JP2001230107A - Corrosion-resistant rare earth magnet - Google Patents

Corrosion-resistant rare earth magnet

Info

Publication number
JP2001230107A
JP2001230107A JP2000036082A JP2000036082A JP2001230107A JP 2001230107 A JP2001230107 A JP 2001230107A JP 2000036082 A JP2000036082 A JP 2000036082A JP 2000036082 A JP2000036082 A JP 2000036082A JP 2001230107 A JP2001230107 A JP 2001230107A
Authority
JP
Japan
Prior art keywords
corrosion
rare earth
resistant
alloy
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000036082A
Other languages
Japanese (ja)
Other versions
JP3781094B2 (en
Inventor
Ryuji Hamada
隆二 浜田
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000036082A priority Critical patent/JP3781094B2/en
Publication of JP2001230107A publication Critical patent/JP2001230107A/en
Application granted granted Critical
Publication of JP3781094B2 publication Critical patent/JP3781094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resistant high-performance rare earth permanent magnet at a low cost. SOLUTION: Fine powder of at least one metal selected out of Al, Mg, Ca, Zn, Si, Mn, and alloy thereof and an oxide of one or more elements selected out of Si, Mn, Zn, Mo, Cr, and P are compounded into a composite, the composite is formed into a corrosion-resistant film, and the film is provided on the surface of a rare earth permanent magnet of R-T-M-B (R is, at least, a rare earth element including Y, T denotes Fe or Fe and Co, and M is at least one element selected out of Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, and Ta, and the contents of the elements are represented as follows: 5 wt.%<=R<=40 wt.%, 50 wt.%<=T<=90 wt.%, 0.1 wt.%<=M<=8 wt.%, and 0.2 wt.%<=B<=80 wt.%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐食性を有する
耐食性希土類磁石に関する。
The present invention relates to a corrosion-resistant rare earth magnet having high corrosion resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】希土類
永久磁石は、その優れた磁気特性のため各種電気製品や
コンピュータの周辺機器等、幅広い分野で多用されてお
り、重要な電気、電子材料である。特にNd−Fe−B
系永久磁石は、Sm−Co系永久磁石に比べて主要元素
であるNdがSmより豊富に存在すること、Coを多量
に使用しないことから原材料費が安価であり、磁気特性
もSm−Co系永久磁石をはるかにしのぐ極めて優れた
永久磁石である。このため、近年ますますNd−Fe−
B系永久磁石の使用量は増大し、用途も広がりつつあ
る。
2. Description of the Related Art Rare earth permanent magnets are widely used in a wide range of fields such as various electric products and computer peripherals because of their excellent magnetic properties, and are used in important electric and electronic materials. is there. Especially Nd-Fe-B
Compared with Sm-Co-based permanent magnets, Nd, which is a main element, is more abundant than Sm-based permanent magnets, and raw materials are inexpensive because Co is not used in large amounts. It is a very good permanent magnet far beyond the permanent magnet. For this reason, in recent years Nd-Fe-
The usage of B-based permanent magnets is increasing, and the applications are expanding.

【0003】磁気特性向上のための開発研究はNd−F
e−B系永久磁石の発明以来精力的に行われているが、
その1つとして、2種類の組成の異なる合金粉末を混
合、焼結して高性能Nd磁石を製造する、いわゆる2合
金法がある。特許第2853838号、特許第2853
839号、特開平5−21218号、特開平5−212
19号、特開平5−74618号、特開平5−1828
14号公報には、磁性体構成相の種類、特性等を考慮し
て2種類の合金の組成を決定し、これらを組み合わせる
ことにより、高残留磁束密度と高保磁力、更に高エネル
ギー積を有するバランスのとれた高性能Nd磁石を製造
する方法が提案されている。
[0003] Development research for improving the magnetic properties is based on Nd-F.
It has been energetically performed since the invention of the eB-based permanent magnet,
As one of them, there is a so-called two-alloy method in which two kinds of alloy powders having different compositions are mixed and sintered to produce a high-performance Nd magnet. Patent No. 2853838, Patent No. 2853
No. 839, JP-A-5-21218, JP-A-5-212
No. 19, JP-A-5-74618, JP-A-5-1828
No. 14 discloses that the composition of two types of alloys is determined in consideration of the types and characteristics of constituent phases of a magnetic substance, and by combining them, a balance having a high residual magnetic flux density, a high coercive force and a high energy product is obtained. There has been proposed a method for producing a reliable high-performance Nd magnet.

【0004】しかし、Nd−Fe−B系永久磁石は、主
成分として希土類元素及び鉄を含有するため、湿度をお
びた空気中で短時間の内に容易に酸化するという欠点を
持っている。このため、磁気回路に組み込んだ場合に
は、これらの酸化により磁気回路の出力が低下したり、
錆が機器周辺を汚染する問題がある。前記の特許公報及
び公開特許公報で提案されている2合金法で作成された
Nd−Fe−B系永久磁石は、Coを含んだ組成を有す
るため、耐食性はある程度向上しているが、それでも用
途によっては不十分である。
[0004] However, since the Nd-Fe-B permanent magnet contains a rare earth element and iron as main components, it has a disadvantage that it is easily oxidized in humid air in a short time. Therefore, when incorporated in a magnetic circuit, the output of the magnetic circuit decreases due to these oxidations,
There is a problem that rust contaminates around the equipment. The Nd—Fe—B-based permanent magnet produced by the two-alloy method proposed in the above-mentioned patent publication and the published patent publication has a composition containing Co, so that the corrosion resistance is improved to some extent. Is not enough.

【0005】特に、最近は自動車用モータやエレベータ
用モータなどのモータ類にもNd−Fe−B系永久磁石
が使われはじめているが、これらは高温かつ湿潤な環境
での使用を余儀なくされる。また、塩分を含んだ湿気に
曝されることも想定しなくてはならず、より高い耐食性
を低コストで実現することが要求されている。更に、こ
れらのモータ類は、その製造工程において、短時間では
あるが磁石が300℃以上に加熱されることがあり、こ
のような場合には耐熱性も併せて要求される。
[0005] In particular, recently, Nd-Fe-B permanent magnets have begun to be used in motors such as motors for automobiles and motors for elevators, but these must be used in a high-temperature and humid environment. In addition, it must be assumed that it will be exposed to moisture containing salt, and it is required to realize higher corrosion resistance at low cost. Further, in these motors, the magnet may be heated to 300 ° C. or higher for a short time in the manufacturing process, and in such a case, heat resistance is also required.

【0006】Nd−Fe−B系永久磁石の耐食性を改善
するため、多くの場合、樹脂塗装、Alイオンプレーテ
ィング、Niメッキ等の各種表面処理が施されるが、上
記のような厳しい条件にこれらの表面処理で対応するこ
とは現段階の技術では難しい。例えば、樹脂塗装は耐食
性が不足する上、耐熱性がない。Niメッキにはピンホ
ールがわずかながら存在するため、塩分を含んだ湿気中
では錆が発生する。イオンプレーティングは耐熱性、耐
食性は概ね良好であるが、大掛かりな装置を必要とし、
低コストを実現するのは困難である、などの問題があ
る。
In order to improve the corrosion resistance of Nd-Fe-B permanent magnets, various surface treatments such as resin coating, Al ion plating, and Ni plating are applied in many cases. It is difficult to cope with these surface treatments with current technology. For example, resin coating lacks corrosion resistance and does not have heat resistance. Since a small number of pinholes are present in Ni plating, rust occurs in moisture containing salt. Ion plating generally has good heat resistance and corrosion resistance, but requires large-scale equipment,
It is difficult to achieve low cost.

