JPH0552045B2 - - Google Patents

Info

Publication number
JPH0552045B2
JPH0552045B2 JP63293407A JP29340788A JPH0552045B2 JP H0552045 B2 JPH0552045 B2 JP H0552045B2 JP 63293407 A JP63293407 A JP 63293407A JP 29340788 A JP29340788 A JP 29340788A JP H0552045 B2 JPH0552045 B2 JP H0552045B2
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
magnet
mold
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63293407A
Other languages
Japanese (ja)
Other versions
JPH02139908A (en
Inventor
Takeshi Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP29340788A priority Critical patent/JPH02139908A/en
Publication of JPH02139908A publication Critical patent/JPH02139908A/en
Publication of JPH0552045B2 publication Critical patent/JPH0552045B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業状の利用分野] 本発明は極異方性希土類磁石の製造方法に関
し、特に電子・電気分野のモーターに利用して好
適な希土類永久磁石の製造方法に関する。 [従来技術とその問題点] 径方向配向、極異方性配向の永久磁石を得る試
みは既に幾つか成されている。例えば特開昭59−
216453号公報にはパルス磁場と静的な加圧方法
(例えば油圧プレス)により極異方性を作製する
ことが開示されている。本発明者らもパルス磁場
とパルス圧力の組合せによる磁場成形について極
異方成形を含めその製造方法について出願してい
る。(特開昭58−157901号、特開昭61−243102号、
特開昭61−241905号)。しかし従来の方法による
成形では金型内のパルス磁場分布が大きくなり磁
石微粉に片寄りを生じることが多い。その結果ひ
どい場合は成形体にクラツクが生じたり、成形時
には成形体の見かけはクラツクがなく健全であつ
ても焼結時にクラツクや割れが生じることが多
い。これは磁場が不均一であるとその磁場勾配に
沿つて磁石微粉を移動させる力が働き成形体内の
密度に分布が生じるためである。また希土類磁石
では一般に磁化方向とその垂直方向の熱膨張率に
差があり冷却の過程で2方向の応力差に磁石の強
度が耐えられなくなり割れや亀裂を生じるからで
ある。普通は両方が重畳するためかなりの頻度で
割れまたはクラツクが生じる。 このため焼結体の外側を非磁性スリーブで覆つ
たり、割れ部に樹脂を含浸したりすることが行な
われている。この方法は生産性の面からも特性面
からも好ましくなく、極異方磁石の適用範囲を狭
める原因の1つとなつていた。 [発明の目的] 本発明は極異方性磁石作製上の上述した従来の
問題を改良することを目的としている。本発明に
係る希土類極異方性磁石の製造方法によれば、電
気・電子分野で用いられるモーター用磁石として
最適な永久磁石を提供することができる。 [発明の構成] 本発明の要旨は磁化方向が径方向のリング状極
異方性磁石の製造において、非磁性スリーブを磁
性ヨークで焼きばめし、この磁性ヨークに銅の巻
き線を施したダイスの中に強磁性超硬質金属WC
(Co)でできたコアーを配置し、残りのキヤビテ
イー空〓部に希土磁石微粉を充填した後、磁石粉
をパルス磁場中で多極の径方向に配向させ、前記
パルス磁場発生時間内に成形を完了させることを
特徴とする製造方法にある。即ち、本発明の特徴
は、強磁性硬質金属でできたコアーを設けたこと
にある。 以下本発明について詳細に説明する。本発明で
はコンデンサーの放電を利用してパルス磁場を発
生させ、磁場発生中の短時間内にパルス圧力でプ
レス成形を行なう。この場合に使用する金型は、
第1図に示すように、鉄の多極配向ヨーク10内
に金型スリーブ12が焼きばめされ一体化されて
成るダイス内に、強磁性超硬質金属WC(Co)で
できたコアー13が挿入された金型で、その空隙
部(キヤビテイー)14に希土磁石粉を充填して
パルス磁場により極方向に配向する。尚、スリー
ブ12は非磁性であり、参照番号15は後述する
パルス磁場を発生させる導線である。本発明の要
旨はこの様な金型を使用することによりパルス磁
場による磁石粉の不均一分布を改良することにあ
る。 第2図に本発明のプレス成形を行なう装置の概
略を示す。高圧空気を一旦空気タンク20に蓄積
する。タンク20内の高圧空気は開閉弁22によ
り所望の圧力に調整された後衝撃圧発生装置24
内のハンマー26を加速する。ハンマー26によ
り金型上パンチ28を打撃することによりダイス
内の磁石粉32を成形する。ハンマー26が下降
して光ビーム34を横切つた時発生するパルスを
遅延パルサー36に入力してパルス圧力とパルス
磁場のタイミングを調節する。尚、参照番号38
はコンデンサーバンク(パルス磁場発生器)であ
る。 パルス圧力とパルス磁場のタイミングは第3図
Aのようなパルス磁場Hに僅かに遅れてパルス圧
力Pがかかるようにするのが好ましい。第3図B
のようにパルス磁場Hに遥かに遅れてパルス圧力
P又は静的な圧力がかかる場合でも極異方性磁石
が成形可能だが、加圧中に磁場がかかつていない
ため配向度が低下し磁気特性が低下する。 上記のような方法により配向した成形体は第4
図に示すような配向をしており、これは特開昭61
−243102号でも述べた通りである。尚、第4図は
8極配向を模式化したものであり上半分のみを表
している。 第1図に示すような金型を使用することにより
成形体の割れ(つまり磁石粉の不均一分布が原
因)が改良できることについて説明する。例えば
今ダイス内径28φ、コアー外径φの金型を使用す
る場合を考える。パルスを磁場により金型ダイス
内に生じる磁場分布はコアーが非磁性の場合第5
図のように着磁ヨークに近いところが磁場が高
く、着磁ヨークより遠いコアー付近で磁場が低く
なつており、これからダイスキヤビテイー14内
(第1図参照)の外側方向に磁石微粉が引き寄せ
られることが分かる。それ故キヤビテイー14内
の磁場分布を小さくできれば磁石粉の片寄りが少
なくなる。コアー13に強磁性超硬質金属WC
(Co)を使用すると、いままでヨーク10の1つ
の極から隣の極に流れていた磁束が強磁性のコア
ーに引つ張られコアー方向にも磁束が流れるよう
になる。これによりダイスキヤビテイー14内の
磁場分布がなだらかになり(後述する実施例1の
表参考)、磁石粉の片寄りが大幅に軽減されるた
め成形体の割れ、また焼結体の割れが殆どなくな
つた。コアーの材質としてはコバルトを焼結助剤
としたタングステンカーバイド超硬金属が適当で
ある。WC(Co)は、鉄系の強磁性材料より電気
抵抗が1桁〜2桁高いので、パルス磁場による渦
電流の発生が少なく、コアーにパルス磁束が侵入
しやすい。したがつて、キヤビテイー内の磁束密
度の不均一が少なくなる。成形が油圧プレスのよ
うな静的な圧力によつて行われる場合でもこの様
な金型を使用すると効果のあることはいうまでも
ない。本発明で用いられる希土類磁石としては、
Nd−Fe−Bを主構成元素とするNd磁石(Nd−
Fe−B−(M)、Nd−R−Fe−B−(M)但しR=Pr、
Ce、Dy、Tb、M=Al、Nd、Ti、Ga、Moなど)
やSm−Coを主構成元素とするSm磁石、例えば
SmCo5のSm1−5磁石、Sm(CoFeCuM)zの
Sm2−17磁石(M=Zr、Ti、V、Mnなど)や他
にCe(CoFeCuM)5磁石、SmR(CoFeCuM)z磁
石(R=Pr、Ne、Ce)が挙げられるが、勿論上
記のものに限定されるものではない。 [発明の効果] 高い配向度を有する極異方性磁石を任意の極数
で製作することが可能となり、電子・電気分野で
有用なモーター用磁石を作れるようになつた。 [実施例] 実施例 1 純度99.9%Sm、Co、Fe、Cu、Zrメタルを重量
百分比で25%Sm、15%Fe、4.1%Cu、2.5%Zr残
