JPH02298231A - Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics - Google Patents

Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics

Info

Publication number
JPH02298231A
JPH02298231A JP1119989A JP11998989A JPH02298231A JP H02298231 A JPH02298231 A JP H02298231A JP 1119989 A JP1119989 A JP 1119989A JP 11998989 A JP11998989 A JP 11998989A JP H02298231 A JPH02298231 A JP H02298231A
Authority
JP
Japan
Prior art keywords
powder
corrosion resistance
sintered magnet
rare earth
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119989A
Other languages
Japanese (ja)
Other versions
JP2600374B2 (en
Inventor
Muneaki Watanabe
宗明 渡辺
Takuo Takeshita
武下 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1119989A priority Critical patent/JP2600374B2/en
Publication of JPH02298231A publication Critical patent/JPH02298231A/en
Application granted granted Critical
Publication of JP2600374B2 publication Critical patent/JP2600374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the sintered magnet having excellent corrosion resistance and magnetic characteristics by mixing alloy powder contg. rare earth elements, B and Fe as essential components with the hydride powder of specified elements, forming the mixed powder and thereafter sintering it in a nonoxidizing atmosphere. CONSTITUTION:The powder of a rare earths-B-Fe series alloy constituted of at least one kind among rare earth elements excluding Y such as Nd, Pr or their mixture, 8 to 30atom%, 2 to 28atom% B and the balance Fe is admixed with one or more kinds of hydride powder of elements such as Zr, Ta, Ti, Nb, Hf, V and Y in the total ratio of 0.0005 to 3wt.%. If required, a forming auxiliary such as paraffin is added to the mixed powder, which is subjected to press forming. The formed part is sintered at 900 to 1200 deg.C in vacuum or in the atmosphere of nonoxidizing gas such as inert gas, reducing gas or the like. The product is finally subjected to heat treatment at 400 to 700 deg.C, by which the sintered magnet having excellent corrosion resistance and magnetic characteristics can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐食性にすぐれ、同時に磁気特性の優れた
、Yを除く希土類元素のうち少なくとも11Ei(以下
、Rで示す)、BおよびFeを必須成分とする焼結磁石
の製造方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] This invention provides at least 11Ei (hereinafter referred to as R) of rare earth elements other than Y, B and Fe, which have excellent corrosion resistance and excellent magnetic properties. The present invention relates to a method for producing a sintered magnet as an essential component.

〔従来の技術〕[Conventional technology]

近年、従来の5s−Co系磁石に比較し、より^い磁気
特性を有し、かつ資源的にも高価なSIIやCoを必ず
しも含まないNd−B−Fe系永久磁石が発明された。
In recent years, Nd-B-Fe-based permanent magnets have been invented that have better magnetic properties than conventional 5s-Co-based magnets and do not necessarily contain SII or Co, which are expensive resources.

このNd−B−Fe系永久磁石の製造方法は、まず原料
粉末を溶解、鋳造し、得られた合金インゴットを粉砕し
、必要に応じて磁界を印加しながらプレス成形し、さら
に焼結するものである。
The method for manufacturing this Nd-B-Fe permanent magnet is to first melt and cast raw material powder, crush the obtained alloy ingot, press-form it while applying a magnetic field as necessary, and then sinter it. It is.

しかし、このNd−B−Fe系永久磁石は、その優れた
磁気特性の一方で、非常に腐食され品く、それに伴う磁
気特性の劣化が大きいという欠点を合わせ持っている。
However, while this Nd-B-Fe based permanent magnet has excellent magnetic properties, it also has the drawback of being highly corroded and resulting in a large deterioration of magnetic properties.