【0007】本発明は、上記事情に鑑み、高性能で、か
つ上記のような過酷な条件での使用に耐える希土類永久
磁石を提供するためになされたもので、高性能希土類永
久磁石に耐食性、耐熱性を有する皮膜を付与した、耐食
性高性能希土類磁石を安価に提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has been made to provide a rare-earth permanent magnet that is high-performance and can withstand use under the above-mentioned severe conditions. An object of the present invention is to provide a corrosion-resistant high-performance rare-earth magnet provided with a heat-resistant film at low cost.

【0008】[0008]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、高性能でかつ耐食性を有するNd−Fe−B
系永久磁石について鋭意検討した結果、R−T−M−B
(RはYを含む希土類元素の少なくとも一種、TはFe
又はFe及びCo、MはTi,Nb,Al,V,Mn,
Sn,Ca,Mg,Pb,Sb,Zn,Si,Zr,C
r,Ni,Cu,Ga,Mo,W,Taから選ばれる少
なくとも一種の元素であって、各元素の含有量がそれぞ
れ5wt%≦R≦40wt%、50wt%≦T≦90w
t%、0.1wt%≦M≦8wt%、0.2wt%≦B
≦8wt%)で表記される合金、特に該合金1と、R−
Fe−Co−M−B(R及びMは上記と同じであり、各
元素の含有量が30wt%≦R≦90wt%、0wt%
≦Fe≦50wt%、5wt%≦Co≦70wt%、0
wt%≦M≦8wt%、0wt%≦B≦2wt%)で表
記される合金2とを混合し、製造される希土類永久磁石
の表面に、Al,Mg,Ca,Zn,Si,Mn及びこ
れらの合金の中から選ばれる少なくとも一種の金属の微
粉末と、Si,Mn,Zn,Mo,Cr,Pから選ばれ
る少なくとも一種以上の元素の酸化物を複合して形成さ
れる皮膜を付与することにより、耐食性、耐熱性に優れ
た高性能希土類磁石を提供できることを知見し、諸条件
を確立して本発明を完成させた。
Means for Solving the Problems and Embodiments of the Invention The present inventor has proposed a high performance and corrosion resistant Nd-Fe-B.
As a result of intensive studies on the system permanent magnet, RTMB
(R is at least one kind of rare earth element including Y, T is Fe
Or Fe, Co, and M are Ti, Nb, Al, V, Mn,
Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, C
At least one element selected from the group consisting of r, Ni, Cu, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt% and 50 wt% ≦ T ≦ 90 w, respectively.
t%, 0.1wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B
≦ 8 wt%), in particular, the alloy 1 and R-
Fe—Co—MB (R and M are the same as above, and the content of each element is 30 wt% ≦ R ≦ 90 wt%, 0 wt%
≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt%, 0
(wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt%), and mixed with Al 2, Mg, Ca, Zn, Si, Mn and the like on the surface of the manufactured rare earth permanent magnet. To provide a film formed by combining a fine powder of at least one metal selected from alloys of the above and an oxide of at least one element selected from Si, Mn, Zn, Mo, Cr, and P. As a result, they found that a high-performance rare earth magnet excellent in corrosion resistance and heat resistance can be provided, and established various conditions to complete the present invention.

【0009】即ち、本発明は、(1)R−T−M−B
(RはYを含む希土類元素の少なくとも一種、TはFe
又はFe及びCo、MはTi,Nb,Al,V,Mn,
Sn,Ca,Mg,Pb,Sb,Zn,Si,Zr,C
r,Ni,Cu,Ga,Mo,W,Taから選ばれる少
なくとも一種の元素であって、各元素の含有量がそれぞ
れ5wt%≦R≦40wt%、50wt%≦T≦90w
t%、0.1wt%≦M≦8wt%、0.2wt%≦B
≦8wt%)で表記される希土類永久磁石の表面に、A
l,Mg,Ca,Zn,Si,Mn及びこれらの合金の
中から選ばれる少なくとも一種の金属の微粉末と、S
i,Mn,Zn,Mo,Cr,Pから選ばれる少なくと
も一種以上の元素の酸化物とを複合して形成される耐食
性皮膜を付与したことを特徴とする耐食性希土類磁石、
及び、(2)上記(1)の耐食性希土類磁石において、
希土類永久磁石が、R−T−M−B(RはYを含む希土
類元素の少なくとも一種、TはFe又はFe及びCo、
MはTi,Nb,Al,V,Mn,Sn,Ca,Mg,
Pb,Sb,Zn,Si,Zr,Cr,Ni,Cu,G
a,Mo,W,Taから選ばれる少なくとも一種の元素
であって、各元素の含有量がそれぞれ5wt%≦R≦4
0wt%、50wt%≦T≦90wt%、0.1wt%
≦M≦8wt%、0.2wt%≦B≦8wt%)で表記
される合金1と、R−Fe−Co−M−B(R及びMは
上記と同じであって、各元素の含有量が30wt%≦R
≦90wt%、0wt%≦Fe≦50wt%、5wt%
≦Co≦70wt%、0wt%≦M≦8wt%、0wt
%≦B≦2wt%)で表記される合金2を混合し、製造
されたものである耐食性希土類磁石を提供する。
That is, the present invention relates to (1) RTMB
(R is at least one kind of rare earth element including Y, T is Fe
Or Fe, Co, and M are Ti, Nb, Al, V, Mn,
Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, C
At least one element selected from the group consisting of r, Ni, Cu, Ga, Mo, W and Ta, and the content of each element is 5 wt% ≦ R ≦ 40 wt% and 50 wt% ≦ T ≦ 90 w, respectively.
t%, 0.1wt% ≦ M ≦ 8wt%, 0.2wt% ≦ B
≦ 8 wt%) on the surface of the rare earth permanent magnet
a fine powder of at least one metal selected from the group consisting of S, Mg, Ca, Zn, Si, Mn and alloys thereof;
a corrosion-resistant rare earth magnet provided with a corrosion-resistant film formed by combining an oxide of at least one element selected from i, Mn, Zn, Mo, Cr, and P;
And (2) in the corrosion resistant rare earth magnet of (1),
The rare earth permanent magnet is formed of RTMB (R is at least one of rare earth elements including Y, T is Fe or Fe and Co,
M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg,
Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, G
a, Mo, W, Ta, and at least one element selected from the group consisting of 5 wt% ≦ R ≦ 4
0 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.1 wt%
Alloy 1 represented by ≦ M ≦ 8 wt%, 0.2 wt% ≦ B ≦ 8 wt%, and R—Fe—Co—MB (R and M are the same as above, and the content of each element) Is 30wt% ≦ R
≦ 90 wt%, 0 wt% ≦ Fe ≦ 50 wt%, 5 wt%
≦ Co ≦ 70 wt%, 0 wt% ≦ M ≦ 8 wt%, 0 wt
% ≦ B ≦ 2 wt%) to provide a corrosion-resistant rare-earth magnet manufactured.