部Coとなるように秤量し、高周波溶解炉で不活
性ガス雰囲気中にて溶解後、水冷銅鋳型に傾注し
て合金インゴツトを作製した。該インゴツトをボ
ールミルにて湿式粉砕を行ない、平均粒径3.5μm
に微粉砕した。第1図に示される6極異方性金型
に磁石粉の充填し、第2図の装置にてパルス磁場
ピーク15kOe、パルス磁場の立ち上がり1msec
のパルス磁場にて極方向に配向させ、パルス磁場
より2msec遅れたパルス圧力にてピーク圧力
1.2t/cm2で成形を行なつた。該成形体をArガス中
1210℃で2時間焼結を行ない、その後1190℃で1
時間溶体化処理をした後室温まで冷却した。時効
熱処理として800℃で2時間保持し0.5℃/minの
速度で400℃まで冷却し、その後急冷した。該焼
結体にはクラツクは1つも見られなかつた。測定
はパルス磁場にて6極に着磁したリング試料の側
面にホール素子を当てオープンフラツクスを測定
した。その結果を第6図に示す。比較のため実施
例のダイスに非磁性のコアーを勘合し、磁石組成
やその他の製造条件は同じにして成形・焼結を行
なつた。比較例の焼結体はリングの軸方向に割れ
が生じ、2つに割れてしまつた。 本実施例に使用した金型のキヤビテイー内の磁
場分布をスリーブ表面とコアー表面で測定した結
果を下記の表に示す。比較のため同じ寸法の非磁
性コアーを作製しこれを嵌合せしめたダイス金型
内の磁場分布を測定した結果も第1表に示す。測
定は第1図金型のAとBでホール素子を使用して
測定された。
[Industrial Application Field] The present invention relates to a method for manufacturing a polar anisotropic rare earth magnet, and particularly to a method for manufacturing a rare earth permanent magnet suitable for use in motors in the electronic and electrical fields. [Prior art and its problems] Several attempts have already been made to obtain permanent magnets with radial orientation and polar anisotropic orientation. For example, JP-A-59-
Publication No. 216453 discloses the production of polar anisotropy using a pulsed magnetic field and a static pressurization method (for example, a hydraulic press). The present inventors have also applied for a manufacturing method for magnetic field forming using a combination of a pulsed magnetic field and pulsed pressure, including polar anisotropic forming. (Japanese Patent Publication No. 58-157901, Japanese Patent Application Publication No. 61-243102,
(Japanese Patent Application Laid-Open No. 61-241905). However, in conventional molding methods, the pulsed magnetic field distribution within the mold becomes large, often causing the magnet powder to become uneven. As a result, in severe cases, cracks may occur in the molded product, and even if the molded product appears to be sound without cracks during molding, cracks or fractures often occur during sintering. This is because when the magnetic field is non-uniform, a force moves the magnetic fine powder along the magnetic field gradient, causing a density distribution within the molded body. In addition, in rare earth magnets, there is generally a difference in coefficient of thermal expansion between the magnetization direction and the direction perpendicular to the magnetization direction, and during the cooling process, the strength of the magnet becomes unable to withstand the stress difference in the two directions, resulting in cracks and cracks. Normally, both are superimposed, resulting in cracks or cracks quite frequently. For this reason, the outside of the sintered body is covered with a non-magnetic sleeve, or the cracks are impregnated with resin. This method is unfavorable in terms of both productivity and characteristics, and is one of the causes of narrowing the range of applications of polar anisotropic magnets. [Object of the Invention] The object of the present invention is to improve the above-mentioned conventional problems in producing polar anisotropic magnets. According to the method for manufacturing a rare earth polar anisotropic magnet according to the present invention, it is possible to provide a permanent magnet that is optimal as a motor magnet used in the electrical and electronic fields. [Structure of the Invention] The gist of the present invention is to manufacture a ring-shaped polar anisotropic magnet whose magnetization direction is radial, in which a non-magnetic sleeve is shrink-fitted with a magnetic yoke, and a die in which a copper wire is wound around the magnetic yoke is used. Ferromagnetic super hard metal WC inside