これらの対策として、特開昭at −185910号公
報では、希土類−B −Fe系永久磁石の表面にZnの
薄膜を拡散形成する方法、特開昭81−270308号
公報では希土類−B −Fe系永久磁石の表面層を除去
したのち、Al1の薄膜層を被着させる方法、さらに特
開昭83−77104号公報では、希土類−B−Fe系
永久磁石の表面にエポキシ樹脂、熱硬化型アクリル樹脂
、アルキド樹脂、メラミン樹脂、シリコン樹脂等の塗装
用合成樹脂等の耐酸化性樹脂を塗布する方法が示されて
いる。
As a countermeasure against these problems, JP-A-185910 discloses a method of diffusing and forming a Zn thin film on the surface of a rare earth-B-Fe based permanent magnet, and JP-A-81-270308 discloses a method of diffusing and forming a Zn thin film on the surface of a rare earth-B-Fe based permanent magnet. After removing the surface layer of the permanent magnet, a thin film layer of Al1 is applied, and in JP-A-83-77104, the surface of the rare earth-B-Fe permanent magnet is coated with epoxy resin or thermosetting acrylic resin. , methods of applying oxidation-resistant resins such as synthetic resins for coating such as alkyd resins, melamine resins, and silicone resins are disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の技術で述べられているNd−B−
Fe系永久磁石の防食方法は、いずれも上記永久磁石の
表面にZnや八Ω、合成樹脂等の耐食性のある保護膜を
被告させるもので、磁石の製造工程とは別の工程が必要
となり、工程が複雑化する上にコスト高となり、さらに
上記合成樹脂保護膜は厚さがあるために特に小型磁石製
品の・J法精度を悪くする。いずれにしても上記防食方
法は、上記永久磁石の外部を腐食等に対して保護するに
すぎず、上記保護膜がはく離したりまたは亀裂が生じた
りした場合には、それらの個所から内部に腐食が浸透し
、内部的な腐食は防止できず、それに伴って磁気特性も
劣化するという問題点があった。
However, the Nd-B-
All corrosion prevention methods for Fe-based permanent magnets involve applying a corrosion-resistant protective film such as Zn, 8Ω, or synthetic resin to the surface of the permanent magnet, which requires a process different from the magnet manufacturing process. This complicates the process and increases costs, and furthermore, the thickness of the synthetic resin protective film deteriorates the precision of the J method, especially for small magnet products. In any case, the above corrosion prevention method only protects the outside of the permanent magnet from corrosion, etc., and if the above protective film peels off or cracks occur, corrosion will occur from those places inside. Penetration caused the problem that internal corrosion could not be prevented and magnetic properties deteriorated accordingly.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、耐食性にすぐれた希土類−B−
Fe系焼結磁石を開発すべく研究を行なった結果、Yを
除く面上類元素のうち少なくとも1種(以下、Rという
)、B、およびFeを必須成分とするR −B −Fe
系合金粉末(以下、R−B −Fe系合金粉末という)
に、zr、Ta。
Therefore, the present inventors have developed a rare earth material -B- which has excellent corrosion resistance.
As a result of research to develop Fe-based sintered magnets, we found that R -B -Fe, which has at least one of the surface class elements other than Y (hereinafter referred to as R), B, and Fe, is an essential component.
alloy powder (hereinafter referred to as R-B-Fe alloy powder)
ni, zr, Ta.

TI 、Nb、V、Hr、 Yの水素化物粉末0561
種または2種以上を合計で0.0005〜3重量%混合
し、得られた混合粉末を成形し、焼結すると、耐食性お
よび磁気特性に優れた希土類−B−Fe系焼結磁石を得
ることができるという知見を得たのである。
TI, Nb, V, Hr, Y hydride powder 0561
A rare earth-B-Fe based sintered magnet having excellent corrosion resistance and magnetic properties can be obtained by mixing a species or two or more species in a total of 0.0005 to 3% by weight, molding the resulting mixed powder, and sintering it. We obtained the knowledge that it is possible to do this.

この発明は、かかる知見にもとづいてなされたものであ
って、 R−B−Fe系合金粉末に、Zr水素化物粉末、Ta水
素化物粉末、Ti水素化物粉末、Nb水素化物粉末、■
水素化物粉末、H「水素化物粉末およびY水素化物粉末
のうち1種または2種以上を合計で0.0005〜3重
量%混合して得られた混合粉末を、成形し、焼結する耐
食性および磁気特性に優れた希土類−B−Fe系焼結磁
石の製造方法に特徴を有するも、のである。
This invention has been made based on this knowledge, and includes Zr hydride powder, Ta hydride powder, Ti hydride powder, Nb hydride powder,
Corrosion resistance and This invention is characterized by a method for manufacturing rare earth-B-Fe sintered magnets with excellent magnetic properties.