【0010】以下、本発明を詳細に説明する。本発明に
係る耐食性希土類磁石において、使用する永久磁石とし
ては、R−T−M−B(RはYを含む希土類元素の少な
くとも一種、TはFe又はFe及びCo、MはTi,N
b,Al,V,Mn,Sn,Ca,Mg,Pb,Sb,
Zn,Si,Zr,Cr,Ni,Cu,Ga,Mo,
W,Taから選ばれる少なくとも一種の元素であって、
各元素の含有量がそれぞれ5wt%≦R≦40wt%、
50wt%≦T≦90wt%、0.1wt%≦M≦8w
t%、0.2wt%≦B≦8wt%)で表記される希土
類永久磁石、特にR−T−M−B(RはYを含む希土類
元素の少なくとも一種、TはFe又はFe及びCo、M
はTi,Nb,Al,V,Mn,Sn,Ca,Mg,P
b,Sb,Zn,Si,Zr,Cr,Ni,Cu,G
a,Mo,W,Taから選ばれる少なくとも一種の元素
であって、各元素の含有量がそれぞれ5wt%≦R≦4
0wt%、50wt%≦T≦90wt%、0.1wt%
≦M≦8wt%、0.2wt%≦B≦8wt%)で表記
される合金1と、R−Fe−Co−M−B(R及びMは
上記と同じであって、各元素の含有量が30wt%≦R
≦90wt%、0wt%≦Fe≦50wt%、5wt%
≦Co≦70wt%、0wt%≦M≦8wt%、0wt
%≦B≦2wt%)で表記される合金2とを混合し、い
わゆる2合金法で製造される希土類永久磁石である。
Hereinafter, the present invention will be described in detail. In the corrosion-resistant rare earth magnet according to the present invention, the permanent magnet used is R-T-M-B (R is at least one rare earth element including Y, T is Fe or Fe and Co, and M is Ti, N
b, Al, V, Mn, Sn, Ca, Mg, Pb, Sb,
Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo,
At least one element selected from W and Ta,
The content of each element is 5 wt% ≦ R ≦ 40 wt%,
50wt% ≦ T ≦ 90wt%, 0.1wt% ≦ M ≦ 8w
t%, 0.2 wt% ≦ B ≦ 8 wt%) Rare earth permanent magnets, particularly RTMB (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M
Are Ti, Nb, Al, V, Mn, Sn, Ca, Mg, P
b, Sb, Zn, Si, Zr, Cr, Ni, Cu, G
a, Mo, W, Ta, and at least one element selected from the group consisting of 5 wt% ≦ R ≦ 4
0 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.1 wt%
Alloy 1 represented by ≦ M ≦ 8 wt%, 0.2 wt% ≦ B ≦ 8 wt%, and R—Fe—Co—MB (R and M are the same as above, and the content of each element) Is 30wt% ≦ R
≦ 90 wt%, 0 wt% ≦ Fe ≦ 50 wt%, 5 wt%
≦ Co ≦ 70 wt%, 0 wt% ≦ M ≦ 8 wt%, 0 wt
% ≦ B ≦ 2 wt%) and is a rare-earth permanent magnet manufactured by a so-called two-alloy method.

【0011】ここで、合金1はR2Fe14B化合物相
(RはYを含む希土類元素の少なくとも一種)を主成分
とし、焼結後は主としてNd磁石の主相になるものが好
ましい。合金1は原料金属を真空又は不活性ガス、好ま
しくはAr雰囲気中で溶解して作成する。原料金属は純
希土類元素、希土類合金、純鉄、フェロボロン、更には
これらの合金等を使用するが、工業生産において不可避
な各種不純物、代表的にはC,N,O,H,P,S等は
含まれるものとする。得られた合金はR2Fe14B相の
他にαFe、Rリッチ相、Bリッチ相などが残る場合が
あるが、高性能Nd磁石の作成にあたっては合金1の中
のR2Fe14B相が多い方が望ましいので、必要に応じ
て溶体化処理を行う。その時の条件は真空又はAr雰囲
気下、700〜1,200℃の温度で1時間以上熱処理
すればよい。
Here, it is preferable that the alloy 1 has an R 2 Fe 14 B compound phase (R is at least one of rare earth elements including Y) as a main component and becomes a main phase of an Nd magnet after sintering. The alloy 1 is prepared by melting raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. As the raw material metal, a pure rare earth element, a rare earth alloy, pure iron, ferroboron, or an alloy thereof is used. Various impurities inevitable in industrial production, typically, C, N, O, H, P, S, etc. Shall be included. In the obtained alloy, αFe, R-rich phase, B-rich phase, etc. may remain in addition to the R 2 Fe 14 B phase. However, when producing a high-performance Nd magnet, the R 2 Fe 14 B phase in the alloy 1 was used. Therefore, a solution treatment is performed if necessary. The heat treatment may be performed at a temperature of 700 to 1200 ° C. for 1 hour or more in a vacuum or Ar atmosphere.

【0012】一方、合金2は、R−Fe−Co−M−B
(各元素の含有量が30wt%≦R≦90wt%、0w
t%≦Fe≦50wt%、5wt%≦Co≦70wt
%、0wt%≦M≦8wt%、0wt%≦B≦2wt
%)で表記され、更にRとしてPr,Dy又はTbを必
須とすることが好ましく、合金1と同じく原料金属を真
空又は不活性ガス、好ましくはAr雰囲気中で溶解して
作成する。原料金属は純希土類元素、希土類合金、純
鉄、フェロボロン、純コバルト、更にはこれらの合金等
を使用するが、工業生産において不可避な各種不純物、
代表的にはC,N,O,H,P,S等は含まれるものと
する。この組成において得られた合金には、R 21 14
相(T1はFe,Coを主体とする遷移金属元素)、R
リッチ相、並びにRT2 4L相、RT2 3相、RT22相、
22 7B相、RT2 5相(T2はFe,Coを主体とする
遷移金属元素、同遷移金属及びMのうち1種又は2種、
LはB又はBとM)等が出現する。これらの相の融点は
いずれもR2Fe14B相の融点以下のため、合金2は、
焼結温度において適度な粘度を持ち、粒の配向を乱さず
粒界をクリーニングする液相成分となる。合金2は酸化
し易い希土類元素を多く含む組成であるが、Coを用い
ることにより、酸化を抑制している。
On the other hand, alloy 2 is made of R-Fe-Co-MB
(The content of each element is 30 wt% ≦ R ≦ 90 wt%, 0 w
t% ≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt
%, 0 wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt
%) And R must be Pr, Dy or Tb.
It is preferable to use the same raw material metal as alloy 1
Dissolved in an empty or inert gas, preferably an Ar atmosphere
create. Raw metal is pure rare earth element, rare earth alloy, pure
Iron, ferroboron, pure cobalt, and alloys of these
Is used, but various impurities inevitable in industrial production,
Typically, C, N, O, H, P, S, etc. are included
I do. The alloy obtained in this composition contains R TwoT1 14B
Phase (T1Is a transition metal element mainly composed of Fe and Co), R
Rich phase and RTTwo FourL phase, RTTwo ThreePhase, RTTwoTwo phases,
RTwoTTwo 7Phase B, RTTwo FivePhase (TTwoIs mainly composed of Fe and Co
One or two of a transition metal element, the same transition metal and M,
L represents B or B and M). The melting points of these phases are
Both are RTwoFe14Since the melting point of the phase B is lower than that of the alloy 2, the alloy 2
Has an appropriate viscosity at the sintering temperature and does not disturb the grain orientation
It becomes a liquid phase component for cleaning the grain boundaries. Alloy 2 is oxidized
It is a composition that contains a large amount of rare earth elements,
This suppresses oxidation.