After placing a core made of (Co) and filling the remaining cavity cavity with rare earth magnet fine powder, the magnetic powder is oriented in the radial direction of the multipole in a pulsed magnetic field, and within the pulsed magnetic field generation time. The manufacturing method is characterized by completing molding. That is, the feature of the present invention is that a core made of a ferromagnetic hard metal is provided. The present invention will be explained in detail below. In the present invention, a pulsed magnetic field is generated using the discharge of a capacitor, and press molding is performed with pulsed pressure within a short time while the magnetic field is being generated. The mold used in this case is
As shown in FIG. 1, a core 13 made of ferromagnetic ultra-hard metal WC (Co) is placed inside a die in which a mold sleeve 12 is shrink-fitted and integrated into a multi-pole orientation yoke 10 made of iron. In the inserted mold, the cavity 14 is filled with rare earth magnet powder and oriented in the pole direction by a pulsed magnetic field. The sleeve 12 is non-magnetic, and reference numeral 15 is a conducting wire that generates a pulsed magnetic field, which will be described later. The gist of the present invention is to improve the uneven distribution of magnet powder caused by a pulsed magnetic field by using such a mold. FIG. 2 schematically shows an apparatus for performing press molding according to the present invention. High pressure air is temporarily stored in the air tank 20. The high-pressure air in the tank 20 is adjusted to a desired pressure by the on-off valve 22 and then sent to the impact pressure generator 24.
Accelerate the hammer 26 inside. The magnet powder 32 in the die is shaped by striking the mold upper punch 28 with the hammer 26. The pulse generated when the hammer 26 descends and traverses the light beam 34 is input to a delay pulser 36 to adjust the pulse pressure and timing of the pulse magnetic field. In addition, reference number 38
is a capacitor bank (pulsed magnetic field generator). The timing of the pulse pressure and the pulse magnetic field is preferably such that the pulse pressure P is applied slightly after the pulse magnetic field H as shown in FIG. 3A. Figure 3B
It is possible to form a polar anisotropic magnet even when a pulse pressure P or static pressure is applied much later than the pulse magnetic field H, as in the example shown in FIG. decreases. The molded body oriented by the method described above has a fourth
It is oriented as shown in the figure, which was published in Japanese Patent Application Laid-open No. 61
As stated in issue -243102. Incidentally, FIG. 4 is a schematic representation of the octupole orientation, and only the upper half is shown. It will be explained that by using a mold as shown in FIG. 1, cracks in the molded body (that is, caused by non-uniform distribution of magnet powder) can be improved. For example, consider the case where a mold with a die inner diameter of 28φ and a core outer diameter of φ is used. When the core is non-magnetic, the magnetic field distribution generated in the mold die by the pulsed magnetic field is as follows:
As shown in the figure, the magnetic field is high near the magnetizing yoke, and low near the core, which is far from the magnetizing yoke.From this point on, the magnetic fine powder is attracted toward the outside of the die cavity 14 (see Figure 1). I know that it will happen. Therefore, if the magnetic field distribution within the cavity 14 can be made smaller, the deviation of the magnet powder will be reduced. Ferromagnetic super hard metal WC for core 13