上記焼結して得られた希土類−B −Fc系焼結磁石を
、さらに熱処理することにより磁気特性を一層向上せし
めることができる。
The magnetic properties can be further improved by further heat-treating the rare earth-B-Fc-based sintered magnet obtained by sintering.

この発明の希土類−B−Fe系焼結磁石の製造方法で用
いる混合粉末、成形法、焼結法および熱処理を以下に詳
述する。
The mixed powder, molding method, sintering method, and heat treatment used in the method for producing a rare earth-B-Fe sintered magnet of the present invention will be described in detail below.

(1)  混合粉末 上記R−B −Fe系合金粉末は、溶解し、鋳造して得
られたインゴットを粉砕する方法、溶解しアトマイズす
る方法、または希土類酸化物を出発原料とする還元拡讐
腎いずれで作製してもよい。
(1) Mixed Powder The above R-B-Fe alloy powder can be prepared by melting, casting and pulverizing an ingot, melting and atomizing, or reducing and atomizing using a rare earth oxide as a starting material. Either method may be used.

上記Rは、Nd、Prまたはそれらの混合物が好ましく
、その他にTb 、  La 、Cc r  S m。
The above R is preferably Nd, Pr or a mixture thereof, and also Tb, La, CcrSm.

Gd、Ybなどの希土類元素を含んでよく、総量で8〜
30原子%とするのがよい。8原子%未満では十分な保
磁力が得られず、30原子%を越えると残留磁束密度が
低下するためである。
May contain rare earth elements such as Gd and Yb, with a total amount of 8~
It is preferable to set it to 30 atom%. This is because if it is less than 8 atomic %, sufficient coercive force cannot be obtained, and if it exceeds 30 atomic %, the residual magnetic flux density decreases.

上2sは、2〜28原子%とするのが好ましい。The content of the upper 2s is preferably 2 to 28 at%.

2原子%未満では十分な保磁力が得られず、28原子%
を越えると残留磁束密度が低下し、優れた磁気特性が得
られないためである。
If it is less than 2 atom%, sufficient coercive force cannot be obtained;
This is because if the value exceeds 1, the residual magnetic flux density decreases, and excellent magnetic properties cannot be obtained.

上記R−B −Fe系合金粉末に、Zr水素化物粉末、
Ta水素化物粉末、T1水素化物粉末、Nb水素化物粉
末、■水素化物粉末、Hf水素化物粉末およびY水素化
物粉末のうち1f4または2種以上を合計で0.000
5〜3重量26混合して、混合粉末を作製するが、上記
水素化物粉末としては、下記の分子式を有する水素化物
粉末を用いることができる。
Zr hydride powder,
1f4 or two or more of Ta hydride powder, T1 hydride powder, Nb hydride powder, ■ hydride powder, Hf hydride powder and Y hydride powder in a total of 0.000
A mixed powder is prepared by mixing 5 to 3 parts by weight. As the hydride powder, a hydride powder having the following molecular formula can be used.

ZrH粉末(x−1,5〜2)、 TaH粉末(x=1〜2)、 TiH粉末(x−0,7〜2)、 NbH粉末(x−0,8〜2)、 VH粉末(x=0.8〜2)、 HfH粉末(x−1,7〜2°)、およびYH粉末(x
 −1,8〜3) 上記R−B −Fe系合金粉末に混合される水素化物は
、総量で0.0005〜3重量%が好ましい。総量が0
.0005重量%未満では耐食性の効果が十分に表われ
ず、一方、3重量%を越えると磁気特性が不十分となる
ことによるものである。
ZrH powder (x-1, 5-2), TaH powder (x = 1-2), TiH powder (x-0, 7-2), NbH powder (x-0, 8-2), VH powder (x = 0.8~2), HfH powder (x-1,7~2°), and YH powder (x
-1,8~3) The total amount of hydride mixed in the R-B-Fe alloy powder is preferably 0.0005 to 3% by weight. Total amount is 0
.. If the content is less than 0.005% by weight, the corrosion resistance effect will not be sufficiently exhibited, while if it exceeds 3% by weight, the magnetic properties will be insufficient.

