JPS60220919A - Manufacture of ringed permanent magnet - Google Patents

Manufacture of ringed permanent magnet

Info

Publication number
JPS60220919A
JPS60220919A JP7785284A JP7785284A JPS60220919A JP S60220919 A JPS60220919 A JP S60220919A JP 7785284 A JP7785284 A JP 7785284A JP 7785284 A JP7785284 A JP 7785284A JP S60220919 A JPS60220919 A JP S60220919A
Authority
JP
Japan
Prior art keywords
tape
ringed
die
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7785284A
Other languages
Japanese (ja)
Other versions
JPH0469407B2 (en
Inventor
Seiji Miyazawa
宮沢 清治
Itaru Okonogi
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP7785284A priority Critical patent/JPS60220919A/en
Publication of JPS60220919A publication Critical patent/JPS60220919A/en
Publication of JPH0469407B2 publication Critical patent/JPH0469407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a thin ringed permanent magnet by a method wherein, when the ringed permanent magnet having a magnetic anisotropy is made in a magnetic field by an extrusion molding method, a tape made of resin-bonded rare earth magnet power is pushed out in a spiral form and after the tape is wound around on a ringed mandrel, the tape is cut in a ringed form along with the mandrel. CONSTITUTION:A hopper 1 is provided on one end of the upper part of a cylinder 2 provided with heaters 3 wound around on its outer periphery, a tapered barrel part 5 is provided on an aperture on the other end of the upper part and a screw 4 is housed in the interior of the cyliner 2. Moreover, a magnetic circuit 6 and a demagnetizing circuit 13, between both of which a cooling die 11 and a water cooling pipe 12 have been held, are provided on the side of the barrel part 5 and magnetic field coils 7 and 8, on which a magnetic line of force 9 generates through a gap 10, are arranged in the interior of the die 11. An extrusion molding device is constituted in such a way and magnet powder is thrown into the cylinder 2 from the hopper 1. The magnet powder is made to pass through the interior of the die 11 by the screw 4, is pushed out from a corrective die 14 being surrounded with a heating heater 15 and is formed into a tape of a spiral form. After that, the tape is wound around on a ringed mandrel and is ringed in a prescribed length along with the mandrel.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、磁場中押出成形法により、熱可塑性樹脂結合
型希土類ラジアル異方性永久磁石を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a thermoplastic resin bonded rare earth radially anisotropic permanent magnet by extrusion molding in a magnetic field.

〔従来技術〕[Prior art]

従来熱可塑性樹脂を結合材とする、希土類永久磁石は、
射出成形法により製造されており、等方性磁石と、磁気
的に特定方向だけに磁気性能を付加した異方性磁石とに
大別できる。竹に放射状に磁気異方性を持たせた円筒状
ラジアル異方性永久磁石は、外周面に多極着磁を施すこ
とにより小型モーター等のローターとして広く使用てれ
ている。
Conventional rare earth permanent magnets that use thermoplastic resin as a binding material are
Manufactured using an injection molding method, they can be roughly divided into isotropic magnets and anisotropic magnets that have magnetic performance added only in a specific direction. Cylindrical radially anisotropic permanent magnets made of bamboo with radial magnetic anisotropy are widely used as rotors in small motors, etc. by applying multipolar magnetization to the outer circumferential surface.

しかしその多くの円筒状永久磁石は、内径に比べた丈が
短くまた肉厚も1群以上と寸法限られた大きざになって
しまう。そこで、押出成形により円筒状ラジアル異方性
永久磁石を造る方法も発明されているが、いずれも実用
化はてれておらず、フェライト磁石粉末とゴムまたはプ
ラスチックとの混合物をカレンダー法によりシートを製
造し、その後テープ状にして複数層巻回してロールを作
成する方法は特開昭53−43897号に有るが、熱可
塑性樹脂を用いる希土類永久磁石を製造する場合は、フ
ェライト磁石粉末に比べ原料コストが非常に高いので複
数層巻回するようなコストアップにつながる工程は実用
化でき難いし、所定厚さにシート状にした後切助してい
たのでは、能率も悪く巻き付ける時にヒビやワレが生じ
易く、希土類磁石粒子を用いたのではカレンダー法′に
よる磁気異方性の付加はできないという問題があった。
However, most of the cylindrical permanent magnets are short in length compared to the inner diameter, and have a wall thickness of one group or more, which is limited in size. Therefore, a method of manufacturing cylindrical radially anisotropic permanent magnets by extrusion molding has been invented, but none of these methods have been put to practical use. JP-A No. 53-43897 discloses a method in which rare earth permanent magnets are manufactured using thermoplastic resin and then wound into a tape shape in multiple layers to create a roll. Since the cost is extremely high, it is difficult to put into practical use processes that increase costs, such as winding multiple layers, and cutting the sheet after forming it into a sheet to a predetermined thickness is inefficient, resulting in cracks and cracks during winding. There was a problem that magnetic anisotropy could not be added by the calendaring method when rare earth magnet particles were used.

〔目的〕 一 本発明は、このような問題を解決するためのもので、そ
の目的とするところは、樹脂結合型希土類磁石粉末を用
いて、内径に比べ丈の長い肉厚の薄いリング状ラジアル
異方性永久磁石を製造する技術を提供することに有る。
[Purpose] The present invention is intended to solve such problems, and its purpose is to create a thin ring-shaped radial whose length is longer than its inner diameter using resin-bonded rare earth magnet powder. The purpose of the present invention is to provide a technology for manufacturing anisotropic permanent magnets.

〔概要〕〔overview〕

本発明のリング状永久磁石の製造方法は、希土類磁石粉
末と、熱可塑性樹脂との混線物を用い磁場中押出成形装
置により、所定の厚きを持ち、かつ磁気異方性を持った
スパイラル状のテープを押出、該テープをリング状心棒
に巻き付け、所定の長さに切断することによりリング状
永久磁石を製造することを特徴とする。
The method for producing a ring-shaped permanent magnet of the present invention uses a mixture of rare earth magnet powder and thermoplastic resin, and uses an extrusion molding device in a magnetic field to form a spiral shape with a predetermined thickness and magnetic anisotropy. A ring-shaped permanent magnet is manufactured by extruding a tape, winding the tape around a ring-shaped mandrel, and cutting the tape into a predetermined length.

〔実施例〕〔Example〕

以下、本発明について実施例にもとづき詳細に説明する
Hereinafter, the present invention will be explained in detail based on examples.

(実施例1) 第1図(A)に本実施例を示す。ホッパー1に投入され
た希土類磁石粉末と熱可塑性樹脂との混合物は、シリン
ダー2の中でヒーター3により所定温度に加熱はれ、ス
クリュー4の回転により混練され、テーバーバーシル部
5に押し出はれる。つぎにダイスを兼ねた磁気回路乙に
発生する磁場により混線物中の希土類磁石粉末が、押出
される方向と直角にかつ薄手方向に配向される。この構
造は第1図(B)に示すごとくE型を上下に向き合せた
形状で、中間部分はテーパーをもっており他方との間に
ギャップ10を設けて有る。両側には磁場コイル7.8
がセットサれており、別置の直流電源装置から流される
直流電流により磁力線9が矢印のように流れ前記ギャッ
プ10に磁場を発生する。
(Example 1) This example is shown in FIG. 1(A). The mixture of rare earth magnet powder and thermoplastic resin put into the hopper 1 is heated to a predetermined temperature by the heater 3 in the cylinder 2, kneaded by the rotation of the screw 4, and extruded into the Taber bar sill part 5. It will be done. Next, the rare earth magnet powder in the mixed material is oriented in the thinner direction at right angles to the extrusion direction by the magnetic field generated in the magnetic circuit B which also serves as a die. As shown in FIG. 1(B), this structure has a shape in which two E-shapes are placed vertically facing each other, and the middle part has a taper and a gap 10 is provided between it and the other part. Magnetic field coils 7.8 on both sides
is set, and magnetic lines of force 9 flow in the direction of the arrows due to the direct current flowing from a separate direct current power supply device to generate a magnetic field in the gap 10.

通常ギャップは、成形されるテープ状磁石の厚さにもよ
るが、10〜20欝冨の範囲であり、このギャップに成
形ダイスを挾み込み使用する。配向これた混線物は、冷
却ダイス11に巻かれた水冷パイプ12に水を流すこと
により冷却固化これる。
Usually, the gap is in the range of 10 to 20 mm, depending on the thickness of the tape-shaped magnet to be molded, and a molding die is inserted into this gap. The oriented crosstalk is cooled and solidified by flowing water through the water-cooled pipe 12 wound around the cooling die 11.

このままでけ配向磁場による残留磁場のため、後工程で
成形品ど5しで吸着したり、リング状にして多極着磁を
行う時、着磁バランスがくずれるため、消磁回路13に
より消磁を行う。消磁回路は第1図CB)と同じ構造を
しているが、磁場コイル7゜8に流す雷、流を逆方向に
することにより、発生する磁力線9が逆方向となり、こ
れによって消磁される。以上の工程により、テープ状永
久磁石の薄手方向に直角に磁気異方性を付加した、表面
磁束密度が消磁によりほぼゼロに近い樹脂結合型希土類
異方性永久磁石が成形これる。つぎに矯正ダイス14を
加熱ヒーター15により所定温度まで加熱し、ダイス内
を通過でせ冷却することにより、ひねりながら丸めて第
2図に示すスパイラル状にし、これをリング状の心棒に
巻き付はエポキシ接着剤で固足し、所定の長をに輪切り
状にカットしてリング状永久磁石とする。以上のように
磁場中押出成形装置に矯正ダイスを付属させテープ状か
らスパイラル状にし、リング状とした。詳細すると、希
土類磁石粉末は一般式で表わせばsm(000,0er
r”O,Og Fed、22 Zro、Ou )8.3
11からなる2−17系希土類金属間化合物合金であり
、この合金をボールミルを用いて粒塵2〜80ミ゛クロ
ンの磁石粉末とした。
Due to the residual magnetic field caused by the oriented magnetic field, the magnetization balance will be disrupted when the molded products are attracted to each other in the subsequent process or multi-pole magnetized in a ring shape, so demagnetization is performed using the demagnetization circuit 13. . The degaussing circuit has the same structure as that in Figure 1 CB), but by reversing the direction of the lightning current flowing through the magnetic field coil 7°8, the lines of magnetic force 9 generated are in the opposite direction, thereby demagnetizing. Through the above steps, a resin-bonded rare earth anisotropic permanent magnet with magnetic anisotropy added perpendicularly to the thin direction of the tape-shaped permanent magnet and whose surface magnetic flux density is almost zero due to demagnetization is formed. Next, the straightening die 14 is heated to a predetermined temperature by the heating heater 15, passed through the die and cooled, and is twisted and rolled into a spiral shape as shown in FIG. Fix it with epoxy adhesive and cut it into rings of a predetermined length to make a ring-shaped permanent magnet. As described above, a straightening die was attached to the magnetic field extrusion molding apparatus, and the tape shape was transformed into a spiral shape, and then into a ring shape. In detail, rare earth magnet powder can be expressed in the general formula as sm(000,0er
r”O, Og Fed, 22 Zro, Ou) 8.3
This alloy is a 2-17 rare earth intermetallic compound alloy consisting of No. 11, and this alloy is made into magnetic powder with a particle size of 2 to 80 microns using a ball mill.

このようにして造ら゛れた粉末65体積チに熱可塑性樹
脂であるナイロン6を15体積係、ナイロン12を20
体積チ加え混合機にて混合しホッパー1より磁場中押出
成形装置に投入した。
To 65 volumes of powder thus produced, 15 volumes of thermoplastic resin nylon 6 and 20 volumes of nylon 12 were added.
The mixture was mixed in a volumetric mixer and charged into an extrusion molding device in a magnetic field through hopper 1.

前記磁石粉末は、40〜75体積係が適切で有り、ナイ
ロン6け10〜35体PR%、ナイロン12け残部体積
チが適切範囲である。シリンダー2はヒーターによって
約300℃を保たれており、スクリューにより混練され
、非磁性材料よりなるテーパーバーシル部に達し、磁性
材料よりなる磁気回路のギャップに固定はれた磁性材よ
りなるダイス部を磁場コイルに流す直流電流による磁力
線で混合物中の希土類磁石粉末が配向されながら通過す
る。
The appropriate volume ratio of the magnet powder is 40 to 75, and the appropriate range is nylon 6 pieces PR% 10 to 35, and nylon 12 pieces PR%. Cylinder 2 is kept at about 300°C by a heater, and the mixture is kneaded by a screw until it reaches a tapered bar sill part made of non-magnetic material, and then a die part made of magnetic material fixed in the gap of a magnetic circuit made of magnetic material. The rare earth magnet powder in the mixture passes through the mixture while being oriented by the magnetic field lines caused by the direct current flowing through the magnetic field coil.

ダイス部の寸法は、成形厚となるスキマが0.5〜21
EIl、スキマの巾が2〜15冨算で、ダイス自体の厚
さが5〜20i+翼、巾はスキマの巾の2〜10龍大き
くするのが適切な範囲内で有るが、本実施例でけ、スキ
マを0.8龍、スキマ巾を811I11 ダイス厚さ1
0龍、巾を12龍とし、磁気回路のギャップ部もダイス
部に合せた寸法とした。磁場コイルに雷、流を流し、発
生磁場を15000(Oe)とした。
The dimensions of the die part are 0.5 to 21 mm, which is the molding thickness.
EIl, the width of the gap is 2 to 15 mm, the thickness of the die itself is 5 to 20 + wings, and the width is within the appropriate range to be 2 to 10 times larger than the width of the gap, but in this example. The gap is 0.8 dragon, the gap width is 811I11, the die thickness is 1
The width was 12 dragons, and the gap part of the magnetic circuit was also sized to match the die part. Lightning and current were passed through the magnetic field coil, and the generated magnetic field was set to 15,000 (Oe).

ダイスに発生する磁場の強きと電流との関係f第3図に
示す。つぎに冷却ダイスを通過する時、水冷パイプに水
を流すことにより冷却固化でれ、磁気回路、ダイス部と
同じ仕様の消磁回路を通過することにより、磁場コイル
に電流を逆方向から流すために配向時と逆方向の磁力線
が働き、消磁される。磁場コイルは前記と同様の物で有
るが、電流?コントロールすることにより消磁磁場を設
電している。つぎに加熱ヒーターで1so−2ooaの
範囲に加熱これた矯正ダイス内に入り、ひねられながら
丸められる。本方法で内径約17龍長さ60011mの
スパイラル状磁石を成形した。外径16冨翼、長112
0醋のリング状心棒外径にエポキシ樹脂を塗布し、接着
しながら巻き付けた後80℃で1時間加熱しその後カッ
ターによりカットし外径17.6龍長き18」ローター
磁石とした。
The relationship between the strength of the magnetic field generated in the dice and the current is shown in Figure 3. Next, when it passes through the cooling die, it is cooled and solidified by flowing water through a water-cooled pipe, and then passes through a magnetic circuit and a degaussing circuit with the same specifications as the die section, so that the current flows through the magnetic field coil from the opposite direction. Magnetic lines of force act in the opposite direction to the direction during orientation, resulting in demagnetization. The magnetic field coil is the same as above, but is it a current? By controlling it, a demagnetizing magnetic field is created. Next, it enters a straightening die heated to a temperature of 1so-2ooa by a heater, and is rolled into a ball while being twisted. Using this method, a spiral magnet with an inner diameter of approximately 17 mm and a length of 60,011 m was formed. Outer diameter: 16mm, length: 112mm
Epoxy resin was applied to a ring-shaped mandrel with an outer diameter of 0 mm, and the magnet was wound while being adhered, heated at 80° C. for 1 hour, and then cut with a cutter to obtain a rotor magnet with an outer diameter of 17.6 mm and a length of 18 mm.

一方、本実施例に使用した希土類磁石粉末とナイロン6
.12との混合物を・用い押出成形法により等方性の同
寸法のチューブを成形し長は18龍にカットし外径16
酊のリング状心棒に接着固定し本実施例と同様のロータ
ー磁石を得た。両口−ター磁石を内外に2極着磁し表面
磁束密度をガウヌメーターとホールプローブにて測定し
たところ本発明法忙より製造した磁石体は約2100(
G)を示し、従来の押出成形法による等方性では約90
0(G)を示した。
On the other hand, the rare earth magnet powder and nylon 6 used in this example
.. A mixture of 12 and
A rotor magnet similar to that of this example was obtained by adhesively fixing it to a ring-shaped mandrel. When a double-ended magnet was magnetized with two poles inside and outside and the surface magnetic flux density was measured using a Gaune meter and a Hall probe, the magnet body manufactured by the method of the present invention was approximately 2100 (
G), and isotropic by conventional extrusion molding method is about 90
It showed 0 (G).

(実施例2) 実施例1と同様の希土類磁石混合物を用い同様の方法で
、ダイスのスキマを0.5 inとし、スキマの巾’e
5nとし成形を行った。スキマの配向磁場は実施例1と
同じ15000(Oe)とした。また、磁気回路のギャ
ップ部の寸法は変えていない。矯正ダイスを交換し、外
径8龍、長さ150龍のスパイラル状磁石を成形し、内
径7tmのリング状心棒に巻き付は接着し、カットして
外径8關長き8″IIxのローター磁石を得た。一方、
本実施例に使用した希土類磁石とナイロン6.12との
混合物を用い押出成形法により等方性の同寸法のチュー
ブを成形し、内部に実施例と同様のリング状心棒を接着
し、本実施例と同様の外径F3 m+111、長さ8印
のローター磁石を得た。両口−ター磁石を内外の2極着
磁を行(へ表面磁束密度を測定したところ、本発明法に
より製造した磁石体は、約800(G)を示し、従来の
押出成形法による等方性では約210(G)を示した。
(Example 2) Using the same rare earth magnet mixture as in Example 1 and using the same method, the die gap was set to 0.5 inches, and the width of the gap was
Molding was carried out using 5n. The orientation magnetic field of the gap was set to 15,000 (Oe), the same as in Example 1. Furthermore, the dimensions of the gap portion of the magnetic circuit remain unchanged. Replace the straightening die, form a spiral magnet with an outer diameter of 8mm and a length of 150mm, wrap and glue around a ring-shaped mandrel with an inner diameter of 7tm, and cut to create a rotor magnet with an outer diameter of 8mm and a length of 8''IIx. On the other hand,
Using the mixture of the rare earth magnet and nylon 6.12 used in this example, an isotropic tube of the same size was formed by extrusion molding, and a ring-shaped mandrel similar to that in the example was glued inside. A rotor magnet with an outer diameter of F3 m+111 and a length of 8 marks as in the example was obtained. When the surface magnetic flux density of a double-ended magnet was polarized (internally and externally) was measured, the magnet body manufactured by the method of the present invention showed approximately 800 (G), and was In terms of gender, it showed approximately 210 (G).

以上実施例を2項述べたが、押出すテープの断面形状は
、平板状でなくても、第4図に示す形状でも良いし、ま
たヌパイラルのピッチを極端に少なくし多条に巻きつけ
て第5図に示すローター磁石も製造できる。
Two examples have been described above, but the cross-sectional shape of the tape to be extruded does not have to be flat, but may be the shape shown in Figure 4, or the tape can be wound in multiple strips by extremely reducing the pitch of the spirals. The rotor magnet shown in FIG. 5 can also be manufactured.

〔効果〕〔effect〕

以上述べたように本発明によれば、磁場中押出成形法に
よって磁気異方性を持ったリング伏永久磁石全製造する
方法において、熱硬化性樹脂結合型希土類磁石粉末を用
いてテープ状にした按スパイラル状にしてリング状とす
る。磁気異方性を付加する工程でテープ状とするため、
磁場が多く取れよって磁粉の配向がよく、直接リング、
状にしてラジアル異方性を付加する方法では、形状によ
って配向磁場が取れない場合が有るが、本方法ではこの
ような場合に特に有用であり、また、スパイラル状にし
た後リング状とするため丈の長い、肉厚の薄いラジアル
磁石が製造できる効果を有する。
As described above, according to the present invention, in a method for manufacturing a ring-shaped permanent magnet having magnetic anisotropy by an extrusion molding method in a magnetic field, thermosetting resin bonded rare earth magnet powder is used to form a tape shape. Strain it into a spiral shape to form a ring. In order to make it into a tape shape in the process of adding magnetic anisotropy,
The magnetic field is large and the magnetic particles are well oriented, allowing direct ring,
In the method of adding radial anisotropy by forming a spiral, it may not be possible to obtain an orienting magnetic field depending on the shape, but this method is particularly useful in such cases. This has the effect of producing long, thin-walled radial magnets.

また、スパイラル状にした後リング状心棒に巻き付ける
方法のため薄肉磁石が可能となり、またテープ状をリン
グ状心棒に巻き付ける方法より硬化後の変化量が少ない
ためヒビやワレが少なく、所定の肉厚にするために薄肉
品を複数層巻く必要がなく所定の厚みに成形しておいて
、巻き付けることができ、そのためコストダウンの効果
も有る。
In addition, thin-walled magnets are possible because the method is made into a spiral and then wrapped around a ring-shaped mandrel, and the amount of change after hardening is smaller than the method of winding a tape-shaped material around a ring-shaped mandrel, so there are fewer cracks and cracks, and the desired wall thickness can be maintained. There is no need to wrap multiple layers of thin-walled products in order to achieve a desired thickness, and the product can be formed to a predetermined thickness and then wrapped, which also has the effect of reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(に、(B)は本発明法による実施例。第2図は
、本発明法による成形品の一例を示し、第3図はコイル
電流と発生磁場強きの関係。第4図は本発明法による実
施例の断面図。第5図は本発明法によるモーター用ロー
ター磁石の斜視図全示す。 1・・ホッパー 2・・シリンター 3・・ヒーター 4・・スクリュー 5・・テーハーハーレル部 6・・磁気回路7.8・・
磁場コイル 9・・磁力線 10・・ギャップ 11・・冷却ダイス12・・水冷パ
イプ 16・・消磁回路14・・矯正ダイス 15・・
加熱ヒーター以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上筋 (汐) 第1図 第2図
Figures 1 and (B) show examples of molded products produced by the method of the present invention. Figure 2 shows an example of a molded product produced by the method of the present invention. Figure 3 shows the relationship between the coil current and the strength of the generated magnetic field. Figure 4 shows the relationship between the coil current and the strength of the generated magnetic field. A cross-sectional view of an embodiment according to the method of the present invention. Fig. 5 is a complete perspective view of a rotor magnet for a motor according to the method of the present invention. 1. Hopper 2. Cylinder 3. Heater 4. Screw 5. Teher barrel section 6 ...Magnetic circuit 7.8...
Magnetic field coil 9... Lines of magnetic force 10... Gap 11... Cooling die 12... Water cooling pipe 16... Demagnetizing circuit 14... Straightening die 15...
Heating heater and above Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Mogamisuji (Shio) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 磁場中押出成形法により、磁気異方性を持ったリング状
永久磁石を製造する方法において、樹脂結合型希土類磁
石粉末を用い、2バイラル状のテープを押出、かつ該テ
ープをリング状心棒に巻き付は所定の長ζに輪切り状に
カットすることを特徴とするリング状永久磁石の製造方
法。
In a method for manufacturing a ring-shaped permanent magnet with magnetic anisotropy by extrusion molding in a magnetic field, resin-bonded rare earth magnet powder is used to extrude a bi-viral tape, and the tape is wound around a ring-shaped mandrel. Attached is a method for manufacturing a ring-shaped permanent magnet, which is characterized by cutting the ring-shaped permanent magnet into rings of a predetermined length ζ.
JP7785284A 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet Granted JPS60220919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7785284A JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7785284A JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28802289A Division JPH02191310A (en) 1989-11-07 1989-11-07 Manufacture of tape-shaped permanent magnet

Publications (2)

Publication Number Publication Date
JPS60220919A true JPS60220919A (en) 1985-11-05
JPH0469407B2 JPH0469407B2 (en) 1992-11-06

Family

ID=13645587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7785284A Granted JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Country Status (1)

Country Link
JP (1) JPS60220919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311468A (en) * 2006-05-17 2007-11-29 Matsushita Electric Ind Co Ltd Sheetlike bond magnet curling device
US10692652B2 (en) * 2009-08-04 2020-06-23 The Boeing Company Methods for manufacturing magnetic composite structures with high mechanical strength

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201110233D0 (en) * 2011-06-16 2011-08-03 Williams Hybrid Power Ltd Magnetically loaded composite rotors and tapes used in the production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311468A (en) * 2006-05-17 2007-11-29 Matsushita Electric Ind Co Ltd Sheetlike bond magnet curling device
US10692652B2 (en) * 2009-08-04 2020-06-23 The Boeing Company Methods for manufacturing magnetic composite structures with high mechanical strength

Also Published As

Publication number Publication date
JPH0469407B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
JPS60220919A (en) Manufacture of ringed permanent magnet
JP3007491B2 (en) Side-oriented anisotropic magnet
JPH0517691B2 (en)
JP2768356B2 (en) Method for manufacturing resin-bonded magnet
JPS61164215A (en) Manufacture of thin-walled cylindrical magnet
JPS60216512A (en) Magnet for magnetic roll
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JP2579550B2 (en) Method of manufacturing rotor for small motor
JPH07250460A (en) Manufacture of dice for orienting magnetic field and flexible magnet
JPS62261110A (en) Manufacture of permanent magnet
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS60208817A (en) Manufacture of anisotropic resin magnet
JPH10341546A (en) Driving device equipped with mover
JPH0624176B2 (en) Method for producing polar anisotropic long molded products
JPS62260552A (en) Rotor magnet for miniature motor
JPS60208818A (en) Manufacture of cylindrical permanent magnet
JPS60217617A (en) Manufacture of cylindrical permanent magnet
JPH02222110A (en) Magnet roll
JPH05234788A (en) Manufacture of permanent magnetic member
JPH06168836A (en) Manufacture of permanent magnet member
JP2859480B2 (en) Manufacturing method of permanent magnet member
JPS60216513A (en) Roll magnet for magnetic brush developing device
JPH02226702A (en) Magnet roll

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term