【0013】上記で述べた合金1と合金2をそれぞれ別
々に粉砕した後、それらの粉末を所定の比に混合する。
粉砕は一般に粗粉砕、微粉砕と段階的に行われるが、混
合はどの段階で行ってもよい。但し、2つの合金粉末は
ほぼ同じ平均粒径で均一に混合されることが好ましく、
平均粒径は0.5〜20μmの範囲がよい。0.5μm
未満では酸化され易く磁気特性が低下してしまうおそれ
がある。また、20μmを超えると焼結性が悪くなるお
それがある。
After separately pulverizing the alloys 1 and 2 described above, the powders are mixed at a predetermined ratio.
The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage. However, it is preferable that the two alloy powders are uniformly mixed with substantially the same average particle size,
The average particle size is preferably in the range of 0.5 to 20 μm. 0.5 μm
If it is less than 0, it is liable to be oxidized and magnetic properties may be deteriorated. If it exceeds 20 μm, the sinterability may deteriorate.

【0014】合金1と合金2の粉末の混合比は合金1が
70〜99wt%、合金2が1〜30wt%が好まし
い。合金2が1wt%未満だと液相成分が少なすぎて焼
結密度が上がらず、十分な保磁力が得られない場合があ
る。合金2が30wt%を超えると焼結後の非磁性相の
割合が大きすぎて残留磁束密度が小さくなるおそれがあ
る。
The mixing ratio of the powders of alloy 1 and alloy 2 is preferably 70 to 99 wt% for alloy 1 and 1 to 30 wt% for alloy 2. If the content of the alloy 2 is less than 1 wt%, the liquid phase component is too small, the sintering density does not increase, and a sufficient coercive force may not be obtained. If the alloy 2 exceeds 30 wt%, the proportion of the nonmagnetic phase after sintering is too large, and the residual magnetic flux density may be reduced.

【0015】混合された混合微粉は、磁場中成形プレス
によって所定の形状に成形され、続いて焼結を行う。焼
結は900〜1,200℃の温度範囲で真空又はAr雰
囲気下にて30分以上行い、焼結後、更に焼結温度以下
の低温で30分以上時効熱処理することが好ましい。
The mixed fine powder is formed into a predetermined shape by a forming press in a magnetic field, and then sintered. The sintering is preferably performed in a temperature range of 900 to 1,200 ° C. for 30 minutes or more in a vacuum or Ar atmosphere.

【0016】本発明におけるNd−Fe−B系永久磁石
においては、粒界周辺部にPr,Dy及び/又はTbの
濃度偏析を有するものがよい。これは液相成分の合金2
に含まれるPr,Tb,Dyが主相の中に完全に拡散せ
ず、焼結後も粒界近傍に存在するためであるが、このこ
とが磁石の保磁力をより向上させる効果を持っている。
このため、同じ組成であってもより高い磁気特性を持つ
磁石が製造できる。
The Nd-Fe-B permanent magnet according to the present invention preferably has a concentration segregation of Pr, Dy and / or Tb around the grain boundary. This is alloy 2 of liquid phase component
This is because Pr, Tb, and Dy contained in the alloy do not completely diffuse into the main phase and exist near the grain boundaries even after sintering. This has the effect of further improving the coercive force of the magnet. I have.
Therefore, a magnet having higher magnetic characteristics can be manufactured even with the same composition.

【0017】本発明におけるNd−Fe−B系永久磁石
には、工業生産において不可避な不純物元素、代表的に
はC,N,O,H,P,S等が含まれるが、その総和は
2wt%以下であることが望ましい。2wt%を超える
と永久磁石中の非磁性成分が多くなって残留磁束密度が
小さくなるおそれがある。また、希土類元素がこれら不
純物に消費されてしまい、焼結不良になり、保磁力が低
くなるおそれがある。不純物の総和は低ければ低いほど
残留磁束密度、保磁力共に高くなり好ましい。
The Nd-Fe-B permanent magnet according to the present invention contains impurity elements inevitable in industrial production, typically C, N, O, H, P, S, etc., but the total is 2 wt. % Is desirable. If it exceeds 2 wt%, the non-magnetic component in the permanent magnet increases, and the residual magnetic flux density may decrease. In addition, rare earth elements are consumed by these impurities, which may result in poor sintering and lower coercive force. The lower the total amount of impurities, the higher the residual magnetic flux density and coercive force, which is preferable.

【0018】本発明におけるNd−Fe−B系永久磁石
の焼結体密度は7.2g/cc以上が望ましい。7.2
g/cc未満では保磁力が十分に得られない場合があ
る。また、抗折力は150MPa以上、ビッカース硬さ
で500以上が望ましい。抗折力が150MPa未満、
ビッカース硬さで500未満の永久磁石は、実際にモー
タなどで使用された時に破損するおそれがある。
The sintered body density of the Nd-Fe-B permanent magnet according to the present invention is desirably 7.2 g / cc or more. 7.2
If it is less than g / cc, a sufficient coercive force may not be obtained. Further, the bending strength is desirably 150 MPa or more, and the Vickers hardness is desirably 500 or more. Flexural strength less than 150 MPa,
A permanent magnet having a Vickers hardness of less than 500 may be damaged when actually used in a motor or the like.

【0019】本発明においては、上記希土類永久磁石の
表面に、Al,Mg,Ca,Zn,Si,Mn及びこれ
らの合金から選ばれる少なくとも一種の金属の微粉末
と、Si,Mn,Zn,Mo,Cr,Pから選ばれる少
なくとも一種の元素の酸化物とを複合して形成される耐
食性皮膜を形成する。
In the present invention, a fine powder of at least one metal selected from the group consisting of Al, Mg, Ca, Zn, Si, Mn and alloys thereof is formed on the surface of the rare-earth permanent magnet, and Si, Mn, Zn, Mo. , Cr, P to form a corrosion-resistant film formed by compounding with an oxide of at least one element selected from the group consisting of:

【0020】ここで、上記金属微粉末としては、フレー
ク状微粉末であることが好ましく、その形状は、平均長
径が0.1〜15μm、平均厚さが0.01〜5μmで
あって、かつアスペクト比(平均長径/平均厚さ)が2
以上のものが好ましい。より好ましくは、平均長径が1
〜10μm、平均厚さが0.1〜0.3μmであって、
かつアスペクト比(平均長径/平均厚さ)が10以上の
ものである。平均長径が0.1μm未満では、フレーク
状微粉末が素地に平行に積層せず、密着力が不足するお
それがある。平均長径が15μmを超えると、加熱焼付
けの時、蒸発した水分によりフレークが持ち上げられ、
素地に平行に積層せず、その結果密着の悪い皮膜になっ
てしまう場合がある。また、皮膜の寸法精度上、平均長
径は15μm以下が望ましい。平均厚さが0.01μm
未満のものは、フレークの製造段階でフレーク表面が酸
化してしまい、膜が脆くなって耐食性が悪化し易い傾向
となり、平均厚さが5μmを超えると、前記分散水溶液
中でのフレークの分散が悪くなって沈降し易くなり、処
理液が不安定になって、その結果耐食性が悪くなるおそ
れがある。アスペクト比が2未満だとフレークが素地に
平行に積層しにくく密着不良になるおそれがある。アス
ペクト比の上限はないが、あまり大きいものはコスト的
に高くなり、通常50以下である。
Here, the metal fine powder is preferably a flake-like fine powder, which has an average major axis of 0.1 to 15 μm, an average thickness of 0.01 to 5 μm, and Aspect ratio (average major axis / average thickness) of 2
The above are preferred. More preferably, the average major axis is 1
10 to 10 μm, the average thickness is 0.1 to 0.3 μm,
And the aspect ratio (average major axis / average thickness) is 10 or more. If the average major axis is less than 0.1 μm, the flake-like fine powder will not be laminated in parallel with the substrate, and the adhesion may be insufficient. If the average major axis exceeds 15 μm, the flakes are lifted by the evaporated water during heating and baking,
The film may not be laminated parallel to the substrate, resulting in a film having poor adhesion. Further, from the viewpoint of the dimensional accuracy of the film, the average major axis is desirably 15 μm or less. Average thickness 0.01μm
If the average thickness exceeds 5 μm, the dispersion of the flakes in the aqueous dispersion becomes poor when the flake surface is oxidized in the flake production stage, the film becomes brittle and the corrosion resistance tends to deteriorate. It becomes worse and tends to settle, and the treatment liquid becomes unstable, and as a result, the corrosion resistance may be deteriorated. When the aspect ratio is less than 2, flakes are difficult to be laminated in parallel with the base material, and there is a possibility that poor adhesion may occur. There is no upper limit on the aspect ratio, but an excessively large one results in high cost, usually 50 or less.