(2)成形法 上記方法で得られた混合粉末を圧縮プレスなどにて成形
、圧密化を行なう。この時の圧力は0.5〜10t/c
−の成形圧力が良好で、必要に応じて成形時に磁界(5
KOe以上)を印加することにより磁気特性は向上する
。一連の成形は湿式あるいは乾式でもよく、雰囲気は非
酸化性雰囲気がより望ましく、例えば、真空中、不活性
ガス中あるいは還元性ガス中にて行うとよい。成形時に
おいて、必要であれば成形助剤(結合剤、潤滑剤等)を
加えてもよい。これらには、パラフィン、陣脳、ステア
リン酸、ステアリン酸アミド、ステアリン酸塩等が使用
でき、その添加量は0.001〜2重量%が好ましい。
(2) Molding method The mixed powder obtained by the above method is molded and compacted using a compression press or the like. The pressure at this time is 0.5 to 10t/c
- The molding pressure is good, and if necessary, the magnetic field (5
Magnetic properties are improved by applying KOe or more). The series of molding may be performed in a wet or dry manner, and the atmosphere is preferably a non-oxidizing atmosphere, for example, in a vacuum, an inert gas, or a reducing gas. During molding, molding aids (binder, lubricant, etc.) may be added if necessary. Paraffin, camphor, stearic acid, stearamide, stearate, etc. can be used as these, and the amount added is preferably 0.001 to 2% by weight.

上記成形助剤の添加量が0.0旧重量%未満では成形時
に必要な潤滑性等が不十分て好ましくなく、一方、2重
量%を越えると焼結後、焼結体の磁気特性の劣化が著し
い。
If the amount of the forming aid added is less than 0.0% by weight, the lubricity required during molding will be insufficient, which is undesirable.On the other hand, if it exceeds 2% by weight, the magnetic properties of the sintered body will deteriorate after sintering. is remarkable.

(3)焼結法 得られた成形体を温度:900〜1200℃にて焼結す
る。温度:900℃未満では残留磁束密度が十分でなく
、温度: 1200℃を越えると残留磁束密度と角型性
が低下するため好ましくない。焼結は酸化防止のため非
酸化性雰囲気中にて行なうことが望ましい。すなわち真
空、不活性ガスまたは還元性ガスの雰囲気がよい。焼結
時の昇温速度は、1〜2000”C/1lin、の間で
あればよい。
(3) Sintering method The obtained molded body is sintered at a temperature of 900 to 1200°C. If the temperature is less than 900°C, the residual magnetic flux density will not be sufficient, and if the temperature exceeds 1200°C, the residual magnetic flux density and squareness will decrease, which is not preferable. Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation. That is, a vacuum, an inert gas or a reducing gas atmosphere is preferable. The temperature increase rate during sintering may be between 1 and 2000"C/1lin.

また成形助剤を用いた場合は、昇温速度を1〜1.5℃
/1n、程度に小さくし、昇温中に上記成形助剤を取り
除いた方が磁気特性的に望ましい。
In addition, if a molding aid is used, the temperature increase rate should be 1 to 1.5℃.
/1n, and removing the above-mentioned forming aid during temperature rise is preferable in terms of magnetic properties.

焼結時の保持時間は、0.5〜20時間の間でよく、0
.5時間より短かい時間では焼結密度にバラツキを生じ
、20時間より長い時間では結晶粒の粗大化等の問題が
生ずるためである。焼結後の冷却速度は、1〜b ぎると焼結体中に亀裂を生じたりする可能性が高く、逆
にゆっくりだと工業生産的な効率の面で問題があるので
上記範囲に定めた。
The holding time during sintering may be between 0.5 and 20 hours, and may be 0.5 to 20 hours.
.. This is because if the time is shorter than 5 hours, the sintered density will vary, and if the time is longer than 20 hours, problems such as coarsening of crystal grains will occur. The cooling rate after sintering was determined to be within the above range, since if it is too slow, there is a high possibility that cracks will occur in the sintered body, and if it is too slow, there will be problems in terms of industrial production efficiency.

