JPH0754776B2 - Extrusion mold - Google Patents

Extrusion mold

Info

Publication number
JPH0754776B2
JPH0754776B2 JP61196033A JP19603386A JPH0754776B2 JP H0754776 B2 JPH0754776 B2 JP H0754776B2 JP 61196033 A JP61196033 A JP 61196033A JP 19603386 A JP19603386 A JP 19603386A JP H0754776 B2 JPH0754776 B2 JP H0754776B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
orientation
radial
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61196033A
Other languages
Japanese (ja)
Other versions
JPS6351612A (en
Inventor
格 小此木
正昭 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61196033A priority Critical patent/JPH0754776B2/en
Publication of JPS6351612A publication Critical patent/JPS6351612A/en
Publication of JPH0754776B2 publication Critical patent/JPH0754776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類樹脂ボンド(結合)型磁石の特に薄肉円
筒状で且つラジアル異方性を有する永久磁石の製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a rare earth resin bond (bond) type magnet, particularly a permanent magnet having a thin cylindrical shape and radial anisotropy.

〔従来の技術〕 従来ラジアル異方性を有する円筒状磁石の製造方法は、
例えば特開昭58−219705号などに示されているように磁
場発生コイルは、型内に配置された一体型構造であっ
た。具体的には第2図に示す断面構造の押出成形装置及
び金型、磁場コイル等になる。
[Prior Art] A conventional method for manufacturing a cylindrical magnet having radial anisotropy is
For example, as shown in Japanese Patent Application Laid-Open No. 58-219705, the magnetic field generating coil has an integrated structure arranged in the mold. Specifically, it is an extrusion molding apparatus having a sectional structure shown in FIG. 2, a mold, a magnetic field coil and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前述の従来技術では次のような問題点を有す
る。
However, the above-mentioned conventional technique has the following problems.

(1)配向のための磁場が低い。磁気性能が低い。(1) The magnetic field for orientation is low. Low magnetic performance.

(2)押出成形装置と一体のため形状変更が困難のた
め、生産性が悪い。
(2) Since the shape is difficult to change because it is integrated with the extrusion molding device, productivity is poor.

(3)磁場コイル自身の発熱とヒーターからの熱伝導に
より、過熱されるため、絶縁不良をおこし易い。
(3) Since the magnetic field coil itself is overheated due to heat generation and heat conduction from the heater, insulation failure is likely to occur.

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、高性能薄肉円筒状ラジアル磁
石を提供すことにある。
Therefore, the present invention solves such a problem,
The object is to provide a high-performance thin-walled cylindrical radial magnet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の押出成形用金型は、円筒状ラジアル異方性樹脂
結合型磁石を製造するための金型であり、空芯コイルと
強磁性材料部と非磁性材料部とからなる押出成形用金型
において、 前記空芯コイルが押出成形用金型の外部に配置され、前
記強磁性材料部が磁気誘導方式によりラジアル磁場を加
える配向部の外周上にあり、前記非磁性材料部が配向後
の成形体を固化する固化部の外周上にあることを特徴と
する。
The extrusion mold of the present invention is a mold for producing a cylindrical radial anisotropic resin-bonded magnet, and comprises an air core coil, a ferromagnetic material part, and a nonmagnetic material part. In the mold, the air-core coil is arranged outside the extrusion mold, the ferromagnetic material portion is on the outer periphery of the orientation portion that applies a radial magnetic field by a magnetic induction method, and the non-magnetic material portion is after orientation. It is characterized in that it is on the outer circumference of the solidified portion for solidifying the molded body.

(1)対象となるコンパウンドは、磁石粉末は希土類金
属と遷移金属からなる希土類磁石である。それは例え
ば、SmCo5,CeCo5,Sm(CoCu)5,MM(ミッシュメタル)Co
5、などの良くいわれている1−5系希土類金属間化合
物である。また、2−17系希土類金属間化合物、R−Fe
−B系希土類磁石も用いられる。Sm(CobalCu0.07Fe
0.22Zr0.018,Sm0.80.2(CobalCu0.05Fe0.15Z
r0.017.6,Sm0.9Zr0.1(CobalCu0.06Fe0.20Zr0.015
7.6,Sm0.9Ce0.2(CobalCu0.06Fe0.15Zr0.027.6,Sm(C
obalCu0.06Fe0.15Ni0.027.4,Sm(CobalCu0.05Fe0.18T
i0.017.6などに代表される2−17系希土類磁石組成も
対象となる。
(1) The target compound is a rare earth magnet whose magnet powder is a rare earth metal and a transition metal. For example, SmCo 5 , CeCo 5 , Sm (CoCu) 5 , MM (Misch metal) Co
5 is a well-known 1-5 series rare earth intermetallic compound. Also, 2-17 series rare earth intermetallic compounds, R-Fe
-B rare earth magnets are also used. Sm (Co bal Cu 0.07 Fe
0.22 Zr 0.01 ) 8 , Sm 0.8 Y 0.2 (Co bal Cu 0.05 Fe 0.15 Z
r 0.01 ) 7.6 , Sm 0.9 Zr 0.1 (Co bal Cu 0.06 Fe 0.20 Zr 0.015 )
7.6 , Sm 0.9 Ce 0.2 (Co bal Cu 0.06 Fe 0.15 Zr 0.02 ) 7.6 , Sm (C
o bal Cu 0.06 Fe 0.15 Ni 0.02 ) 7.4 , Sm (Co bal Cu 0.05 Fe 0.18 T
i 0.01 ) 7.6 and other 2-17 series rare earth magnet compositions are also applicable.