When (Co) is used, the magnetic flux that previously flowed from one pole of the yoke 10 to the next pole is pulled by the ferromagnetic core, and the magnetic flux also flows in the direction of the core. As a result, the magnetic field distribution within the die cavity 14 becomes gentle (see the table in Example 1 described later), and the unevenness of the magnet powder is greatly reduced, which prevents cracks in the molded body and cracks in the sintered body. It's almost gone. A suitable material for the core is tungsten carbide cemented carbide using cobalt as a sintering aid. Since WC (Co) has an electrical resistance one to two orders of magnitude higher than iron-based ferromagnetic materials, eddy currents generated by pulsed magnetic fields are less likely to occur, and pulsed magnetic flux easily penetrates into the core. Therefore, non-uniformity in magnetic flux density within the cavity is reduced. It goes without saying that the use of such a mold is effective even when molding is performed using static pressure such as with a hydraulic press. The rare earth magnet used in the present invention includes:
Nd magnet (Nd-
Fe-B-(M), Nd-R-Fe-B-(M) where R=Pr,
Ce, Dy, Tb, M=Al, Nd, Ti, Ga, Mo, etc.)
or Sm magnets whose main constituent elements are Sm-Co, e.g.
SmCo5 Sm1−5 magnet, Sm(CoFeCuM)z
Other examples include Sm2-17 magnets (M = Zr, Ti, V, Mn, etc.), Ce (CoFeCuM) 5 magnets, SmR (CoFeCuM) z magnets (R = Pr, Ne, Ce), but of course the above It is not limited to. [Effects of the Invention] It has become possible to manufacture polar anisotropic magnets with a high degree of orientation with any number of poles, and it has become possible to manufacture motor magnets useful in the electronic and electrical fields. [Example] Example 1 99.9% purity Sm, Co, Fe, Cu, and Zr metals were weighed so that the weight percentage was 25% Sm, 15% Fe, 4.1% Cu, and 2.5% Zr, balance Co, and high-frequency melting was performed. After melting in a furnace in an inert gas atmosphere, the alloy was poured into a water-cooled copper mold to produce an alloy ingot. The ingot was wet-pulverized in a ball mill to obtain an average particle size of 3.5 μm.
It was finely ground. Fill the 6-pole anisotropic mold shown in Figure 1 with magnet powder, and use the apparatus shown in Figure 2 to produce a pulsed magnetic field peak of 15 kOe and rise of the pulsed magnetic field for 1 msec.
The peak pressure is oriented in the pole direction using a pulsed magnetic field, and the pulse pressure is delayed by 2 msec from the pulsed magnetic field.
Molding was carried out at 1.2t/cm 2 . The molded body is placed in Ar gas.
Sintering was carried out at 1210℃ for 2 hours, then sintered at 1190℃ for 1 hour.
After a time solution treatment, the mixture was cooled to room temperature. As an aging heat treatment, it was held at 800°C for 2 hours, cooled to 400°C at a rate of 0.5°C/min, and then rapidly cooled. No cracks were observed in the sintered body. The open flux was measured by applying a Hall element to the side surface of a ring sample magnetized into six poles using a pulsed magnetic field. The results are shown in FIG. For comparison, a non-magnetic core was fitted into the die of the example, and molding and sintering were performed with the magnet composition and other manufacturing conditions being the same. In the sintered body of the comparative example, a crack occurred in the axial direction of the ring, and it was broken into two pieces. The table below shows the results of measuring the magnetic field distribution in the cavity of the mold used in this example on the sleeve surface and the core surface. For comparison, Table 1 also shows the results of measuring the magnetic field distribution inside a die mold in which a non-magnetic core with the same dimensions was made and fitted into it. The measurements were taken at molds A and B in Figure 1 using Hall elements.