【0021】本発明で形成される皮膜において、上記金
属微粉末、特にフレーク状微粉末の含有量は70wt%
以上であり、より好ましくは75wt%以上である。7
0wt%未満では微粉末が少なすぎて、磁石素地を十分
に被覆しきれないので耐食性が低下するおそれがある。
また、Si,Mn,Zn,Mo,Cr,Pから選ばれる
少なくとも一種の元素の酸化物は30wt%以下、より
好ましくは25wt%以下(0を含まず)を添加するこ
とがよい。
In the film formed according to the present invention, the content of the metal fine powder, particularly the flake-like fine powder, is 70 wt%.
And more preferably 75% by weight or more. 7
If the content is less than 0 wt%, the amount of fine powder is too small to sufficiently cover the magnet substrate, and thus the corrosion resistance may be reduced.
The oxide of at least one element selected from Si, Mn, Zn, Mo, Cr, and P is preferably added in an amount of 30 wt% or less, more preferably 25 wt% or less (excluding 0).

【0022】本発明において、上記耐食性皮膜を形成す
る方法は、上記金属微粉末と上記酸化物との分散水溶液
に上記永久磁石を浸漬、又は該水溶液を永久磁石に塗布
する方法が採用し得、浸漬又は塗布後、加熱処理を行う
が、温度は300℃以上350℃未満にて30分以上維
持することが望ましい。300℃未満では成膜が不十分
で密着力も耐食性も悪くなるおそれがある。また、35
0℃以上にすると、下地の磁石がダメージを受け、磁気
特性劣化の原因になり得る。
In the present invention, the method of forming the corrosion-resistant coating may be a method of immersing the permanent magnet in an aqueous dispersion of the metal fine powder and the oxide, or applying the aqueous solution to the permanent magnet. After immersion or application, a heat treatment is performed, and the temperature is desirably maintained at 300 ° C. or more and less than 350 ° C. for 30 minutes or more. If the temperature is lower than 300 ° C., the film formation is insufficient and the adhesion and the corrosion resistance may be deteriorated. Also, 35
If the temperature is set to 0 ° C. or higher, the underlying magnet may be damaged, which may cause deterioration of magnetic properties.

【0023】本発明における皮膜の形成にあたっては、
繰り返して重ね塗りと加熱処理を行ってもよい。本発明
における皮膜は、金属微粉末、特にフレーク状微粉末が
不定形酸化物により結合された構造となる。これが高い
耐食性を示す理由は定かではないが、微粉末がフレーク
状である場合、これが素地に概ね平行にそろい、よく磁
石を被覆し、遮蔽効果を持つものと考えられる。また、
フレーク状微粉末として永久磁石より卑な電位を持つ金
属あるいは合金を用いたときは、これらが先に酸化さ
れ、下地の磁石の酸化を抑制する効果があると考えられ
る。また、この皮膜は無機物であるため、有機皮膜に比
べて耐熱性が高いという特徴も有する。
In forming the film in the present invention,
Repeated coating and heat treatment may be performed repeatedly. The film in the present invention has a structure in which metal fine powder, particularly flake-like fine powder, is bound by an amorphous oxide. It is not clear why this shows high corrosion resistance, but when the fine powder is in the form of flakes, it is considered to be substantially parallel to the substrate, cover the magnet well, and have a shielding effect. Also,
When a metal or an alloy having a potential lower than that of the permanent magnet is used as the flake-like fine powder, it is considered that these are oxidized first and have an effect of suppressing the oxidation of the underlying magnet. Further, since this film is an inorganic material, it also has a feature that its heat resistance is higher than that of an organic film.

【0024】このように得られた本発明の皮膜の平均厚
さは1〜40μmの範囲にあることが望ましい。1μm
未満では耐食性が不足する場合があり、40μmを超え
ると、密着力低下や層間剥離を起こし易くなる場合が生
じる。更に、皮膜を厚くすると、外観形状が同一であっ
ても、使用できるR−Fe−B系永久磁石の体積が小さ
くなるため、磁石使用上も好ましくない。
The average thickness of the coating of the present invention thus obtained is preferably in the range of 1 to 40 μm. 1 μm
If it is less than 40 μm, the corrosion resistance may be insufficient, and if it is more than 40 μm, the adhesion may be reduced or delamination may easily occur. Further, when the coating is thick, even if the appearance is the same, the volume of the usable R-Fe-B-based permanent magnet is reduced, which is not preferable in terms of magnet use.

【0025】[0025]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0026】まず、下記方法により希土類永久磁石を製
造した。永久磁石 Ar雰囲気の高周波溶解により、重量比で28Nd−6
9.8Fe−1Co−1B−0.2Alなる組成の鋳塊
を作製し、Ar雰囲気下で1,070℃にて20時間溶
体化処理した。これを合金1とする。次に、同じく重量
比で47Nd−13Dy−18.3Fe−20Co−
0.5B−1Cu−0.2Alなる組成の鋳塊をAr雰
囲気の高周波溶解にて作製した。これを合金2とする。
合金1と合金2のインゴットをそれぞれ別に窒素雰囲気
下にてジョウクラッシャーで粗粉砕し、続いて合金1の
粗粉93wt%に合金2の粗粉7wt%を秤量して、窒
素置換したVブレンダーにて30分混合した。この混合
粗粉を、更に窒素ガス下にてジェットミルで微粉砕し、
平均粒径が3μmの微粉末を得た。この微粉末を、15
kOe磁界が印加された金型内に充填し、1.0t/c
2の圧力でプレス成形した。この成形体はAr雰囲気
下にて1,070℃で2時間焼結し、更に530℃で1
時間時効処理を施して永久磁石とした。得られた永久磁
石から径21mm×厚み10mm寸法の磁石片を切り出
し、バレル研磨処理を行った後、超音波水洗を行い、こ
れを磁石試験片とした。
First, a rare earth permanent magnet was manufactured by the following method. 28Nd-6 in weight ratio by high frequency melting of permanent magnet Ar atmosphere
An ingot having a composition of 9.8Fe-1Co-1B-0.2Al was prepared and subjected to a solution treatment at 1,070 ° C. for 20 hours in an Ar atmosphere. This is called alloy 1. Next, also in a weight ratio of 47Nd-13Dy-18.3Fe-20Co-
An ingot having a composition of 0.5B-1Cu-0.2Al was produced by high-frequency melting in an Ar atmosphere. This is called alloy 2.
The alloy 1 and alloy 2 ingots were separately coarsely pulverized with a jaw crusher under a nitrogen atmosphere, and then the alloy 1 coarse powder 93 wt% and the alloy 2 coarse powder 7 wt% were weighed and transferred to a nitrogen-blended V blender. And mixed for 30 minutes. This mixed coarse powder is further pulverized with a jet mill under nitrogen gas,
A fine powder having an average particle size of 3 μm was obtained. This fine powder is
The mold filled with the kOe magnetic field is filled, and 1.0 t / c
Press molding was performed at a pressure of m 2 . This molded body was sintered at 1,070 ° C. for 2 hours in an Ar atmosphere, and further sintered at 530 ° C. for 1 hour.
Time-aging treatment was performed to obtain a permanent magnet. A magnet piece having a diameter of 21 mm and a thickness of 10 mm was cut out from the obtained permanent magnet, subjected to barrel polishing, and then subjected to ultrasonic water washing to obtain a magnet test piece.

