gの磁界を発生させ、前記混練物を
飽和磁化させ、かつ冷却固化する5〜10秒間の間;永
久磁石による6000〜80’OOG程度の磁界により
、固化時間における配向の乱れを防止することが可能で
ある。この場合希土類コバルト磁石としては、 Brが
8.000G以上(好ましくは9.000 G以上)で
、かつIHCが10.00001以上(好ましくは15
.0000g以上)の磁気特性を有するもの(例えば特
開昭55−50100号公報、特願昭57−24505
号明細書参照)が適当である。上記金型においては、コ
イルに通電する時間が成形サイクル10〜60秒に対し
て5〜IQmyと短く、特別な冷却機構を用いずとも実
用上問題がない。
According to the above-mentioned mold, the pulsed magnetic field instantly produces 100%
A magnetic field of 00 to 200,000 g is generated to saturate the kneaded material, and the mixture is cooled and solidified for 5 to 10 seconds; a magnetic field of about 6,000 to 80'OOG by a permanent magnet prevents the orientation from being disturbed during the solidification time. Is possible. In this case, the rare earth cobalt magnet has a Br of 8.000 G or more (preferably 9.000 G or more) and an IHC of 10.00001 or more (preferably 15
.. 0,000 g or more) (for example, Japanese Patent Application Laid-Open No. 55-50100, Japanese Patent Application No. 57-24505)
(see specification) is appropriate. In the above mold, the time for energizing the coil is as short as 5 to IQmy for a molding cycle of 10 to 60 seconds, and there is no problem in practical use even without using a special cooling mechanism.

本発明において−は、上記の金型を用いて例えば次のよ
うにして異方性円筒磁石が得られる。
In the present invention, an anisotropic cylindrical magnet is obtained using the above mold, for example, in the following manner.

まず原料として、Ba−フェライト、5r−ツーライト
などのマグネットプラムバイト型結晶構造を有するツー
ライト粉末、アルニコ磁石粉末、Fg−Cr−Co系磁
石粉末、あるいは希土類コバルト磁石粉末等の強磁性粉
末と、スチレン−ブタジェン共重合体、エチレン酢酸ビ
ニル共重合体、ポリエチレン、ポリアミド等の熱可塑性
樹脂からなる高分子化合物の混線物を準備する。この場
合強磁性体粉末の配合量は磁気特性の点から60重量係
以上とすることが好ましい。このほか成形性を改善する
ために、ポリエチレン、ステアリン酸カルシウム等の滑
剤を少量(数束量%)加えてもよく、更に強磁性粉末と
高分子化合物との濡れ性を改善するために有機ケイ素化
合物、有機チタネート化合物等の添加物を加えてもよい
First, as raw materials, ferromagnetic powder such as Ba-ferrite, 5r-tourite powder having a magnetic plumbite crystal structure, alnico magnet powder, Fg-Cr-Co magnet powder, or rare earth cobalt magnet powder, and styrene. - Prepare a hybrid of a polymer compound made of a thermoplastic resin such as butadiene copolymer, ethylene vinyl acetate copolymer, polyethylene, polyamide, or the like. In this case, the amount of ferromagnetic powder blended is preferably 60% by weight or more from the viewpoint of magnetic properties. In addition, to improve moldability, a small amount (bundle amount %) of a lubricant such as polyethylene or calcium stearate may be added, and an organosilicon compound may be added to improve the wettability between the ferromagnetic powder and the polymer compound. , organic titanate compounds, and other additives may be added.

次に上記混練物を第1図に示す金型をそなえた射出成形
機あるいは押出成形機に投入し、磁場を加えながら金型
中で成形しついで冷却固化後金型から取出す。
Next, the above-mentioned kneaded material is put into an injection molding machine or an extrusion molding machine equipped with the mold shown in FIG. 1, molded in the mold while applying a magnetic field, and then taken out from the mold after being cooled and solidified.

得られた成形体は、必要に応じて外径を所定の寸法に加
工しついで軸を固定した後異方性方向と同方向に着磁し
て、第2図に示すような4極に着磁された異方性円筒磁
石が得られる。
The obtained compact is machined to a predetermined outer diameter as necessary, and after fixing the shaft, it is magnetized in the same direction as the anisotropic direction to form four poles as shown in Figure 2. A magnetized anisotropic cylindrical magnet is obtained.