(2)次にコンパウンドを形成するためのバインダー
は、通例、熱可塑性樹脂で、ナイロン6、ナイロン12、
ポリエチレン、PES、PEEKなどである。磁石粉末とバイ
ンダーの混合比率は容量比(vol%)当り好ましい範囲
は、磁石粉末が40〜75vol%である。
(2) Next, the binder for forming the compound is usually a thermoplastic resin such as nylon 6, nylon 12,
Examples include polyethylene, PES, and PEEK. The preferred range of the mixing ratio of the magnet powder and the binder per volume ratio (vol%) is 40 to 75 vol% of the magnet powder.

(2)コンパウンドは、予め混練機で混練されるこの時
の製造条件は、例えばナイロン12を用いた場合などでは
加熱温度230〜290℃で二軸混練機などで混合される。
(2) The compound is kneaded in advance with a kneader. As for the manufacturing conditions at this time, for example, when nylon 12 is used, the compound is mixed with a biaxial kneader at a heating temperature of 230 to 290 ° C.

(3)コンパウンドは、押出成形装置に装入され第1図
に示す方法により成形される。
(3) The compound is placed in an extrusion molding device and molded by the method shown in FIG.

(4)ここで本発明の達成条件は、第1図に示した一断
面図に従って説明すれば、前記コンパウンド10は、約23
0〜290℃に加熱され流動状態となり、前方の磁場押出成
形型中を通過し、ラジアル磁場配向と薄肉円筒形状が形
成される。
(4) Here, the achievement conditions of the present invention will be explained by referring to the one sectional view shown in FIG.
It is heated to 0 to 290 ° C. to be in a fluidized state, and passes through the forward magnetic field extrusion molding die to form a radial magnetic field orientation and a thin-walled cylindrical shape.

この時、成形型は3の空芯コイル内にセットされる。空
芯コイルは、約1000〜1500 Oeの磁場発生能力(強度)
が必要である。この強さは、良く知られている により決定される。ここで、Nは巻数、iは電流、lは
コイルの高さ(長さ)である。成形型は強磁性部材と非
磁性部材で構成されるが、そのレイアウトの一例は第1
図の通り構造になる。ここでギャップ部(磁場配向部)
12には、好ましくは10〜18KOeの磁場を発生させる必要
がある。
At this time, the molding die is set in the air-core coil 3. The air-core coil has a magnetic field generation capacity (strength) of approximately 1000 to 1500 Oe.
is necessary. This strength is well known Determined by Here, N is the number of turns, i is the current, and l is the height (length) of the coil. The mold is composed of a ferromagnetic material and a non-magnetic material.
The structure is as shown. Here, the gap part (magnetic field orientation part)
At 12, it is necessary to generate a magnetic field of preferably 10-18 KOe.

(5)次に配向した成形体は7のダイスC部では温度を
低められ可塑化→固化して配向および形状の維持を行わ
なければならない。
(5) Next, in the die C portion 7 of 7 which is oriented, the temperature of the molded body is lowered and the molded body must be plasticized and solidified to maintain the orientation and shape.

〔実施例〕〔Example〕

以下本発明を実施例に従って説明する。 The present invention will be described below with reference to examples.

実施例−1 希土類樹脂磁石組成物は次下のものを用いた。Example-1 The following was used as the rare earth resin magnet composition.

このコンパウンドを第1図に示す磁場押出成形方法によ
り、円筒状ラジアル磁石をつくった。
A cylindrical radial magnet was produced from this compound by the magnetic field extrusion molding method shown in FIG.

この時の製造条件をTable1に示す。Table 1 shows the manufacturing conditions at this time.