【表】 実施例 2 各々純度99%Nd、99.9%Fe、Co、99.5%B、
99.9%Alを重量百分率で33%Nd、69%Fe、5.1%
Co、1.1%B、1%Alとなるように秤量し、実施
例1と同じ条件で12極の極異方性成形体を作製し
た。該成形体を不活性ガス中1080℃で2時間焼
結、900℃で1時間溶体化後急冷し、その後600℃
で2時間熱処理して急冷した。該焼結体の表面に
はなんらのクラツクも認められなかつた。外側側
面をセンタレス研磨して円形にした後、ホール素
子で測定を行なつた。その結果を第7図に示す。
[Table] Example 2 Each purity 99% Nd, 99.9% Fe, Co, 99.5% B,
99.9% Al by weight percentage 33% Nd, 69% Fe, 5.1%
Co, 1.1% B, and 1% Al were weighed, and a 12-pole polar anisotropic molded body was produced under the same conditions as in Example 1. The molded body was sintered at 1080°C for 2 hours in an inert gas, solution-treated at 900°C for 1 hour, then rapidly cooled, and then sintered at 600°C.
The mixture was heat-treated for 2 hours and then rapidly cooled. No cracks were observed on the surface of the sintered body. After centerless polishing the outer side surface to make it circular, measurements were performed using a Hall element. The results are shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する金型を説明す
る図、第2図は本発明の実施に使用する装置の概
略図、第3図は本発明を説明するグラフ図、第4
図及び第5図は従来例を説明する図、第6図及び
第7図は夫々本発明を説明するオープンフラツク
スの測定結果を示す図である。 図中、10は金型のヨーク、12は金型のスリ
ーブ、14磁石粉が挿入される金型の空〓部を示
す。
Fig. 1 is a diagram explaining a mold used in carrying out the present invention, Fig. 2 is a schematic diagram of an apparatus used in carrying out the present invention, Fig. 3 is a graph diagram explaining the present invention, and Fig. 4 is a diagram explaining a mold used in carrying out the present invention.
5 and 5 are diagrams illustrating a conventional example, and FIGS. 6 and 7 are diagrams showing measurement results of open flux, respectively, illustrating the present invention. In the figure, 10 indicates the yoke of the mold, 12 the sleeve of the mold, and 14 the hollow part of the mold into which the magnetic powder is inserted.