上記の実施例では、3極の着磁を施した異方性円筒磁石
の製造について述べたが、希土類コバルト磁石の数を増
すことにより6極以上の磁極を有する異方性円筒磁石が
得られることはもちろんである。また金型の磁気回路を
構成する希土類コバルト磁石、ヨークの形状1寸法等に
ついては、要求される磁気特性に応じて有限要素法等の
解析手法により適宜設定すればよい。
In the above example, the production of an anisotropic cylindrical magnet with three pole magnetization was described, but by increasing the number of rare earth cobalt magnets, an anisotropic cylindrical magnet with six or more magnetic poles can be obtained. Of course. Further, the rare earth cobalt magnet constituting the magnetic circuit of the mold, the shape and dimensions of the yoke, etc. may be appropriately set according to the required magnetic properties using an analytical method such as the finite element method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

平均粒径1μmのフェライト粒子(BtxO・6Fg2
0.)1651fにポリアミド樹脂(ナイロン61商品
名)1.55)lを加えて250ででニーダにより混練
した。
Ferrite particles with an average particle size of 1 μm (BtxO・6Fg2
0. 1.55) liters of polyamide resin (Nylon 61 trade name) was added to 1651f and kneaded in a kneader at 250°C.

この混線物を第1図に示す金型をそなえた実験用射出成
形機に投入し、270υの温度、 7011/−の圧力
下で金型内に射出しついて冷却固化した。この場合希土
類コバルト磁石としてはBrが9.000 G。
This mixed material was put into an experimental injection molding machine equipped with the mold shown in FIG. 1, injected into the mold at a temperature of 270 υ and a pressure of 7011/-, and then cooled and solidified. In this case, the rare earth cobalt magnet has a Br of 9.000 G.

tHcが10.0000gのもの(日立金属製H−22
,4)を用い、又10.0000−のパルス磁場を印加
して成形を行なった。成形空間の表面の磁束密度分布は
第6図に示す通りである。
One with tHc of 10.0000g (Hitachi Metals H-22
, 4) and applying a pulsed magnetic field of 10.0000 -. The magnetic flux density distribution on the surface of the molding space is as shown in FIG.

得られた成形体(外径50調φ、内径12m5i1+長
さ260wn)を外径24WRIllに加工し、第2図
に示す如くの異方性円筒磁石を製作した。
The obtained molded body (outer diameter 50 mm, inner diameter 12 m5i1 + length 260 wn) was processed to have an outer diameter of 24 WRIll to produce an anisotropic cylindrical magnet as shown in FIG.

得られた異方性円筒磁石の磁束密度分布を測定したとこ
ろ第4図に示す波形が得られ、ラバープレス法による異
方性円筒磁石と略同等の磁気特性を有することが確認さ
れた。
When the magnetic flux density distribution of the obtained anisotropic cylindrical magnet was measured, the waveform shown in FIG. 4 was obtained, and it was confirmed that the magnetic flux density distribution was approximately the same as that of the anisotropic cylindrical magnet produced by the rubber press method.

以上に記述の如く1本発明によれば、永久磁石とヨーク
を含む磁気回路を有する金型により、充分異方性化した
円筒状の樹脂磁石が得られ、従来と比較して設備を大幅
に小型化できる。
As described above, according to the present invention, a cylindrical resin magnet with sufficient anisotropy can be obtained by using a mold having a magnetic circuit including a permanent magnet and a yoke, and the equipment can be significantly reduced compared to the conventional method. Can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される金型の一例を示す概略断面
図、第2図は本発明による異方性円筒磁石の一例を示す
断面図、第3図は本発明による異方性円筒磁石の磁束密
度分布を示す図である。 11成形空間、21コア、 2+52+55+54 ’
希土類コバルト磁石、 44.42. j、 を磁場コ
イル、5゜64.62165I64;ヨーク。
Fig. 1 is a schematic sectional view showing an example of a mold used in the present invention, Fig. 2 is a sectional view showing an example of an anisotropic cylindrical magnet according to the invention, and Fig. 3 is a schematic sectional view showing an example of an anisotropic cylindrical magnet according to the invention. It is a figure showing magnetic flux density distribution of a magnet. 11 molding spaces, 21 cores, 2+52+55+54'
Rare earth cobalt magnet, 44.42. j, magnetic field coil, 5°64.62165I64; yoke.