なお得られた試料の寸法形状は次の通りである。φ20×
φ18.6m/mの外径×内径の薄肉円筒状で、長さは任意に
カットした。従ってその肉厚(t)は約0.7mmで、従来
のものに比べて大変薄いものであった。このようにして
得られたラジアル異方性磁石の性能を表−2に示す。
The dimensions and shape of the obtained sample are as follows. φ20 x
It was a thin-walled cylinder with an outer diameter of φ18.6 m / m and an inner diameter, and the length was arbitrarily cut. Therefore, the wall thickness (t) was about 0.7 mm, which was much thinner than the conventional one. The performance of the radial anisotropic magnet thus obtained is shown in Table-2.

磁気性能は、表−2に示したように、磁気性能は、(B
H)max8.5〜10.0MGOeまで得られ、従来の方法に比べ大
変性能を高められた。肉厚を1mm以下、0.7mmの薄肉ラジ
アル異方性磁石ができた。
As shown in Table-2, the magnetic performance is (B
H) max 8.5 ~ 10.0MGOe was obtained, and the performance was greatly improved compared to the conventional method. A thin radial anisotropic magnet with a wall thickness of 1 mm or less and 0.7 mm was completed.

比較例 第2図に比較例における、磁場押出成形ラジアル磁石の
製造方法を示す。この従来法は、コンパウンド10はスク
リュー2により前方に押出され金型23磁場コイル22、ヨ
ーク21の構成で、ラジアル磁場配向される。この方法は
押出成形装置に、磁場コイル、金型がセットされた形の
ため加熱される問題、金型交換しにくい欠点がある。ま
た肉厚も厚くならざるを得ず、本例における外径、内径
寸法はφ20×φ17.5mmでt=1.25mmであった。
Comparative Example FIG. 2 shows a method of manufacturing a magnetic field extrusion-molded radial magnet in a comparative example. In this conventional method, the compound 10 is extruded forward by the screw 2 and has a die 23 magnetic field coil 22 and a yoke 21 for radial magnetic field orientation. This method has a problem that the extrusion coil is heated because the magnetic field coil and the mold are set, and it is difficult to replace the mold. In addition, the wall thickness must be increased, and the outer diameter and the inner diameter in this example were φ20 × φ17.5 mm and t = 1.25 mm.

この時の磁場は、24ギャップ部分で約9.5KOeであった。
得られた磁気特性は次の通りである。
The magnetic field at this time was about 9.5 KOe in the 24 gap part.
The magnetic properties obtained are as follows.

Br………5.8 bHc……4.6 (BH)max…6.9MGOe 密度………5.5g/cc 実施例−2 実施例−1で同組成の磁石粉末を用い、バインダーに塩
素化ポリエチレンを40vol%選択したものを用いて、第
1図と同装置にて表−3に示す条件で、ラジアル異方性
磁石をつくった。
Br ……… 5.8 bHc …… 4.6 (BH) max… 6.9 MGOe Density ……… 5.5 g / cc Example-2 Using the magnet powder of the same composition as in Example-1, 40 vol% chlorinated polyethylene was selected as the binder. A radial anisotropic magnet was produced by using the above-described product under the conditions shown in Table 3 in the same apparatus as in FIG.

外径は、φ21m/mでそれぞれ肉厚(h)の変化と諸特性
について調べた。
The outer diameter was φ21 m / m, and changes in wall thickness (h) and various characteristics were examined.

表−3の製造条件下では、肉厚(t)を1.1〜0.3mmま
で、ラジアル磁場配向成形が可能となった。なお磁場コ
イル電流は一定で約50Aであるが、ギャップの変化によ
り、配向磁場も増大したためである。
Under the manufacturing conditions shown in Table 3, it was possible to perform radial magnetic field orientation molding with a wall thickness (t) of 1.1 to 0.3 mm. The magnetic field coil current was about 50 A at a constant value, but the orientation magnetic field increased due to the change in the gap.