【0027】この磁石の磁気特性をBHトレーサーで測
定したところ、残留磁束密度Brが14.4T、保磁力
iHcが1,110kA/m、最大エネルギー積が39
8kJ/m3であった。この磁石におけるDyの元素分
布をEPMAにて調べたところ、図1のように、主相の
粒界付近にDyの分布が多く存在し、主相の中央にはD
yの分布が少なかった(なお、図中1は希土類リッチ
相、2は主相(Dyリッチな部分)、3は主相(Dyの
少ない部分)である)。
When the magnetic properties of this magnet were measured with a BH tracer, the residual magnetic flux density Br was 14.4 T, the coercive force iHc was 1,110 kA / m, and the maximum energy product was 39.
It was 8 kJ / m 3 . When the element distribution of Dy in this magnet was examined by EPMA, as shown in FIG. 1, there was a large distribution of Dy near the grain boundaries of the main phase, and D
The distribution of y was small (1 is a rare earth-rich phase, 2 is a main phase (Dy-rich portion), and 3 is a main phase (Dy-low portion) in the figure).

【0028】この磁石に含まれる各種不純物元素、具体
的にはC,N,O,H,P,S等の重量を、不活性ガス
融解赤外吸収法、不活性ガス融解熱伝導度測定法、燃焼
赤外吸収法等を用いて測定したところ、その総和は0.
5wt%であった。焼結体密度は7.55g/ccであ
った。JIS−R−1601に準じた3点曲げ法にて抗
折力を測定したところ、240MPaであった。ビッカ
ース硬度計を用いて9.807Nの荷重にてビッカース
硬さを測定したところ、600であった。
The weight of various impurity elements contained in the magnet, specifically, C, N, O, H, P, S, etc., was measured by an inert gas fusion infrared absorption method, an inert gas fusion thermal conductivity measurement method. When measured using a combustion infrared absorption method or the like, the total sum was 0.1.
It was 5 wt%. The density of the sintered body was 7.55 g / cc. When the transverse rupture strength was measured by a three-point bending method according to JIS-R-1601, it was 240 MPa. It was 600 when the Vickers hardness was measured with a load of 9.807 N using a Vickers hardness meter.

【0029】次に、上記磁石(試験片)に下記方法によ
り皮膜を形成した。即ち、皮膜形成のための処理液とし
て、アルミニウムフレークと亜鉛フレーク粉末、無水ク
ロム酸を含む分散水溶液を準備した。この分散水溶液に
前記試験片を浸漬した後、所定の膜厚になるように回転
数を調整したスピンコータで余滴を除去し、次いで熱風
乾燥炉で330℃にて30分加熱して前記処理液による
皮膜を形成し、性能試験に供した。性能試験法は以下の
通りである。 (1)碁盤目密着性試験 JIS−K−5400碁盤目試験に準ずる。カッターナ
イフで皮膜に1mmのマス100個ができるように碁盤
目状の切り傷を入れた後、セロファンテープを強く押し
つけ、45度の角度に強く引いて剥がし、残った碁盤目
の数で密着性を評価する。 (2)塩水噴霧試験(JIS−Z−2371に準拠) 5%食塩水を35℃にて連続噴霧し、茶錆が発生するま
での時間で評価する。
Next, a film was formed on the magnet (test piece) by the following method. That is, a dispersion aqueous solution containing aluminum flakes, zinc flake powder, and chromic anhydride was prepared as a treatment liquid for forming a film. After the test piece is immersed in the aqueous dispersion, the remaining drops are removed by a spin coater whose rotation speed is adjusted to a predetermined film thickness, and then heated at 330 ° C. for 30 minutes in a hot-air drying furnace to obtain a treatment solution. A film was formed and subjected to a performance test. The performance test method is as follows. (1) Cross-cut adhesion test According to JIS-K-5400 cross-cut test. After making a cut in a grid pattern so that 100 pieces of 1 mm square are formed on the film with a cutter knife, strongly press the cellophane tape, pull it strongly at an angle of 45 degrees and peel it off. evaluate. (2) Salt spray test (according to JIS-Z-2371) 5% salt solution is continuously sprayed at 35 ° C. and evaluated by the time until brown rust is generated.

【0030】以下、具体的な例を示す。 [実施例1、比較例1,2]処理液には、フレーク状ア
ルミニウム粉末2wt%、フレーク状亜鉛粉末20wt
%(共に平均長径3μm、平均厚さ0.2μm)、無水
クロム酸4wt%が含まれたものを使用した。膜厚は1
0μmになるようにした。比較のため、前記試験片に膜
厚を10μmに調整したNiメッキ、樹脂塗装を施した
サンプルも作成し、塩水噴霧試験を行った。また、35
0℃にて4時間加熱した後の皮膜の外観変化を目視にて
調べた。これらの結果を併せて表1に示す。本発明(実
施例1)の永久磁石は、他の表面処理を施した永久磁石
(比較例1,2)と比べて、耐食性と耐熱性を併せ持っ
ていることがわかる。
Hereinafter, a specific example will be described. [Example 1, Comparative Examples 1 and 2] The processing liquid contained 2 wt% of flake aluminum powder and 20 wt flake zinc powder.
% (Both average major axis 3 μm, average thickness 0.2 μm) and chromic anhydride 4 wt% were used. The film thickness is 1
The thickness was set to 0 μm. For comparison, a sample in which the test piece was Ni-plated and resin-coated so that the film thickness was adjusted to 10 μm was also prepared, and a salt spray test was performed. Also, 35
The appearance change of the film after heating at 0 ° C. for 4 hours was visually examined. Table 1 also shows these results. It can be seen that the permanent magnet of the present invention (Example 1) has both corrosion resistance and heat resistance as compared with the permanent magnets subjected to other surface treatments (Comparative Examples 1 and 2).

【0031】[0031]

【表1】 [Table 1]

【0032】[実施例2〜6]ここでは膜厚を変えたサ
ンプルを作成し、碁盤目密着性試験と塩水噴霧試験を行
った。処理液には実施例1で使用したものと同じ物を使
用した。これより、膜厚が薄すぎると耐食性が低下し、
厚すぎると密着性が低下する。
[Examples 2 to 6] Here, samples having different film thicknesses were prepared and subjected to a grid adhesion test and a salt spray test. The same treatment liquid as that used in Example 1 was used. From this, if the film thickness is too thin, the corrosion resistance decreases,
If it is too thick, the adhesion will decrease.