(4)熱処理法 以上の焼結後、さらに磁気特性を向上せしめるために、
温度=400〜700℃で熱処理を行なう。上記熱処理
は焼結と同じく非酸化性雰囲気が望ましい。この熱処理
の昇温速度は10〜b 行ない、上記温度:40a〜700℃で0.5〜10時
間保持し、冷却速度:lO〜2000℃/1旧で行なう
とよい。上記熱処理は基本的には昇温、保持、冷却とい
うパターンでよいが、必要に応じてこれをくり返えすこ
とや段階的に温度を変化させるパターンでも同様の効果
を得ることができる。
(4) After sintering using a heat treatment method, in order to further improve magnetic properties,
Heat treatment is performed at a temperature of 400 to 700°C. As with sintering, the above heat treatment is preferably performed in a non-oxidizing atmosphere. This heat treatment is preferably carried out at a heating rate of 10 to 700°C, held at the above temperature of 40 to 700°C for 0.5 to 10 hours, and a cooling rate of 10 to 2000°C/1. The above heat treatment can basically be carried out in a pattern of increasing temperature, holding, and cooling, but similar effects can be obtained by repeating this process or changing the temperature stepwise as necessary.

なお、R−B−Fe系合金粉末と水素化物粉末の混合粉
末を成形し焼結してこの発明のR−B−Fo系焼結磁石
が作製されるが、この発明のR−B−Fc系焼結磁石の
一部を他の元素で置換することや不純物を含んでもこの
発明の効果は失われない。
Note that the R-B-Fo-based sintered magnet of this invention is produced by molding and sintering a mixed powder of R-B-Fe-based alloy powder and hydride powder, but the R-B-Fc of this invention Even if a part of the system sintered magnet is replaced with other elements or contains impurities, the effects of the present invention are not lost.

すなわち、Feの代りに50原子%以下のCoで代替し
てもよい。Coが50原子%を越えると亮いiHcが得
られないためである。上記以外の元素として下記の所定
の原子%以下の元素の1種以上(但し、2F!i以上含
む場合の元素の総量はこれらの元素のうち最大値を有す
るものの値以下)をFe元元素置換してもこの発明の効
果は失なわれない。これら元素を下記する(単位は原子
%)。
That is, Fe may be replaced with 50 atomic % or less of Co. This is because if Co exceeds 50 atomic %, bright iHc cannot be obtained. As elements other than the above, one or more of the following elements below the specified atomic % (however, if 2F!i or more is included, the total amount of elements is below the value of the maximum value among these elements) is replaced with Fe element However, the effect of this invention is not lost. These elements are shown below (unit: atomic %).

Tl  :  4.7.  Nl  :  0.8. 
 Bl  :  5.0゜W  :  8.11.  
Zr :  5.5.  Ta :40.5゜Mo:8
.7.Ca二8.0、Hr:5.5゜Ge :  G、
0.  Nb :12.5.  Mg:  8.0゜C
r :  &、5.  Sn :  3.5.  A、
l) :  9.5゜Sr :  7.5.  Mn 
:  8.0.  Sb :  2.5゜V  :lO
,5,Be :  3.5.  Ba :  2.5゜
Cu :  3.5.  S  :  2.5.  P
  :  3.3゜C;  4.0.  O:  1.
5.  Ga :  6.0゜一般に、R−B−Fe系
焼結磁石の腐食原因は、主相の周囲に形成されるRリッ
チ相が最も腐食されやすい相であるために、上記Rリッ
チ相を介して磁石内部に粒界腐食が油行筆ると言われて
いるが、この発明の水素化物粉末を添加混合して焼結す
ると、上記Rリッチ相は上記水素化物粉末と反応し、腐
食しにくいRリッチ相となり、さらに上記腐食しにくい
Rリッチ相は焼結過程で結晶粒の成長を抑制し、高密度
化させる作用を有し、そのため耐食性および磁気特性が
共に優れたR−B−Fe系焼結磁石が得られるものと考
えられる。
Tl: 4.7. Nl: 0.8.
Bl: 5.0°W: 8.11.
Zr: 5.5. Ta:40.5゜Mo:8
.. 7. Ca28.0, Hr:5.5゜Ge: G,
0. Nb: 12.5. Mg: 8.0°C
r: &, 5. Sn: 3.5. A,
l): 9.5°Sr: 7.5. Mn
: 8.0. Sb: 2.5°V: lO
,5,Be: 3.5. Ba: 2.5°Cu: 3.5. S: 2.5. P
: 3.3°C; 4.0. O: 1.
5. Ga: 6.0゜In general, the cause of corrosion in R-B-Fe sintered magnets is that the R-rich phase formed around the main phase is the phase that is most likely to be corroded. It is said that intergranular corrosion occurs inside the magnet, but when the hydride powder of this invention is added and mixed and sintered, the R-rich phase reacts with the hydride powder, making it difficult to corrode. The corrosion-resistant R-rich phase has the effect of suppressing the growth of crystal grains during the sintering process and increasing the density. Therefore, the R-B-Fe system has excellent corrosion resistance and magnetic properties. It is considered that a sintered magnet can be obtained.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて一層具体的に説
明する。
Next, the present invention will be explained in more detail based on examples.