こうして得られた薄肉円筒状磁石の諸特性を表−4に示
した。肉厚(t)が薄くなっても磁気特性は余り低下せ
ずに成形することが可能となった。特に気にしなければ
ならない表皮効果による磁気特性の低下現象が少い利点
を有するものである。これは、磁場コイル空間中に金型
をセットする磁気誘導方式による効果である。すなわ
ち、磁場を磁場配向部のみに収束し、他への影響を押え
たからである。このことによってコンパウンドの流動性
ならびに配向性、成形性を改善できた。
Various characteristics of the thin-walled cylindrical magnet thus obtained are shown in Table 4. Even if the wall thickness (t) becomes thin, the magnetic characteristics can be molded without being significantly deteriorated. This is advantageous in that the phenomenon of deterioration of magnetic properties due to the skin effect, which must be particularly noticed, is small. This is an effect of the magnetic induction method in which the mold is set in the magnetic field coil space. That is, this is because the magnetic field is converged only on the magnetic field orientation portion and the influence on the other is suppressed. This improved the fluidity, orientation and moldability of the compound.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば大変磁気特性の高い
円筒状ラジアル磁石を生産性良く提供できることがわか
った。とくにその肉厚(t)が1mm以下のものが、提供
できることは、その主用途である。ステップモータ、マ
グローラなどにとって高い特性を得ることが可能となっ
た。
As described above, it has been found that the present invention can provide a cylindrical radial magnet having extremely high magnetic properties with high productivity. In particular, it is the main application that a product with a wall thickness (t) of 1 mm or less can be provided. It has become possible to obtain high characteristics for step motors, mag rollers, etc.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法における一実施例を示す主要断面
図。 第2図は従来のラジアル磁石製造方法を示す断面図。 1……バレル 2……スクリュー 3……コイル 4……ダイス(a) 5……コアー 6……ダイス(b) 7……ダイス(c) 8……アダプタープレート 9……円筒状磁石 10……コンパウンド 11……ヒーター 12……磁場配向部 13……非配向部
FIG. 1 is a main sectional view showing an embodiment of the method of the present invention. FIG. 2 is a sectional view showing a conventional radial magnet manufacturing method. 1 ... Barrel 2 ... Screw 3 ... Coil 4 ... Die (a) 5 ... Core 6 ... Die (b) 7 ... Die (c) 8 ... Adapter plate 9 ... Cylindrical magnet 10 ... … Compound 11 …… Heater 12 …… Magnetic field oriented part 13 …… Non-oriented part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円筒状ラジアル異方性樹脂結合型磁石を製
造するための金型であり、空芯コイルと強磁性材料部と
非磁性材料部とからなる押出成形用金型において、 前記空芯コイルが押出成形用金型の外部に配置され、前
記強磁性材料部が磁気誘導方式によりラジアル磁場を加
える配向部の外周上にあり、前記非磁性材料部が配向後
の成形体を固化する固化部の外周上にあることを特徴と
する押出成形用金型。
1. A die for manufacturing a cylindrical radial anisotropic resin-bonded magnet, which is an extrusion die comprising an air-core coil, a ferromagnetic material portion and a non-magnetic material portion, A core coil is disposed outside the extrusion molding die, the ferromagnetic material portion is on the outer periphery of the orientation portion that applies a radial magnetic field by the magnetic induction method, and the nonmagnetic material portion solidifies the shaped body after orientation. An extrusion molding die, which is on the outer circumference of the solidified portion.
JP61196033A 1986-08-21 1986-08-21 Extrusion mold Expired - Lifetime JPH0754776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196033A JPH0754776B2 (en) 1986-08-21 1986-08-21 Extrusion mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196033A JPH0754776B2 (en) 1986-08-21 1986-08-21 Extrusion mold

Publications (2)

Publication Number Publication Date
JPS6351612A JPS6351612A (en) 1988-03-04
JPH0754776B2 true JPH0754776B2 (en) 1995-06-07

Family

ID=16351089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196033A Expired - Lifetime JPH0754776B2 (en) 1986-08-21 1986-08-21 Extrusion mold

Country Status (1)

Country Link
JP (1) JPH0754776B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326222A (en) * 2001-05-02 2002-11-12 Uchiyama Mfg Corp Preform molding mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156802A (en) * 1985-12-27 1987-07-11 Kanegafuchi Chem Ind Co Ltd Resin magnet and forming mold thereof

Also Published As

Publication number Publication date
JPS6351612A (en) 1988-03-04

Similar Documents

Publication Publication Date Title
JP2018127668A (en) Molding die for anisotropic bonded magnet and production method using the same
JP2006217702A (en) Manufacturing method of motor stator , motor rotor, and motor core
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JPH0754776B2 (en) Extrusion mold
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JPH09148166A (en) Manufacture of resin-bonded magnet
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JP2686616B2 (en) Injection molding machine for anisotropic plastic magnets
JPH06244047A (en) Manufacture of resin bonded permanent magnet
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JPH05101956A (en) Manufacture of anisotropic magnet of cylindrical shape
JPH088134A (en) Anisotropic permanent magnet
JPH053124B2 (en)
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPH0626162B2 (en) Method for manufacturing C-type anisotropic resin bonded magnet
JP2001185412A (en) Anisotropic bonded magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JP2002343661A (en) Cylindrical bonded magnet and coreless motor
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPS62261110A (en) Manufacture of permanent magnet
JP2535636B2 (en) Voice coil type linear motor
JPH0517691B2 (en)
JPS6010278A (en) Manufacture of anisotropic cylindrical magnet
JPH02191311A (en) Cylindrical resin coupling type magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term