Claims (1)

【特許請求の範囲】 1、 強磁性粉末と高分子化合物を主体とする混合物を
磁場の存在下1円筒状の成形空間を有する金型内で射出
又は押出成形し、得られた円筒状成形体の外周面に異方
性方向と同方向の偶数極着磁を。 施してなる異方性円筒磁石の製造方法において。 前記成形空間の周囲の磁極部分に対応する位置に各々ヨ
ークを設置しかつ各ヨークの外側にそれぞ。 れ希土類コバルト磁石を設置すると共に、前記ヨーク間
に磁場コイルを設置し1、該磁場コイルによ。 り前記成形空間の表面にパルス磁場を印加しかつ。 前記希土類コバルト磁石による静磁場を補助的に印加し
たことを特徴とする異方性円筒磁石の製造方法。
[Claims] 1. A cylindrical molded product obtained by injection or extrusion molding of a mixture mainly consisting of ferromagnetic powder and a polymer compound in a mold having a cylindrical molding space in the presence of a magnetic field. Even-numbered pole magnetization in the same direction as the anisotropic direction is applied to the outer circumferential surface of the magnet. In a method of manufacturing an anisotropic cylindrical magnet. Each yoke is installed at a position corresponding to a magnetic pole portion around the molding space, and each yoke is provided on the outside of each yoke. A rare earth cobalt magnet is installed, and a magnetic field coil is installed between the yokes. A pulsed magnetic field is applied to the surface of the molding space. A method for producing an anisotropic cylindrical magnet, characterized in that a static magnetic field from the rare earth cobalt magnet is supplementarily applied.
JP11786383A 1983-06-29 1983-06-29 Manufacture of anisotropic cylindrical magnet Pending JPS6010278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11786383A JPS6010278A (en) 1983-06-29 1983-06-29 Manufacture of anisotropic cylindrical magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11786383A JPS6010278A (en) 1983-06-29 1983-06-29 Manufacture of anisotropic cylindrical magnet

Publications (1)

Publication Number Publication Date
JPS6010278A true JPS6010278A (en) 1985-01-19

Family

ID=14722154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11786383A Pending JPS6010278A (en) 1983-06-29 1983-06-29 Manufacture of anisotropic cylindrical magnet

Country Status (1)

Country Link
JP (1) JPS6010278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001562A1 (en) * 1989-07-24 1991-02-07 Yuugen Kaisha Kanex Anisotropic plastic-bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001562A1 (en) * 1989-07-24 1991-02-07 Yuugen Kaisha Kanex Anisotropic plastic-bonded magnet

Similar Documents

Publication Publication Date Title
JP3745509B2 (en) Cylindrical resin magnet molding equipment
EP0128508B1 (en) Method and apparatus for producing anisotropic magnets
JPH0259993B2 (en)
CN106253518A (en) The manufacture method of rotor, motor and rotor
JPS6010278A (en) Manufacture of anisotropic cylindrical magnet
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS6010277A (en) Manufacture of anisotropic cylindrical magnet
JPH0259994B2 (en)
JP2000068120A (en) Magnet roller
JPS6010610A (en) Manufacture of anisotropic magnet roll
JPS58173807A (en) Permanent magnet roll
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JP2906211B2 (en) Magnet roll molding method and molding die
JP2563436B2 (en) Magnet roll manufacturing method
JPS60220917A (en) Manufacture for anisotropic magnetic roll
JPS61247004A (en) Manufacture of magnet roll
JPH0517691B2 (en)
JPH06349660A (en) Manufacture of cylindrical resin magnet
JPH0754776B2 (en) Extrusion mold
JPH0469407B2 (en)
JPH0318723B2 (en)
JPS61125009A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS60229321A (en) Manufacture of anisotropic magnet roll