【0033】[0033]

【表2】 [Table 2]

【0034】[実施例7〜9]ここでは皮膜中における
フレーク状微粉末の含有割合を変えたサンプルを作成
し、塩水噴霧試験と碁盤目密着性試験を行った。処理液
には、フレーク状アルミニウム粉末、フレーク状亜鉛粉
末(共に平均長径3μm、平均厚さ0.2μm)を1:
10の割合で混合した混合粉末と無水クロム酸4wt%
が含まれた分散水溶液を用いた。処理液中に占める混合
粉末の重量比は、皮膜中のフレーク状微粉末の含有割合
が表3に記載した値で残部が無水クロム酸になるように
調整した。膜厚は10μmになるように調整した。これ
より、皮膜中のフレーク状微粉末の含有割合が少なすぎ
ると、耐食性が低下する。
[Examples 7 to 9] Here, samples in which the content of the flake-like fine powder in the film was changed were prepared, and the salt spray test and the grid adhesion test were performed. The treatment liquid contained flaky aluminum powder and flaky zinc powder (both having an average major axis of 3 μm and an average thickness of 0.2 μm).
10% mixed powder and chromic anhydride 4wt%
Was used. The weight ratio of the mixed powder in the treatment liquid was adjusted so that the content of the flake-like fine powder in the film was as shown in Table 3 and the remainder was chromic anhydride. The film thickness was adjusted to 10 μm. Thus, if the content of the flake-like fine powder in the coating is too small, the corrosion resistance is reduced.

【0035】[0035]

【表3】 [Table 3]

【0036】[実施例10〜22]ここでは使用するフ
レーク状微粉末の形状を変えて、碁盤目密着性試験と塩
水噴霧試験を行った。処理液には、フレーク状アルミニ
ウム粉末2wt%、フレーク状亜鉛粉末20wt%、無
水クロム酸4wt%が含まれたものを使用した。膜厚は
10μmになるようにした。平均長径が短すぎても長す
ぎても密着性が低下する。また、平均厚さが薄すぎても
厚すぎても耐食性が低下する。更にアスペクト比が小さ
すぎると密着性が低下する。
[Examples 10 to 22] Here, a cross-cut adhesion test and a salt spray test were performed by changing the shape of the flake-like fine powder used. The processing liquid used contained 2 wt% of flake aluminum powder, 20 wt% of flake zinc powder and 4 wt% of chromic anhydride. The film thickness was set to 10 μm. If the average major axis is too short or too long, the adhesion will decrease. Also, if the average thickness is too small or too large, the corrosion resistance is reduced. Further, if the aspect ratio is too small, the adhesiveness is reduced.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】本発明によれば、高性能希土類永久磁石
の表面に、Al,Mg,Ca,Zn,Si,Mn及びこ
れらの合金の中から選ばれる少なくとも一種の金属の微
粉末と、Si,Mn,Zn,Mo,Cr,Pから選ばれ
る少なくとも一種以上の元素の酸化物を複合して形成さ
れる皮膜を付与することにより、耐食性高性能希土類永
久磁石を安価に提供することができ、産業上その利用価
値は極めて高い。
According to the present invention, a fine powder of at least one metal selected from the group consisting of Al, Mg, Ca, Zn, Si, Mn and alloys thereof is formed on the surface of a high performance rare earth permanent magnet. , Mn, Zn, Mo, Cr, P, by providing a coating formed by combining oxides of at least one or more elements, it is possible to provide a corrosion-resistant high-performance rare earth permanent magnet at low cost, Its utility value is extremely high in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた永久磁石における元素分布を説
明する図である。
FIG. 1 is a diagram illustrating element distribution in a permanent magnet used in an example.

【符号の説明】[Explanation of symbols]

1 希土類リッチ相 2 主相(Dyリッチな部分) 3 主相(Dyの少ない部分) 1 Rare earth rich phase 2 Main phase (Dy rich part) 3 Main phase (Dy low part)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 30/00 H01F 1/08 B H01F 1/08 1/04 H Fターム(参考) 4K018 AA11 AA27 AB01 AC01 BA07 BA08 BA10 BA20 BB01 BB04 BC12 BD09 DA11 FA23 KA45 4K044 AA02 AB08 BA01 BA04 BA10 BA12 BA14 BA15 BA17 BB01 BB11 BC02 BC11 CA29 CA53 CA62 5E040 AA04 AA19 BC01 BD01 CA01 HB14 HB17 NN01 NN05 NN06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 30/00 H01F 1/08 B H01F 1/08 1/04 HF term (Reference) 4K018 AA11 AA27 AB01 AC01 BA07 BA08 BA10 BA20 BB01 BB04 BC12 BD09 DA11 FA23 KA45 4K044 AA02 AB08 BA01 BA04 BA10 BA12 BA14 BA15 BA17 BB01 BB11 BC02 BC11 CA29 CA53 CA62 5E040 AA04 AA19 BC01 BD01 CA01 HB14 HB17 NN01 NN05 NN06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 R−T−M−B(RはYを含む希土類元
素の少なくとも一種、TはFe又はFe及びCo、Mは
Ti,Nb,Al,V,Mn,Sn,Ca,Mg,P
b,Sb,Zn,Si,Zr,Cr,Ni,Cu,G
a,Mo,W,Taから選ばれる少なくとも一種の元素
であって、各元素の含有量がそれぞれ5wt%≦R≦4
0wt%、50wt%≦T≦90wt%、0.1wt%
≦M≦8wt%、0.2wt%≦B≦8wt%)で表記
される希土類永久磁石の表面に、Al,Mg,Ca,Z
n,Si,Mn及びこれらの合金の中から選ばれる少な
くとも一種の金属の微粉末と、Si,Mn,Zn,M
o,Cr,Pから選ばれる少なくとも一種以上の元素の
酸化物とを複合して形成される耐食性皮膜を付与したこ
とを特徴とする耐食性希土類磁石。
1. RTMB (R is at least one of rare earth elements including Y, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn, Ca, Mg, P
b, Sb, Zn, Si, Zr, Cr, Ni, Cu, G
a, Mo, W, Ta, and at least one element selected from the group consisting of 5 wt% ≦ R ≦ 4
0 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.1 wt%
≦ M ≦ 8 wt%, 0.2 wt% ≦ B ≦ 8 wt%), Al, Mg, Ca, Z
fine powder of at least one metal selected from n, Si, Mn and alloys thereof, and Si, Mn, Zn, M
A corrosion-resistant rare-earth magnet provided with a corrosion-resistant coating formed by compounding with an oxide of at least one element selected from o, Cr, and P.
【請求項2】 請求項1において、希土類永久磁石が、
R−T−M−B(RはYを含む希土類元素の少なくとも
一種、TはFe又はFe及びCo、MはTi,Nb,A
l,V,Mn,Sn,Ca,Mg,Pb,Sb,Zn,
Si,Zr,Cr,Ni,Cu,Ga,Mo,W,Ta
から選ばれる少なくとも一種の元素であって、各元素の
含有量がそれぞれ5wt%≦R≦40wt%、50wt
%≦T≦90wt%、0.1wt%≦M≦8wt%、
0.2wt%≦B≦8wt%)で表記される合金1と、
R−Fe−Co−M−B(R及びMは上記と同じであっ
て、各元素の含有量が30wt%≦R≦90wt%、0
wt%≦Fe≦50wt%、5wt%≦Co≦70wt
%、0wt%≦M≦8wt%、0wt%≦B≦2wt
%)で表記される合金2を混合し、製造されたものであ
る耐食性希土類磁石。
2. The rare earth permanent magnet according to claim 1,
R-T-M-B (R is at least one rare earth element including Y, T is Fe or Fe and Co, M is Ti, Nb, A
1, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn,
Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta
At least one element selected from the group consisting of: 5 wt% ≦ R ≦ 40 wt%, 50 wt%
% ≦ T ≦ 90 wt%, 0.1 wt% ≦ M ≦ 8 wt%,
0.2 wt% ≦ B ≦ 8 wt%)
R—Fe—Co—MB (R and M are the same as above, and the content of each element is 30 wt% ≦ R ≦ 90 wt%, 0
wt% ≦ Fe ≦ 50 wt%, 5 wt% ≦ Co ≦ 70 wt
%, 0 wt% ≦ M ≦ 8 wt%, 0 wt% ≦ B ≦ 2 wt
%) Is a corrosion-resistant rare-earth magnet manufactured by mixing alloy 2 indicated by%).
【請求項3】 希土類永久磁石の金属組織が、結晶粒界
周辺部にPr,Dy及び/又はTbの濃度偏析を有する
ものである請求項1又は2記載の耐食性希土類磁石。
3. The corrosion-resistant rare-earth magnet according to claim 1, wherein the metal structure of the rare-earth permanent magnet has a concentration segregation of Pr, Dy and / or Tb around a crystal grain boundary.
【請求項4】 耐食性皮膜の平均厚みが1〜40μmで
ある請求項1乃至3のいずれか1項記載の耐食性希土類
磁石。
4. The corrosion-resistant rare earth magnet according to claim 1, wherein the corrosion-resistant coating has an average thickness of 1 to 40 μm.
【請求項5】 耐食性皮膜を構成する金属微粉末がフレ
ーク状微粉末で、形状が平均長径で0.1〜15μm、
平均厚さで0.01〜5μm、アスペクト比(平均長径
/平均厚さ)が2以上であるものであって、皮膜内にお
けるフレーク状微粉末の含有割合が70wt%以上であ
る請求項1乃至4のいずれか1項記載の耐食性希土類磁
石。
5. The fine metal powder constituting the corrosion-resistant film is a flake-like fine powder having a shape having an average major axis of 0.1 to 15 μm,
The average thickness is 0.01 to 5 μm, the aspect ratio (average major axis / average thickness) is 2 or more, and the content of the flake-like fine powder in the coating is 70 wt% or more. 5. The corrosion-resistant rare earth magnet according to any one of 4.
JP2000036082A 2000-02-15 2000-02-15 Corrosion resistant rare earth magnet Expired - Lifetime JP3781094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036082A JP3781094B2 (en) 2000-02-15 2000-02-15 Corrosion resistant rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036082A JP3781094B2 (en) 2000-02-15 2000-02-15 Corrosion resistant rare earth magnet