まず、15%Nd−8%B−残Fe  (但し%は、原
子%)となるように溶解し、合金インゴットを作製し、
この合金インゴットを粉末して、平均粒径:3.5−の
微粉末を用意した。
First, an alloy ingot was prepared by melting 15%Nd-8%B-remaining Fe (where % is atomic%).
This alloy ingot was pulverized to prepare a fine powder with an average particle size of 3.5-.

一方、水素化物粉末として、 平均粒径:1.3μ履のZ r H2粉末、平均粒径:
1.5mのT a H2粉末、平均粒径:1.3−のT
 iH2粉末、平均粒径:1.3虜のNb H,、粉末
、平均粒径:1,5趨のVH粉末、 平均粒径:1.3虜のHf H2粉末、平均粒径:1.
1μsのYH3粉末、 を用意し、これら粉末を第1表に示される割合となるよ
うにそれぞれ配合し、混合して原料粉末とした。
On the other hand, as a hydride powder, ZrH2 powder with an average particle size of 1.3μ, average particle size:
1.5m T a H2 powder, average particle size: 1.3-T
iH2 powder, average particle size: 1.3 mm Nb H, powder, average particle size: 1.5 mm VH powder, average particle size: 1.3 mm Hf H2 powder, average particle size: 1.
A 1 μs YH3 powder was prepared, and these powders were blended and mixed in the proportions shown in Table 1 to obtain a raw material powder.

この原料粉末を、Arガス雰囲気中、成形圧:1.5t
/cdで磁場中(12KOe)成形し、たて:12mm
X横:10關×高さ:10mmの成形体を製作した。こ
れら成形体を、圧カニ I X 1o−5Torrの真
空雰囲気中にて、昇温速度=10℃/1Iinにて加熱
し、温度:1090℃、1時間保持したのち、ioo℃
/ tg I nの冷却速度で冷却して焼結体を作製し
、これら焼結体を、さらに上記焼結雰囲気と同一の雰囲
気にて、加熱速度:5℃/sinで加熱し、温度二62
0℃、2時間保持したのち、50℃/winの冷却速度
で冷却の熱処理を行って第1表に示される本発明R−B
 −Fc系焼結磁石1〜45および比較R−B−F(3
系焼結磁石1〜18を作製した。
This raw material powder was molded in an Ar gas atmosphere at a pressure of 1.5 t.
/cd in a magnetic field (12KOe), length: 12mm
A molded body measuring 10 mm in width and 10 mm in height was produced. These molded bodies were heated at a temperature increase rate of 10°C/1 inch in a vacuum atmosphere of pressure crab I
A sintered body was produced by cooling at a cooling rate of / tg I n, and these sintered bodies were further heated at a heating rate of 5°C/sin in the same atmosphere as the sintering atmosphere described above, to a temperature of 262°C.
After holding at 0°C for 2 hours, a cooling heat treatment was performed at a cooling rate of 50°C/win to obtain the present invention R-B shown in Table 1.
-Fc-based sintered magnets 1 to 45 and comparative R-B-F (3
System sintered magnets 1 to 18 were produced.