Claims (1)

【特許請求の範囲】 1 希土類磁石で磁化方向が径方向のリング状極
異方性磁石の製造において、 非磁性硬質金属スリープの外側に鉄の多極着磁
ヨークが焼きばめされてなるダイスと、強磁性超
硬質金属WC(Co)のコアーと、非磁性硬質金属
の上下パンチとよりなる極異方性磁石成形用金型
に、希土類磁石微粉を充填してパルス磁場で径方
向に多極配向をおこなわせ、前記パルス磁場の発
生時間内に前記希土類磁石微粉の成形を完了する
ことを特徴とする希土類永久磁石の製造方法。
[Claims] 1. In manufacturing a ring-shaped polar anisotropic rare earth magnet whose magnetization direction is in the radial direction, a die in which an iron multipolar magnetized yoke is shrink-fitted to the outside of a non-magnetic hard metal sleeve. A polar anisotropic magnet mold consisting of a core of ferromagnetic ultra-hard metal WC (Co) and upper and lower punches of non-magnetic hard metal is filled with rare earth magnet fine powder and multiplied in the radial direction using a pulsed magnetic field. A method for producing a rare earth permanent magnet, characterized in that polar orientation is performed and shaping of the rare earth magnet fine powder is completed within the generation time of the pulsed magnetic field.
JP29340788A 1988-11-18 1988-11-18 Manufacture of pole anisotropic rare earth magnet Granted JPH02139908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29340788A JPH02139908A (en) 1988-11-18 1988-11-18 Manufacture of pole anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29340788A JPH02139908A (en) 1988-11-18 1988-11-18 Manufacture of pole anisotropic rare earth magnet

Publications (2)

Publication Number Publication Date
JPH02139908A JPH02139908A (en) 1990-05-29
JPH0552045B2 true JPH0552045B2 (en) 1993-08-04

Family

ID=17794372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29340788A Granted JPH02139908A (en) 1988-11-18 1988-11-18 Manufacture of pole anisotropic rare earth magnet

Country Status (1)

Country Link
JP (1) JPH02139908A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124019A (en) * 2001-10-18 2003-04-25 Yaskawa Electric Corp Permanent magnet and rotor for motor using the same
JP5558596B2 (en) * 2013-02-04 2014-07-23 株式会社東芝 Permanent magnet and motor and generator using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194406A (en) * 1975-02-19 1976-08-19 JISEIFUNMATSUSEIKEIPURESUYOKANAGATA
JPS5227356A (en) * 1975-08-27 1977-03-01 Nec Corp Manufacturing process of silicon epitaxial wafer
JPS5710729B2 (en) * 1977-01-14 1982-02-27
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS6037112A (en) * 1983-08-09 1985-02-26 Hitachi Metals Ltd Manufacture of anisotropic composite magnet
JPS61241905A (en) * 1985-04-18 1986-10-28 Shin Etsu Chem Co Ltd Manufacture of anisotropic permanent magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710729U (en) * 1980-06-20 1982-01-20

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194406A (en) * 1975-02-19 1976-08-19 JISEIFUNMATSUSEIKEIPURESUYOKANAGATA
JPS5227356A (en) * 1975-08-27 1977-03-01 Nec Corp Manufacturing process of silicon epitaxial wafer
JPS5710729B2 (en) * 1977-01-14 1982-02-27
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS6037112A (en) * 1983-08-09 1985-02-26 Hitachi Metals Ltd Manufacture of anisotropic composite magnet
JPS61241905A (en) * 1985-04-18 1986-10-28 Shin Etsu Chem Co Ltd Manufacture of anisotropic permanent magnet

Also Published As

Publication number Publication date
JPH02139908A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JPH02139907A (en) Manufacture of pole anisotropic rare earth magnet
JP2017050396A (en) Rare-earth magnet and manufacturing method therefor
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2021038464A (en) R-tm-b sintered magnet
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JPH0552045B2 (en)
JPH06302417A (en) Permanent magnet and its manufacture
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JP4315340B2 (en) Magnetic field forming method, radial anisotropic ring magnet manufacturing method, magnetic field forming apparatus and radial anisotropic ring magnet
JP3101799B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP2006019386A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JP3937126B2 (en) Die for sintered magnet and method for producing sintered magnet
JPH1154352A (en) Manufacture of r-t-b radial anisotropic ring-like sintered magnet
JPH04143221A (en) Production of permanent magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH01171217A (en) Manufacture of cylindrical rare earth-fe-b magnet
JP2003234229A (en) Ring-shaped magnet material and its manufacturing method
JPS61241905A (en) Manufacture of anisotropic permanent magnet
JPH06333729A (en) Anisotropic magnet, and method and apparatus for manufacture thereof
JPH06151219A (en) Manufacture of permanent magnet