Publications (2)

Publication Number Publication Date
JP2001230107A true JP2001230107A (en) 2001-08-24
JP3781094B2 JP3781094B2 (en) 2006-05-31

Family

ID=18560171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036082A Expired - Lifetime JP3781094B2 (en) 2000-02-15 2000-02-15 Corrosion resistant rare earth magnet

Country Status (1)

Country Link
JP (1) JP3781094B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049865A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
JP2008130802A (en) * 2006-11-21 2008-06-05 Hitachi Metals Ltd Iron-based rare earth permanent magnet, and its manufacturing method
WO2011030635A1 (en) * 2009-09-09 2011-03-17 日産自動車株式会社 Molded rare-earth magnet and process for producing same
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine
JP2013084890A (en) * 2011-09-29 2013-05-09 Hitachi Metals Ltd Manufacturing method for r-t-b-based sintered magnet
US20130335179A1 (en) * 2010-10-15 2013-12-19 Renjie Chen High-corrosion resistant sintered ndfeb magnet and preparation method therefor
CN109706407A (en) * 2018-12-25 2019-05-03 安徽银龙泵阀股份有限公司 A kind of preparation method of the alloy material for spool

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049865A (en) * 2004-06-30 2006-02-16 Shin Etsu Chem Co Ltd Corrosion resistant rare earth magnet and manufacturing method thereof
JP2007157901A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd Method of manufacturing r-t-b-c sintered magnet
JP2007157903A (en) * 2005-12-02 2007-06-21 Shin Etsu Chem Co Ltd R-t-b-c rare earth sintered magnet
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP4702542B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 Manufacturing method of RTBC type sintered magnet
JP4702543B2 (en) * 2005-12-02 2011-06-15 信越化学工業株式会社 R-T-B-C type rare earth sintered magnet
JP4737046B2 (en) * 2006-11-21 2011-07-27 日立金属株式会社 Iron-based rare earth permanent magnet and method for producing the same
JP2008130802A (en) * 2006-11-21 2008-06-05 Hitachi Metals Ltd Iron-based rare earth permanent magnet, and its manufacturing method
WO2011030635A1 (en) * 2009-09-09 2011-03-17 日産自動車株式会社 Molded rare-earth magnet and process for producing same
JP2011060975A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Magnet molding and method of manufacturing the same
CN102483991A (en) * 2009-09-09 2012-05-30 日产自动车株式会社 Molded rare-earth magnet and process for producing same
CN102483991B (en) * 2009-09-09 2015-04-01 日产自动车株式会社 Molded rare-earth magnet and process for producing same
US10287656B2 (en) 2009-09-09 2019-05-14 Nissan Motor Co., Ltd. Rare earth magnet molding and method for manufacturing the same
US20130335179A1 (en) * 2010-10-15 2013-12-19 Renjie Chen High-corrosion resistant sintered ndfeb magnet and preparation method therefor
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine
US9177705B2 (en) 2011-05-25 2015-11-03 Tdk Corporation Sintered rare earth magnet, method of producing the same, and rotating machine
JP2013084890A (en) * 2011-09-29 2013-05-09 Hitachi Metals Ltd Manufacturing method for r-t-b-based sintered magnet
CN109706407A (en) * 2018-12-25 2019-05-03 安徽银龙泵阀股份有限公司 A kind of preparation method of the alloy material for spool

Also Published As

Publication number Publication date
JP3781094B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP4162884B2 (en) Corrosion-resistant rare earth magnet
JP6274216B2 (en) R-T-B system sintered magnet and motor
JP2008263208A (en) Corrosion-resistant rare earth magnet
JP6330813B2 (en) R-T-B system sintered magnet and motor
CN104752049A (en) Process For Preparing Rare Earth Magnets
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
KR920001938B1 (en) Rare earth metal-transition metal compound metal for magnetic of
JP2019102708A (en) R-t-b based permanent magnet
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP2008060241A (en) High resistance rare-earth permanent magnet
JP2001230107A (en) Corrosion-resistant rare earth magnet
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JPH0422007B2 (en)
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
CN114927302A (en) Rare earth magnet and method for producing same
JP2006049864A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP3877552B2 (en) Method for manufacturing metal member
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPS59219453A (en) Permanent magnet material and its production
JPS63166944A (en) Corrosion-resisting permanent magnet
JP2922601B2 (en) Resin molded magnet
JPH03201411A (en) Permanent magnet and coating method thereof
JPH02298231A (en) Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3781094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150317

Year of fee payment: 9

EXPY Cancellation because of completion of term