上記作製された直後の本発明R−B−Fc系焼結磁石1
〜45および比較R−B −Fc系焼結磁石1〜17の
磁気特性(残留磁束密度:Br、保磁力:iHcおよび
最大エネルギー積:BHmax)を測定したのち、これ
ら焼結磁石を温度二60℃、湿度=90%の大気中に1
000時間放置して耐食試験を行い、上記耐食試験後の
本発明R−B−Fe系焼結磁石1〜45および比較R−
B−Fe系焼結磁石1〜17の磁気特性(残留磁束密度
:B「、保磁カニiHcおよび最大エネルギー積:BH
)を測l1ax 定し、さらに上記耐食試験後の焼結磁石表面および内部
の錆の発生状況を観察し、それらの結果を第1表に示し
た。
R-B-Fc based sintered magnet 1 of the present invention immediately after being produced above
After measuring the magnetic properties (residual magnetic flux density: Br, coercive force: iHc and maximum energy product: BHmax) of ~45 and comparative R-B-Fc sintered magnets 1-17, these sintered magnets were heated at a temperature of 260℃. ℃, humidity = 90% atmosphere
A corrosion resistance test was conducted after being left for 000 hours, and the present R-B-Fe based sintered magnets 1 to 45 and comparative R
Magnetic properties of B-Fe sintered magnets 1 to 17 (residual flux density: B', coercive crab iHc and maximum energy product: BH
) was measured, and the occurrence of rust on the surface and inside of the sintered magnet after the above corrosion resistance test was also observed, and the results are shown in Table 1.

上記績の発生状況の判定は、耐食試験した焼結磁石を切
断し、目視により、切断面周囲に錆が認められないもの
を「錆なし」、切断面周囲に錆が認められるものを「錆
あり」、さらに切断面周囲に錆が認められ且つ錆が内部
に浸透しているものを「著しい錆あり」とした。
To determine the occurrence of the above-mentioned problems, cut a sintered magnet that has been subjected to a corrosion resistance test, and visually inspect it.If no rust is observed around the cut surface, it is considered "no rust," and if rust is observed around the cut surface, it is "rust-free." If rust was observed around the cut surface and the rust had penetrated into the interior, it was classified as "significantly rusted."

〔発明の効果〕〔Effect of the invention〕

第1表の結果から、R−B−Fe系合金粉末単独で作製
した比較R−B−Fe系焼結磁石1は、耐食試験後に表
面に錆が発生し、その錆は内部に浸透して著しい腐食を
生じ、耐食試験後の磁気特性の劣化も著しいが、上記R
−B−Fc系合金粉末に、Zr、Ta、Tl 、Nb、
V、HrおよびYの水素化物粉末のうち18または2種
以上を合計で0.0005〜3重量%で加えた粉末を原
料粉末として作製した本発明R−B−Fe系焼結磁石は
、耐食性および磁気特性にすぐれ、しかも耐食試験の磁
気特性の劣化が生じないことがわかる。
From the results in Table 1, it can be seen that in Comparative R-B-Fe sintered magnet 1 made from R-B-Fe alloy powder alone, rust occurred on the surface after the corrosion resistance test, and the rust penetrated into the interior. Although significant corrosion occurs and the magnetic properties deteriorate significantly after the corrosion resistance test, the above R
-B-Fc alloy powder contains Zr, Ta, Tl, Nb,
The R-B-Fe-based sintered magnet of the present invention, which is made from powder containing 18 or two or more of V, Hr, and Y hydride powders in a total amount of 0.0005 to 3% by weight, has corrosion resistance. It can be seen that the material has excellent magnetic properties, and no deterioration of the magnetic properties occurs in the corrosion resistance test.

さらに、上記水素化物が合計で3重量%を越えて添加さ
れた原料粉末により製造された比較R−B −Fe系焼
結磁石3.5.7.9. II、 +3゜15、17お
よび18は、表面に錆の発生はみられないが、磁気特性
が劣化し、一方、上記水素化物の添加量が0.0005
重量%未満の原料粉末から作製された比較R−B −F
e系焼結磁石2.4.6.8゜10、12.14および
16は、いずれも表面に錆が発生し、耐食試験後の磁気
特性の劣化も著しいことがわかる。
Furthermore, a comparative R-B-Fe-based sintered magnet 3.5.7.9. was manufactured using the raw material powder to which the above-mentioned hydride was added in a total amount exceeding 3% by weight. II, +3°15, 17, and 18, no rust was observed on the surface, but the magnetic properties deteriorated.On the other hand, when the amount of hydride added was 0.0005
Comparative R-B-F made from raw powders of less than % by weight
It can be seen that the e-based sintered magnets 2.4.6.8°10, 12.14, and 16 all had rust on their surfaces, and their magnetic properties deteriorated significantly after the corrosion resistance test.

