JPS61164215A - Manufacture of thin-walled cylindrical magnet - Google Patents

Manufacture of thin-walled cylindrical magnet

Info

Publication number
JPS61164215A
JPS61164215A JP538285A JP538285A JPS61164215A JP S61164215 A JPS61164215 A JP S61164215A JP 538285 A JP538285 A JP 538285A JP 538285 A JP538285 A JP 538285A JP S61164215 A JPS61164215 A JP S61164215A
Authority
JP
Japan
Prior art keywords
magnetic
rare earth
magnet
powder
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP538285A
Other languages
Japanese (ja)
Other versions
JPH0611014B2 (en
Inventor
Itaru Okonogi
格 小此木
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60005382A priority Critical patent/JPH0611014B2/en
Publication of JPS61164215A publication Critical patent/JPS61164215A/en
Publication of JPH0611014B2 publication Critical patent/JPH0611014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To simplify the saturation multipolar magnetization by making a rare earth magnet anisotropic in a cylindrical shape and a radial orientation, and performing extrusion molding. CONSTITUTION:As the magnet powder, an inter-rare earth metal compound alloy containing a rare earth metal such as yttrium and a transition metal such as iron is used. As the organic resin, a polyamide resin such as thermoelectric nylon 6, 12 is preferable. As to the mixing ratio of the magnetic powder and the organic resin, since the magnetic powder has a low magnetic performance if it is 50vol% or less, and extrusion molding cannot be applied it is exceeds 75vol%. Thus, the fill of the magnet powder is preferably in the range of 50vol%-75vol%. The above mixture is heated to about 80 deg.C-300 deg.C. After it becomes fluid, it is made to pass through a metal mold, simultaneously it is provided with a magnetic orientation, and then it is cooled and set to be made into a pipe. Here, the magnetic field is generated so that it becomes radial.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類金属間化合物を原料相に用いてつくら
れる放射状異方性を有する円筒状磁石の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a cylindrical magnet having radial anisotropy, which is manufactured using a rare earth intermetallic compound as a raw material phase.

〔従来の技9円〕 従来の異方性希土類樹脂磁石は、例えは、特願昭59−
66265号のように提案がされている。
[Conventional technology 9 yen] Conventional anisotropic rare earth resin magnets, for example,
Proposals such as No. 66265 have been made.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しか(7、前述の従来技術では、円筒の肉厚の厚いもの
しか出来ないという問題点を有していた。
However, (7) the above-mentioned conventional technology had the problem that only thick cylinders could be produced.

本発明はこのような問題点を解決するもので、その目的
とするところは、肉厚(1)が、概ね11以下の円筒状
異方性樹脂磁石を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a cylindrical anisotropic resin magnet having a wall thickness (1) of approximately 11 or less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の円筒状異方性樹脂磁石の製造方法は、希土類余
端と遷移金属からなる磁石粉末と有機物樹脂で構成され
た組成物を流動状態としてから、押出成形法で円筒状空
間に磁場を加えながら磁石粉末を配向させバインダーを
冷却固化してつくられたことを%Rとするものである。
The method for producing a cylindrical anisotropic resin magnet of the present invention involves making a composition composed of magnet powder consisting of a rare earth end and a transition metal and an organic resin into a fluid state, and then applying a magnetic field to a cylindrical space using an extrusion molding method. %R refers to the product produced by orienting the magnet powder and cooling and solidifying the binder while adding the binder.

なお本発明の具体的構成および物質の駆足理由について
、以下に詳述する。筐ずここで用いられる磁石粉末とは
仄のようなものを対象とする。イツトリウム(Y)お工
ひラントナイド系希土類金属のランメン(La)、セリ
ウム(Oe) 、プラセオジム(Pr) 、ネオジム(
Na、) 、サマリウム(Sm) 、ガドリウム(oa
、)テルビウム(Tb) 、ジルコニウム(IJy)な
どの1種又は、2種以上の希土類金属と鉄、コバルト。
The specific structure of the present invention and the reason for the use of substances will be described in detail below. The object of this study is something similar to the magnetic powder used here. Yttrium (Y), Lanthonide rare earth metals Ramen (La), Cerium (Oe), Praseodymium (Pr), Neodymium (
), samarium (Sm), gadolinium (oa
,) One or more rare earth metals such as terbium (Tb) and zirconium (IJy) and iron and cobalt.

ニッケル、鋼、チタン、ジルコニウム、ハフニウム、バ
ナジウム、ニオブ、タンタル、クロム、モリフ′テン、
タングステン、マンガンがトの44多金属を1抽又は2
棟以上含んだ希土類金属間化合物合金を用いる。−fた
有機物樹脂は、熱可塑性のナイロン6.12.などのポ
リアミド樹脂が好筐しい。磁石粉末と有機物樹脂の混合
比率は磁石粉末は50容1i(vol)%以下では、磁
気性能が低ぐなってし捷い、実用に供し得ないためであ
る。−力75 Vol %を越えると、押出成形出来な
くなるため、好寸しぐに磁石粉の充てん量は、50Vo
1m/m〜75 VOI %の範囲である。以上の混合
物をスクリュータイプ混練機又は、加圧タイプニーダ−
にて、60℃〜500℃付近に加熱しながら、製造した
組成物をコンパウンドと称する。
Nickel, steel, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum,
Tungsten and manganese are 44 polymetals of 1 or 2
A rare earth intermetallic compound alloy containing more than 100% is used. -f The organic resin is thermoplastic nylon 6.12. Polyamide resins such as are suitable. This is because if the mixing ratio of the magnet powder and the organic resin is less than 50 1i (vol)%, the magnetic performance will be low and it will crumble, making it impossible to put it into practical use. - If the force exceeds 75 Vol %, extrusion molding will not be possible, so the filling amount of magnet powder should be 50 Vol.
It ranges from 1 m/m to 75 VOI%. The above mixture is mixed in a screw type kneader or pressure type kneader.
The composition produced while heating at around 60°C to 500°C is called a compound.

前記コンパウンドは、押出成形機に投入され、80℃〜
500℃程度に加熱され、流動状となった後金型中を通
、曝させると同時に磁場配向されてから冷却固化してパ
イプとなすものである。ここで磁場は、放射状になるよ
う発生させなければなI−1′7i−い。具体的方法は
、■金型の外部よりコイルを介して磁場を加える方法、
■金型の一部に永久磁石を配役1〜て行うyJ法、■金
型の4t ′i&をマルテンザイト系H利となし磁化し
て使用する方法などが考えられるが、必要に応じて使い
分ければ良い。
The compound is put into an extrusion molding machine and heated to 80°C~
After being heated to about 500°C and becoming fluid, it is passed through a mold and exposed to a magnetic field, and then cooled and solidified to form a pipe. Here, the magnetic field must be generated radially. Specific methods include: ■A method of applying a magnetic field from outside the mold via a coil;
■The yJ method in which a permanent magnet is placed in a part of the mold, and ■The method in which the 4t'i& of the mold is magnetized with martenzite-based H magnets. That's fine.

ギャップ内の必要磁場は、約5 Koθ以上欲しい。The required magnetic field within the gap is approximately 5 Koθ or more.

放射状配向度は望丑しくは80%Jコシ上であるが、我
々の実験によれは好1しぐば、50%以上あれば磁気性
能は旨められるためである。
The degree of radial orientation is preferably 80% or above, but according to our experiments, magnetic performance can be improved if it is 50% or more.

〔実細例−1〕 希土類磁石粉末60 Vol−係、残部ナイロン12か
らなるコノパウンドを用いた。希土類磁石粉末は材料と
して、”’ m (C0Cuo、oa F2O,02z
rO,02J )msの合金を1史用した。粉末粒度は
平均25μの値で分布は5μ〜60μにある。本組成の
磁石合金は、一般には2−17系希土類金属間化合物と
呼ばれているものである。本合金は磁石化のための熱処
理として、溶体化処理、そして時効処理を行ってから粉
末としたものを用いた。粉末はナイロン12を。
[Detailed Example-1] A conopound consisting of rare earth magnet powder 60 Vol. and the balance nylon 12 was used. Rare earth magnet powder is used as a material.
An alloy of rO,02J)ms was used for one history. The powder particle size has an average value of 25μ and a distribution between 5μ and 60μ. The magnetic alloy having this composition is generally called a 2-17 rare earth intermetallic compound. This alloy was used as a powder after being subjected to solution treatment and aging treatment as heat treatment for magnetization. The powder is nylon 12.

用い約40 Vo1m/mを混合し、2軸混練機(池具
鉄工所製POM45 )にて加熱温度260℃で混練し
た。混練したコンパウンド(磁石粉末とナイロン12の
混合物)は、φ5〜4mX51zにホットカットして厚
相ベレットとした。
The mixture was mixed at a heating temperature of 260° C. with a twin-screw kneader (POM45 manufactured by Ikegu Iron Works). The kneaded compound (mixture of magnet powder and nylon 12) was hot-cut into thick-phase pellets with a diameter of 5 to 4 m x 51 z.

矢に該厚相コンパウンドは、第1図Aに示す押出成形装
置Wで磁場中押出成形される。原料コンノくランドの8
は、スクリュー3にてバレル2中を前方へ送す込まれる
。スクリューの回転速度は約15rpm(i分15回転
)であり且つ1σ〕ニクロムヒーターによって加熱され
る。加熱温度は約250℃であり、この温度はコンパウ
ンドが流動状となり且つ磁場中で配向される必要条件で
ある。
The thick phase compound is extruded in a magnetic field using an extrusion molding apparatus W shown in FIG. 1A. Raw material Konnok Land 8
is fed forward through the barrel 2 by the screw 3. The rotational speed of the screw is approximately 15 rpm (15 revolutions per i minute) and heated by a 1σ] nichrome heater. The heating temperature is approximately 250° C., which is a necessary condition for the compound to become fluid and oriented in the magnetic field.

我々の研究によれはナイロン12では、250℃〜27
0℃が好ましく、250℃以下では、配向率が50%以
下となり性能低下し易く、又270℃以上では磁石粉末
の酸化並びに、ノ・インダーの劣化(ナイロン12)を
生じ易いためこれまでとした。前方に配設しである押出
成形型9に送り込まれた8の原石は、7の空間部で磁場
中配向される。ここで磁場は、4の電磁石コイルに電流
を流すことによって、5−aのヨーク(純鉄)に導かれ
、5−bの軸(純鉄)を通って、ラジアル配向磁場を発
生させる。さらに円筒状パイプは前方で固化しながら、
10のサイジングダイヌで寸法規正を受けて、円筒形状
がつくり出せた。第1図−Bは、A−B部断面図で、7
の空間部分は中心軸s−b工り5− aに向って放射状
に磁界を生じるものである。
According to our research, nylon 12 has a temperature of 250°C to 27°C.
0°C is preferable; below 250°C, the orientation rate is less than 50%, which tends to reduce performance; and above 270°C, oxidation of the magnet powder and deterioration of the magnet powder (nylon 12) tend to occur. . The raw stone 8 fed into the extrusion mold 9 disposed at the front is oriented in the magnetic field in the space 7. Here, the magnetic field is guided to the yoke 5-a (pure iron) by passing a current through the electromagnetic coil 4, passes through the axis 5-b (pure iron), and generates a radial orientation magnetic field. Furthermore, the cylindrical pipe solidifies in front,
I was able to create a cylindrical shape by adjusting the dimensions using 10 sizing dyes. Figure 1-B is a sectional view of section A-B.
The space portion generates a magnetic field radially toward the central axis s-b machining 5-a.

法に本願発明者は、前記方法で、7の磁場の強さと配向
性Br(残留磁束密度)をパラメーターにしてデータを
とった。この時の製造条件は、加熱編度240℃、スク
リュー5は14rpm%製品形状は外径14′%、内径
12xで押出速度は、50m/分で行った。なお磁石の
性能測足は、自記磁束計で行った。結果を第2図に示す
。すなわち配向磁場は、好1しくに6KG以上は必要で
ある。ここで磁場の強さがわかったので、肉厚との関係
について調べた。配向磁場の強さは、1O−1z[L5
KGとし、加熱幅朋245:l:2℃、その他の条件は
前述と同一で行った。第1表に結果を示す。
In this method, the inventors of the present application collected data using the magnetic field strength and orientation Br (residual magnetic flux density) in 7 as parameters using the method described above. The manufacturing conditions at this time were that the heating knitting temperature was 240°C, the screw 5 was 14 rpm, the product shape was 14'% in outer diameter, 12x in inner diameter, and the extrusion speed was 50 m/min. The performance of the magnet was measured using a self-recording magnetometer. The results are shown in Figure 2. That is, the orientation magnetic field preferably needs to be 6 KG or more. Now that we know the strength of the magnetic field, we investigated its relationship with wall thickness. The strength of the orientation magnetic field is 1O-1z[L5
KG, heating width 245:1:2°C, and other conditions were the same as above. Table 1 shows the results.

第1表 磁気性能は残留磁束密度(Br)について自記磁束計で
1llll’ZL、た。第1表かられかるように、肉厚
が1′1期以上、1.S:袷をこえると、密度力;吐く
なる欠点を生じる。才だ、形状の蛾特性も弱くなり、円
i笥114iが悪くなる欠点を生じることがわかった。
Table 1 Magnetic performance: The residual magnetic flux density (Br) was 1llll'ZL using a self-recording magnetometer. As can be seen from Table 1, the wall thickness is 1'1 or more, 1. S: When it crosses the line, it causes the disadvantage of density force; vomiting. However, it was found that the characteristic of the shape was also weakened, resulting in a defect that the circle 114i became worse.

〔実施例−2〕 仄に′4f:飛−1でつくられた円筒状磁石をそれぞれ
長さ4篤にカットしヨークにはめ込んで多極着磁ヲ行っ
た。4磁条件は、オイルコンデンキ一式看磁磯を用いて
行った。光重電圧2000 V、コンテツサー各M゛は
、i、000μFで行った。
[Example 2] The cylindrical magnets made in '4f' and '4f' were cut into lengths of four lengths, and the magnets were fitted into a yoke to perform multipolar magnetization. The 4-magnetic conditions were carried out using a set of oil-condensate containers. The photovoltaic voltage was 2,000 V, and each of the contours was set to i, 000 μF.

第5図−Aは薄肉円筒状磁石13を純鉄でつくられたヨ
ーク12にはめ込み接看固足した。これを着磁ヨークに
セットし前記条件で24極に着磁した。層線角度Qま、
15°で第5図−Bに示すように、経方向(肉厚方向)
に溝線され1周24極とした。次に本発明性磁石t =
 0.5および従来品七−1,5篤の磁束密度を第2表
に示す。
In FIG. 5-A, a thin cylindrical magnet 13 is fitted into a yoke 12 made of pure iron and fixed in place. This was set in a magnetizing yoke and magnetized to 24 poles under the above conditions. Layer line angle Q,
As shown in Figure 5-B at 15 degrees, the longitudinal direction (thickness direction)
Groove lines were placed on each side to provide 24 poles per circumference. Next, the inventive magnet t =
Table 2 shows the magnetic flux densities of 0.5 and the conventional product 7-1,5.

第2表 6(1j定は、ガウスメーターによった。Table 2 6 (1j constant was measured using a Gauss meter.

第4図は本発明2工び従来磁石の磁極位置(1〜24棟
)と表面磁束変化を示したもので、やはり本発明磁石の
力が、格段に精度の良いことがわかった。以上のことか
ら放射状配向にし、仄に多極層線を行うと極めて7旨磁
し易(なり、累月のもっているボ子ンンヤルを十分引き
出せることがわかった。このような薄肉日商状磁石の用
途は、PM型スステップモーター印刷機現像用マクネッ
トロール、スピーカー、磁気エン:l−ター& トVC
用いることが出来る。
FIG. 4 shows the magnetic pole positions (1 to 24 blocks) and surface magnetic flux changes of the two conventional magnets according to the present invention, and it was found that the force of the magnet according to the present invention is much more accurate. From the above, it was found that radial orientation and a slight multi-polar layer wire make it extremely easy to magnetize, and it is possible to fully bring out the boning that the moon has. The applications are PM type step motor printing machine developing Macnet roll, speaker, magnetic engine: l-ter & to VC.
It can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、希土類磁石を円面形状で放射状配向に
異方性fヒさせ目一つ押出成形することに工す、箆和多
極看磁化を容易ならしめることが5J能となり、商性能
並びに高精度化も併せて達成出来た。まだ薄肉比によっ
て、反別コストは従来のA以下にできるので製品、テパ
イスのコヌトダウン寄与率は高(々る。
According to the present invention, it is possible to facilitate multipolar magnetization by extruding a rare earth magnet in a circular shape with an anisotropic f-hole in radial orientation, thereby making it commercially viable. We were able to achieve both performance and high accuracy. However, due to the thin wall ratio, the cost of fabrication can be reduced to less than the conventional A, so the contribution of the product Tepais to the downfall is high.

押出成形法との併用によって、形状保持性を高められる
ため、肉厚がt = 1. [1’%以下という薄肉円
筒磁石を量産製造できる。
By using the extrusion molding method in combination, shape retention can be improved, so the wall thickness can be reduced to t = 1. [Thin cylindrical magnets with a thickness of 1'% or less can be mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−Aは磁場押出成形機の断面図。 第1図−Bは磁場押出成形機磁場配向部金型σ〕A−B
断面図。 第2図は本発明法の配向磁場強度と性能を示す図。 第5図Aは着磁実験に用いた治具の断面図、第5図Bも
同様で、着磁の仕方を示す図。 第4図は、磁極位置と表面磁束密度の相関を示す図。 以   上
FIG. 1-A is a sectional view of a magnetic extrusion molding machine. Figure 1-B is the magnetic field extrusion molding machine magnetic field orientation part mold σ〕A-B
Cross-sectional view. FIG. 2 is a diagram showing the orientation magnetic field strength and performance of the method of the present invention. FIG. 5A is a sectional view of the jig used in the magnetization experiment, and FIG. 5B is a similar diagram showing the method of magnetization. FIG. 4 is a diagram showing the correlation between magnetic pole position and surface magnetic flux density. that's all

Claims (1)

【特許請求の範囲】[Claims] 外径が150φm/m以下の円筒状磁石の製造工程にお
いて、希土類磁石粉末と樹脂からなる組成物を加熱しな
がら押出成形法で金型空間を通過させて製造することを
特徴とする、成形品の肉厚が1m/m以下である、薄肉
円筒状磁石の製造方法。
A molded product characterized by manufacturing a cylindrical magnet with an outer diameter of 150φm/m or less by passing a composition consisting of rare earth magnet powder and resin through a mold space using an extrusion molding method while heating the composition. A method for producing a thin cylindrical magnet having a wall thickness of 1 m/m or less.
JP60005382A 1985-01-16 1985-01-16 Manufacturing method of cylindrical magnet Expired - Lifetime JPH0611014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005382A JPH0611014B2 (en) 1985-01-16 1985-01-16 Manufacturing method of cylindrical magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005382A JPH0611014B2 (en) 1985-01-16 1985-01-16 Manufacturing method of cylindrical magnet

Publications (2)

Publication Number Publication Date
JPS61164215A true JPS61164215A (en) 1986-07-24
JPH0611014B2 JPH0611014B2 (en) 1994-02-09

Family

ID=11609613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005382A Expired - Lifetime JPH0611014B2 (en) 1985-01-16 1985-01-16 Manufacturing method of cylindrical magnet

Country Status (1)

Country Link
JP (1) JPH0611014B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191311A (en) * 1989-11-07 1990-07-27 Seiko Epson Corp Cylindrical resin coupling type magnet
JPH06302447A (en) * 1993-04-12 1994-10-28 Seiko Epson Corp Metal mold for extrusion molding
JP2005221329A (en) * 2004-02-04 2005-08-18 Nsk Ltd Encoder and roller bearing equipped with the encoder
JP2005233923A (en) * 2004-01-22 2005-09-02 Nsk Ltd Roller bearing
JP2005241289A (en) * 2004-02-24 2005-09-08 Nsk Ltd Magnetic encoder and rolling bearing equipped with same
JP2013021191A (en) * 2011-07-12 2013-01-31 Nichia Chem Ind Ltd Bond magnet, manufacturing method therefor, and apparatus for manufacturing bond magnet
USRE48526E1 (en) 2004-01-22 2021-04-20 Nsk Ltd. Magnetic encoder and bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830092A (en) * 1971-08-23 1973-04-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830092A (en) * 1971-08-23 1973-04-20

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191311A (en) * 1989-11-07 1990-07-27 Seiko Epson Corp Cylindrical resin coupling type magnet
JPH06302447A (en) * 1993-04-12 1994-10-28 Seiko Epson Corp Metal mold for extrusion molding
JP2005233923A (en) * 2004-01-22 2005-09-02 Nsk Ltd Roller bearing
JP4682529B2 (en) * 2004-01-22 2011-05-11 日本精工株式会社 Rolling bearing with sensor for automobile wheels
USRE48526E1 (en) 2004-01-22 2021-04-20 Nsk Ltd. Magnetic encoder and bearing
JP2005221329A (en) * 2004-02-04 2005-08-18 Nsk Ltd Encoder and roller bearing equipped with the encoder
JP2005241289A (en) * 2004-02-24 2005-09-08 Nsk Ltd Magnetic encoder and rolling bearing equipped with same
JP2013021191A (en) * 2011-07-12 2013-01-31 Nichia Chem Ind Ltd Bond magnet, manufacturing method therefor, and apparatus for manufacturing bond magnet

Also Published As

Publication number Publication date
JPH0611014B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP0452580B1 (en) A resin bound magnet and its production process
JPS61164215A (en) Manufacture of thin-walled cylindrical magnet
JP6879457B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JPS61237405A (en) Multipolarized magnet
JPH09148166A (en) Manufacture of resin-bonded magnet
JPH0469407B2 (en)
JPH0517691B2 (en)
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS60194503A (en) Composite permanent magnet blank
JPH0439214B2 (en)
JP2579550B2 (en) Method of manufacturing rotor for small motor
JPH05129127A (en) Anisotropic segment type magnet
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPS62261110A (en) Manufacture of permanent magnet
JPH02191311A (en) Cylindrical resin coupling type magnet
JPS6286809A (en) Manufacture of cylindrical anisotropic magnet
JPS60208817A (en) Manufacture of anisotropic resin magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JPS60217617A (en) Manufacture of cylindrical permanent magnet
JPH03150808A (en) Permanent magnet roller
JPS6037112A (en) Manufacture of anisotropic composite magnet
JPS60223108A (en) Manufacture of permanent magnet
JP2003257766A (en) Resin magnet and manufacturing method therefor
JPS62232910A (en) Manufacture of multi-polar anisotropic resinous magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term