上述のように、R−B −Fc系合金粉末に上記水素化
物粉末の1種または2種以上を合計で0.0005〜3
重量%添加した原料粉末を用いて製造したR−B−Fc
系焼結磁石は、耐食性に優れ、磁気特性の劣化が改善さ
れるので、この発明の製造方法で製造されたR−B−F
c系焼結磁石には表面処理する必要がなく、また焼結磁
石の磁気特性の劣化が少ないので、この磁石を組み込ん
だ装置の性能の低下が防止されるという産業上すぐれた
効果を奏するものである。
As mentioned above, a total of 0.0005 to 3 of one or more of the above hydride powders is added to the R-B-Fc alloy powder.
R-B-Fc manufactured using raw material powder added by weight%
The R-B-F series sintered magnet produced by the production method of the present invention has excellent corrosion resistance and improves deterioration of magnetic properties.
C-series sintered magnets do not require surface treatment, and the magnetic properties of the sintered magnets are less likely to deteriorate, so they have an excellent industrial effect of preventing deterioration in the performance of devices incorporating these magnets. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)Yを除く希土類元素のうち少なくとも1種(以下
、Rという)、B、およびFeを必須成分とするR−B
−Fe系合金粉末に、Zr、Ta、Ti、Nb、V、H
r、Yの水素化物粉末のうち1種または2種以上を合計
で0.0005〜3重量%混合して得られた混合粉末を
、成形し、焼結することを特徴とする耐食性および磁気
特性に優れた希土類−B−Fe系焼結磁石の製造方法。
(1) R-B whose essential components are at least one rare earth element other than Y (hereinafter referred to as R), B, and Fe.
-Fe-based alloy powder contains Zr, Ta, Ti, Nb, V, H
Corrosion resistance and magnetic properties characterized by molding and sintering a mixed powder obtained by mixing a total of 0.0005 to 3% by weight of one or more of r and Y hydride powders. A method for producing a rare earth-B-Fe based sintered magnet with excellent properties.
JP1119989A 1989-05-12 1989-05-12 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties Expired - Fee Related JP2600374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119989A JP2600374B2 (en) 1989-05-12 1989-05-12 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119989A JP2600374B2 (en) 1989-05-12 1989-05-12 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties

Publications (2)

Publication Number Publication Date
JPH02298231A true JPH02298231A (en) 1990-12-10
JP2600374B2 JP2600374B2 (en) 1997-04-16

Family

ID=14775150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119989A Expired - Fee Related JP2600374B2 (en) 1989-05-12 1989-05-12 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties

Country Status (1)

Country Link
JP (1) JP2600374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179841A (en) * 2014-02-28 2015-10-08 日立金属株式会社 Method for manufacturing r-t-b-based sintered magnet
CN105960690A (en) * 2014-02-28 2016-09-21 日立金属株式会社 R-T-B sintered magnet and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179841A (en) * 2014-02-28 2015-10-08 日立金属株式会社 Method for manufacturing r-t-b-based sintered magnet
CN105960690A (en) * 2014-02-28 2016-09-21 日立金属株式会社 R-T-B sintered magnet and manufacturing method therefor

Also Published As

Publication number Publication date
JP2600374B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US10672545B2 (en) R-T-B based permanent magnet
JP7251916B2 (en) RTB system permanent magnet
US10672544B2 (en) R-T-B based permanent magnet
US5114502A (en) Magnetic materials and process for producing the same
JP2891215B2 (en) Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP3143396B2 (en) Manufacturing method of sintered rare earth magnet
JPH02298231A (en) Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics
JPH01100242A (en) Permanent magnetic material
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH0146575B2 (en)
JP2700643B2 (en) Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
JPH0146574B2 (en)
JPS62177147A (en) Manufacture of permanent magnet material
JP2586597B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in magnetic properties and corrosion resistance
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP2940623B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPS59219453A (en) Permanent magnet material and its production
JPH01305504A (en) Manufacture of highly corrosion resistant rare earth metal-b-fe sintered magnet
JPH02138706A (en) Anisotropic permanent magnet
JPS60254707A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees