JPH0279404A - Polymer composite type rare magnet and manufacture thereof - Google Patents

Polymer composite type rare magnet and manufacture thereof

Info

Publication number
JPH0279404A
JPH0279404A JP63231254A JP23125488A JPH0279404A JP H0279404 A JPH0279404 A JP H0279404A JP 63231254 A JP63231254 A JP 63231254A JP 23125488 A JP23125488 A JP 23125488A JP H0279404 A JPH0279404 A JP H0279404A
Authority
JP
Japan
Prior art keywords
powder
rare earth
magnet
resin
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63231254A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63231254A priority Critical patent/JPH0279404A/en
Publication of JPH0279404A publication Critical patent/JPH0279404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To prevent or remarkably reduce the oxidation from the surface of magnet powder particle so as to improve the deterioration of magnetic characteristics by using moisture setting type resin for polymer resin. CONSTITUTION:R2T14B (R is rare earth element including Y, T is transition metal) rare earth magnetic powder is made by refusing an ingot which is obtained by fusion and jetting fused alloy against a rotating roll, etc., so as to ultraquench it. Hereby, a liquid quenched alloy thin belt and a thin piece are formed, which are made into powder as there are by rough pulverization, or this thin belt and thin piece are made into a compact by hot-pressing. And hot plastic working is applied and further by roughly pulverizing it powder is formed. Next, this magnetic powder is binded with moisture setting type resin, and magnetic shape is maintained. Hereby, the oxidizing reaction from the surface of magnetic powder can be reduced remarkably, and deteriorations on standing of magnetic characteristics, etc., can be improved remarkably.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、いわゆるゴム磁石やプラスチック磁石を典型
とした高分子複合型磁石の中でも、特にNd−Fe−B
系永久磁石を代表とする希土類金属(R)と遷移金属(
T)とホウ素(B)を主成分としてなるR、T14B系
の希土類磁石粉末を用いた高分子複合型希土類磁石の特
性の中でも、経時走化による劣化の改善に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention is particularly applicable to Nd-Fe-B polymer composite magnets, typically rubber magnets and plastic magnets.
Rare earth metals (R) and transition metals (represented by system permanent magnets)
Among the characteristics of a polymer composite rare earth magnet using R, T14B-based rare earth magnet powder containing T) and boron (B) as main components, this relates to improvement of deterioration due to chemotaxis over time.

[従来の技術] 高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたもの、あるいは磁石粉末を高分子樹脂で結石させた
ものである。この磁石は、鋳造磁石や焼結磁石等には見
られない種々の特徴、例えば弾力性や加工容品性を備え
ており、種々の方面に用いられている。しかしながら、
磁石粉末と非磁性の樹脂で形成されているため、焼結磁
石等に比べ、磁気特性が低いという欠点を有している。
[Prior Art] A polymer composite magnet is one in which magnet powder is dispersed in a polymer resin, or one in which magnet powder is aggregated with a polymer resin. This magnet has various characteristics not found in cast magnets, sintered magnets, etc., such as elasticity and workability, and is used in a variety of fields. however,
Since they are made of magnet powder and non-magnetic resin, they have the disadvantage of having lower magnetic properties than sintered magnets and the like.

そのため、粉末を磁界中で配向させる等の異方性化によ
り、高い磁石特性を達成しようとしている。
Therefore, efforts are being made to achieve high magnetic properties by making the powder anisotropic, such as by orienting the powder in a magnetic field.

分散、結着される磁石粉末としては、これ迄、種々のも
のが用いられているが、本発明では、現在最も高い磁石
特性を示しているNd−Fe−B系を代表とするR2T
14B系磁石粉末を使用している。
Various types of magnetic powder have been used to disperse and bind, but in the present invention, R2T, which is represented by the Nd-Fe-B system, which currently exhibits the highest magnetic properties, has been used.
14B magnet powder is used.

従来の希土類磁石粉末を使用した高分子複合磁石は、原
料を溶解して得た合金鋳塊を熱処理後、粉砕し、その粉
末を高分子樹脂と混合し、磁界中で成形して製造されて
いた。ここで使用されていた磁石合金粉末は、磁界中で
の結晶配向性を向上させるため、微細な単結晶粒子から
なっていることが望ましかった。
Conventional polymer composite magnets using rare earth magnet powder are manufactured by heat-treating and crushing an alloy ingot obtained by melting raw materials, mixing the powder with polymer resin, and molding it in a magnetic field. Ta. The magnet alloy powder used here was desirably composed of fine single-crystal particles in order to improve crystal orientation in a magnetic field.

しかしながら、Nd−Fe−B系磁石で代表されるR2
TIJB系合金においては、粉砕時における機械的応力
により、保磁力(+Hc)の低下が生じるため、粉末が
単結晶粒子からなる微細な領域では著しく+Hcが低下
していた。そのため、溶解インゴットを出発原料として
使用した製法においては、高、Hcを有する焼結磁石を
粉砕して磁石粉末として使用しても、著しく低い磁石特
性を示す高分子複合型磁石となっていた。まして、イン
ゴットを熱処理後、粉砕して高分子複合磁石とする製法
では、存在価値のない極めて劣悪な磁石特性を示すのみ
であった。
However, R2 represented by Nd-Fe-B magnets
In the TIJB alloy, mechanical stress during crushing causes a decrease in coercive force (+Hc), so +Hc was significantly decreased in fine regions where the powder was composed of single crystal grains. Therefore, in a manufacturing method using a molten ingot as a starting material, even if a sintered magnet having a high Hc is crushed and used as magnet powder, the result is a polymer composite magnet that exhibits extremely poor magnetic properties. Moreover, in the method of manufacturing a polymer composite magnet by heat-treating an ingot and then pulverizing it to produce a polymer composite magnet, the magnet exhibits extremely poor magnetic properties that are worthless.

一方、粉砕による 、Hcの低下がほとんど生じないR
−T−B系磁石合金の作製法としては、溶融している合
金を回転ロール等に噴射し、超急冷することによって磁
石合金を得る液体急冷法が知られていた。しかしなから
、この製法によって得られた粉末では、異方性化は実現
できなかった。
On the other hand, when pulverization causes almost no decrease in Hc, R
As a method for producing a -T-B magnetic alloy, a liquid quenching method has been known in which a molten alloy is injected onto a rotating roll or the like, and a magnetic alloy is obtained by ultra-quenching the alloy. However, it was not possible to achieve anisotropy with the powder obtained by this manufacturing method.

その後、この液体急冷合金を熱間塑性加工することによ
って異方性化が可能な磁石粉末の得られることがわかっ
た。
Subsequently, it was found that a magnetic powder capable of being anisotropic was obtained by hot plastic working this liquid quenched alloy.

これらの液体急冷法を活用して製造されるR2T14B
系磁石粉末は、微細な結晶(結晶粒径は1μm以下)か
らなっており高い保磁力を有している。
R2T14B manufactured using these liquid quenching methods
The magnet powder consists of fine crystals (crystal grain size is 1 μm or less) and has high coercive force.

この方法は、高温で高圧を必要とするため、設備が高価
で、大がかりなものとなるのに加え、製造状態における
特性の安定化には不安が残っており、大量生産で特性バ
ラツキの小さい粉末を得るのはまだ困難であり、工業的
には有益なものとはいいがたい。
Since this method requires high temperature and high pressure, the equipment is expensive and large-scale, and there are concerns about stabilizing the properties in the manufacturing state. is still difficult to obtain, and it is difficult to say that it is industrially useful.

しかしながら、本発明者は種々実験を重ねた結果、焼結
体を粉砕した粉末を使用しても、その結晶粒径と粉末粒
径を適切に選定することにより、高い磁石特性を有する
焼結体粉末が作製できることを発見した。
However, as a result of various experiments, the present inventor has found that even if powder obtained by crushing a sintered body is used, by appropriately selecting the crystal grain size and powder particle size, a sintered body with high magnetic properties can be obtained. We discovered that powder can be produced.

[発明が解決しようとする課題] 高分子複合型磁石は、磁石粉末とそれを結着、形状保持
する為の高分子樹脂とで構成されている。
[Problems to be Solved by the Invention] Polymer composite magnets are composed of magnet powder and a polymer resin that binds the magnet powder and maintains its shape.

この樹脂としては、一般には成形体に樹脂を含浸する含
浸型や、粉末と樹脂とを混合した後圧縮成形する圧縮成
形型には、エポキシ系樹脂等、粉末と樹脂を混練した後
射出成形する射出成形型にはナイロン系樹脂等が使用さ
れている。しかしこれらの樹脂と磁石粉末で構成された
高分子複合磁石は、時間の経過とともに磁石特性が劣化
する傾向を示す。これらは、磁石粉末表面からの酸化に
よるものが主原因であり、高温度や高湿度では特に特性
劣化が加速される。この酸化による特性劣化は品質上の
重大な欠点となっている。この傾向は、本発明者が発見
した焼結体を粉砕する製法においても同様に見られてい
る。
This resin is generally used for impregnating molds that impregnate the molded body with resin, and for compression molding molds that mix powder and resin and then compression mold them, such as epoxy resins. The injection mold is made of nylon resin or the like. However, polymer composite magnets made of these resins and magnet powder tend to deteriorate in magnetic properties over time. The main cause of these is oxidation from the surface of the magnet powder, and deterioration of characteristics is particularly accelerated at high temperatures and high humidity. This deterioration of properties due to oxidation is a serious defect in terms of quality. This tendency is also seen in the manufacturing method for pulverizing a sintered body discovered by the present inventor.

したがって、この磁石粉末粒子の表面からの酸化を防止
、または著しく軽減することにより、磁石特性の劣化を
改善することは工業上、極めて有益なことである。
Therefore, it is extremely useful industrially to improve the deterioration of magnetic properties by preventing or significantly reducing oxidation from the surface of magnet powder particles.

そこで本発明の技術的課題は、通常実施されているR−
T−B系焼結磁石の製造工程を活用して製造できる高分
子複合型磁石の経時劣化を改善することにある。したが
って、その高分子複合磁石及びその製造方法を用いるこ
とは工業上、非常に有益である。
Therefore, the technical problem of the present invention is to
The object of the present invention is to improve the aging deterioration of polymer composite magnets that can be manufactured by utilizing the manufacturing process of T-B based sintered magnets. Therefore, it is industrially very useful to use the polymer composite magnet and its manufacturing method.

[課題を解決するための手段] 本発明によれば.R2T14B系(RはYを含む希土類
元素、Tは遷移金属)希土類磁石粉末と高分子樹脂とか
らなる高分子複合型希土類磁石において、上記高分子樹
脂は湿気硬化型樹脂であることを特徴とする高分子複合
型希土類磁石が得られる。
[Means for solving the problem] According to the present invention. R2T14B system (R is a rare earth element containing Y, T is a transition metal) polymer composite rare earth magnet consisting of rare earth magnet powder and polymer resin, characterized in that the polymer resin is a moisture-curable resin. A polymer composite rare earth magnet is obtained.

本発明によれば.R2T14B系(RはYを含む希土類
元素、Tは遷移金属)希土類磁石粉末に、高分子樹脂を
混合して、加圧成形し、硬化する高分子複合型希土類磁
石の製造方法において、上記高分子樹脂として湿気硬化
型樹脂を用いることを特徴とする高分子複合型希土類磁
石の製造方法が得られる。本発明においては、加圧成形
とは、圧縮成形、押出成形、射出成形等の圧力を加えて
行う成形をいう。
According to the invention. R2T14B system (R is a rare earth element containing Y, T is a transition metal) rare earth magnet powder is mixed with a polymer resin, pressure molded, and hardened. A method for manufacturing a polymer composite rare earth magnet is obtained, which is characterized in that a moisture-curable resin is used as the resin. In the present invention, pressure molding refers to molding performed by applying pressure, such as compression molding, extrusion molding, and injection molding.

本発明によれば.R2T14B系(RはYを含む希土類
元素、Tは遷移金属)希土類磁石粉末を成形し、得られ
た成形体に湿気硬化型樹脂を含浸することを特徴とする
高分子複合型希土類磁石の製造方法が得られる。
According to the invention. A method for producing a polymer composite rare earth magnet, which comprises molding R2T14B rare earth magnet powder (R is a rare earth element containing Y, T is a transition metal) and impregnating the resulting molded body with a moisture-curing resin. is obtained.

本発明は、溶解して得られた合金インゴットを微粉砕し
た後、磁場中で成形して得られた粉末成形体を焼結し、
高い結晶配向度の焼結体とし、次にこの焼結体を磁気特
性の向上が実現できる範囲の粒子径に粉砕した後、熱処
理して粉末の磁石特性を向上する。溶解して得られたイ
ンゴットを再溶解し、溶融している合金を回転ロール等
に噴射し超急冷することによって液体急冷合金薄帯及び
薄片を形成し、そのまま粗粉砕により粉末を形成するか
、この薄帯及び薄片をホットプレスして、成形体とした
後、熱間塑性加工を施し、更に粗粉砕することにより粉
末を形成する。しかる後に、この磁石粉末を湿気硬化型
樹脂で結若し、磁石形状を保持することに高分子複合型
磁石を作製する。
The present invention involves pulverizing an alloy ingot obtained by melting, and then sintering the powder compact obtained by compacting it in a magnetic field.
A sintered body with a high degree of crystal orientation is obtained, and then this sintered body is pulverized to a particle size within a range that can improve the magnetic properties, and then heat treated to improve the magnetic properties of the powder. The ingot obtained by melting is remelted, and the molten alloy is injected onto a rotating roll or the like and ultra-quenched to form liquid quenched alloy ribbons and flakes, and then coarsely pulverized to form powder, or The ribbons and flakes are hot pressed to form a molded body, followed by hot plastic working and further coarsely pulverized to form a powder. Thereafter, this magnet powder is condensed with a moisture-curable resin to maintain the magnet shape to produce a polymer composite magnet.

この高分子複合磁石を磁石粉末と湿気硬化型樹脂とで構
成することにより、磁石粉末表面からの酸化反応を著し
く減少することができ、磁石特性等の経時劣化を顕著に
改善できる。
By constructing this polymer composite magnet from magnet powder and moisture-curable resin, oxidation reactions from the surface of the magnet powder can be significantly reduced, and deterioration over time of magnetic properties etc. can be significantly improved.

R−T−B系磁石合金は、酸化反応等が極めて進行しや
すい希土類元素や鉄等を主成分として含Hしている。そ
のため、酸化反応にともなう磁石特性の劣化が他の金属
磁石に比べ顕著となっている。この酸化にともなう磁石
特性の劣化は、単なる磁化量の減少ばかりでなく、磁化
過程にも著しく影響し、減磁曲線の角型性の低下や、保
磁力の減少と、種々の磁石特性の劣化に関係している。
The R-T-B magnet alloy contains H as a main component, and contains rare earth elements, iron, etc., which are extremely susceptible to oxidation reactions. Therefore, the deterioration of magnetic properties due to oxidation reactions is more pronounced than in other metal magnets. The deterioration of magnet properties caused by this oxidation not only causes a simple decrease in the amount of magnetization, but also significantly affects the magnetization process, resulting in a decrease in the squareness of the demagnetization curve, a decrease in coercive force, and deterioration of various magnet properties. is related to.

酸化反応は、合金の表面より進行するものであるから、
磁石合金が粉末状であれば、その比表面積は粒子半径の
2乗に反比例することから、酸化による特性劣化は著し
くなる。この合金の酸化は、通常の製造工程においては
、合金を取り扱う雰囲気の酸素量と水分量に、強く関係
している。また、粉砕等によって得られた粉末の表面は
活性であるので、酸素や水分等を吸着し、真空引きや、
不活性ガス置換等でこれらの酸化因子は除去されるもの
ではない。したがって、この状態で長時間保持するなら
ば、酸化は進行し、磁石特性の経時劣化が生ずる。この
様な傾向は、従来高分子複合型磁石によく用いられてい
たエポキシ樹脂、ナイロン等に認められる。この傾向は
、高温、高湿で保持することにより加速される。
Since the oxidation reaction proceeds from the surface of the alloy,
If the magnetic alloy is in powder form, its specific surface area is inversely proportional to the square of the particle radius, so the deterioration of characteristics due to oxidation becomes significant. Oxidation of this alloy is strongly related to the amount of oxygen and moisture in the atmosphere in which the alloy is handled during normal manufacturing processes. In addition, the surface of the powder obtained by pulverization etc. is active, so it adsorbs oxygen, moisture, etc.
These oxidizing factors are not removed by inert gas replacement or the like. Therefore, if kept in this state for a long time, oxidation will progress and the magnetic properties will deteriorate over time. Such a tendency is observed in epoxy resin, nylon, etc., which have been commonly used in conventional polymer composite magnets. This tendency is accelerated by holding at high temperature and high humidity.

本発明者は、種々実験を重ねた結果、高分子複合型磁石
を構成する樹脂として、湿気硬化型樹脂を使用すること
により従来、一般に使用されていた樹脂に比べ、磁石特
性の経時劣化が著しく改善されることを発見した。その
理由として、湿気硬化型樹脂は、磁石粉末表面に吸着し
た水分と反応し、硬化が進行するため、磁石粉末表面か
らの酸化因子である吸着水分が除去されるためである。
As a result of various experiments, the inventor of the present invention found that by using a moisture-curing resin as the resin constituting the polymer composite magnet, the magnetic properties deteriorate significantly over time compared to conventionally commonly used resins. I found that it can be improved. The reason for this is that the moisture-curable resin reacts with moisture adsorbed on the surface of the magnet powder and hardening progresses, so that the adsorbed moisture, which is an oxidizing factor, is removed from the surface of the magnet powder.

それに加えて、高分子複合磁石の保持されている雰囲気
から侵入する水分は、樹脂中に極く微量残存する未反応
成分と反応するため、磁石粉末表面の酸化を著しく軽減
できる。
In addition, the moisture that enters from the atmosphere in which the polymer composite magnet is held reacts with extremely small amounts of unreacted components remaining in the resin, so oxidation of the surface of the magnet powder can be significantly reduced.

以下、実施例について述べる。Examples will be described below.

実施例1 5wL%のCe、15wt%のP「、残部側Nd(ただ
し、他の希土類元素はNdとして含めた。)からなるセ
リウムジジム、純度99wt%の以上のDy、フェロボ
ロン(B純分約20wt%)及び電解鉄を使用しくCe
−Pr−Nd)が31.。
Example 1 Cerium didymium consisting of 5 wL% Ce, 15 wt% P, the balance Nd (however, other rare earth elements were included as Nd), Dy with a purity of 99 wt% or more, ferroboron (B pure fraction) 20wt%) and electrolytic iron.
-Pr-Nd) is 31. .

vt%、Dyが3.Ovt%、Bが1.Ovt%、残部
Feとなるように、アルゴン雰囲気中で、高周波加熱に
より溶解し、合金インゴットを得た。
vt%, Dy is 3. Ovt%, B is 1. Ovt%, balance Fe, was melted by high frequency heating in an argon atmosphere to obtain an alloy ingot.

次に、このインゴットを粗粉砕した後、ボールミルを用
いて、平均拉径約2μmに微粉砕した。
Next, this ingot was coarsely ground, and then finely ground to an average diameter of about 2 μm using a ball mill.

この合金粉末を、約20KOeの磁界中、1 ton/
e1m2圧力で直方体に成形した。次に、この成形体を
真空中1000℃で1時間保持した後、Ar中で3時間
保持し、焼結体を得た。これらの焼結密度は約7. 5
5gr/all+3であり、平均結晶粒径は約5μmと
なっていた。
This alloy powder was mixed at 1 ton/in a magnetic field of about 20 KOe.
It was molded into a rectangular parallelepiped at a pressure of e1 m2. Next, this molded body was held in vacuum at 1000° C. for 1 hour and then in Ar for 3 hours to obtain a sintered body. The sintered density of these is approximately 7. 5
5gr/all+3, and the average crystal grain size was approximately 5 μm.

次に、この焼結体を平均粒径的30μmに粗粉砕した後
、600℃で真空中1時間、Ar94時間保持し、熱処
理した。次に、これら熱処理粉末を、気温的20℃、相
対温度6096の大気中で、解砕した後、約20KOe
の磁界中、3’tOn/e12の圧力で円盤状に成形し
た。この圧粉試料の磁石粉末の占積率は約65vt%で
あった。
Next, this sintered body was coarsely ground to an average particle size of 30 μm, and then heat treated at 600° C. in vacuum for 1 hour and in Ar for 94 hours. Next, after crushing these heat-treated powders in the atmosphere at an air temperature of 20°C and a relative temperature of 6096, approximately 20KOe
It was formed into a disk shape under a magnetic field of 3'tOn/e12. The space factor of the magnet powder in this compacted powder sample was about 65 vt%.

次に、これら成形体を真空引き後、エポキシ系樹脂、湿
気硬化型であるメチルシアノアクリレート及びシリコー
ンゴム系樹脂を含浸した後、80℃で5時間保持して硬
化させ、高分子複合磁石とした。
Next, after vacuuming these molded bodies, they were impregnated with epoxy resin, moisture-curing methyl cyanoacrylate, and silicone rubber resin, and then held at 80°C for 5 hours to harden, forming a polymer composite magnet. .

次に、この高分子複合磁石を温度的60℃で相対温度的
90%の恒温恒湿槽で1000時間保持した後、約30
KOeの磁場を印加して、磁石特性を測定した。その減
磁曲線(4πI−H曲線)を第1図に示す。エポキシ系
樹脂を含浸硬化した試料に比べ湿気硬化型のメチルシア
ノアクリレート及びシリコーンゴム系樹脂を含浸硬化し
た試料の方が、経時劣化が明らかに小さい傾向を示して
いる。これら試料の磁石特性を第1表に示す。
Next, this polymer composite magnet was kept in a constant temperature and humidity chamber at a temperature of 60°C and a relative temperature of 90% for 1000 hours, and then
Magnetic properties were measured by applying a KOe magnetic field. The demagnetization curve (4πI-H curve) is shown in FIG. Compared to the sample impregnated and cured with an epoxy resin, the sample impregnated and cured with moisture-curable methyl cyanoacrylate and silicone rubber resin shows a tendency for deterioration over time to be clearly smaller. The magnetic properties of these samples are shown in Table 1.

以下余白 実施例2 純度97シt%以上のNd(残部はCe、Prを主体と
する希土類元素)、フェロボロン(純度約20vL%)
、電解鉄、電解コバルト及びアルミニウムを使用し、実
施例1と同様にして、Ndが35、OvL%、Bが1.
0w1%、COが10v【%、A、9が1wt%、残部
Feの組成を有するインゴットを得た。
Below is the margin Example 2 Nd with a purity of 97% or more (the remainder is rare earth elements mainly consisting of Ce and Pr), ferroboron (purity of about 20vL%)
, electrolytic iron, electrolytic cobalt, and aluminum were used in the same manner as in Example 1, Nd was 35, OvL%, and B was 1.
An ingot was obtained having a composition of 0 w1%, CO 10 v[%], A, 9 1 wt%, and the balance Fe.

次に、このインゴットを使用して、実施例1と同様にし
て、粉砕、磁場中成形、980℃での焼結を行なった。
Next, using this ingot, pulverization, compaction in a magnetic field, and sintering at 980° C. were performed in the same manner as in Example 1.

これら焼結体の密度は約7゜50gr/ cm3で平均
結晶粒径は約4,5μmであった。
The density of these sintered bodies was about 7°50 gr/cm3, and the average crystal grain size was about 4.5 μm.

次に、これら焼結体を粗粉砕した後、篩を用いて分級し
、26〜300μmの範囲の粉末を得た。
Next, after coarsely pulverizing these sintered bodies, they were classified using a sieve to obtain powder in the range of 26 to 300 μm.

次に、この粉末を600℃で2時間熱処理した。Next, this powder was heat treated at 600°C for 2 hours.

次にこれら粉末を実施例1と同様にして、解砕した後、
粉末に対し30Vo1%のエポキシ系樹脂、湿気硬化型
であるエチルシアノアクリレート及びポリウレタン系樹
脂を混合し、磁場中成形を行なった。その成形体を80
℃で10時間保持して硬化させ、高分子複合磁石とした
Next, these powders were crushed in the same manner as in Example 1, and then
The powder was mixed with 30Vo1% epoxy resin, moisture-curing ethyl cyanoacrylate, and polyurethane resin, and molded in a magnetic field. 80% of the molded body
It was held at ℃ for 10 hours to be cured to obtain a polymer composite magnet.

次に、この磁石を、実施例1と同様にして、恒温高湿槽
に保持した後、磁石特性をIIP1定した。その減磁曲
線(4πI−H曲線)を第2図に示す。
Next, this magnet was held in a constant temperature and high humidity bath in the same manner as in Example 1, and then the magnet characteristics were determined by IIP1. The demagnetization curve (4πI-H curve) is shown in FIG.

エポキシ系樹脂を混合硬化した試料に比べ、湿気硬化型
のエチルシアノアクリレート及びポリウレタン系樹脂混
合硬化した試料の方が経時変化が明らかに小さい傾向を
示している。これら試料の磁石特性を第2表に示す。
Compared to the sample that was mixed and cured with an epoxy resin, the sample that was cured with a mixture of moisture-curable ethyl cyanoacrylate and polyurethane resin showed a clearly smaller tendency to change over time. The magnetic properties of these samples are shown in Table 2.

以下余白 実施例3 5wt%のCe、15wt%のP「、残部Nd(ただし
、他の希土類元素はNdとして含めた。)からなるセリ
ウムジジム、フェロボロン(B純分約20wt96)、
電解コバルト及び電解鉄を使用し、(Ce−PrφNd
)が31.Ovt%、COが10、Ovt%、Bが1.
Ovt%、残部Feとなるように、アルゴン雰囲気中で
、高周波加熱により溶解し、合金インゴットを得た。
Below are blank spaces Example 3: Cerium dididium consisting of 5 wt% Ce, 15 wt% P, the balance Nd (however, other rare earth elements were included as Nd), ferroboron (B pure content about 20 wt96),
Using electrolytic cobalt and electrolytic iron, (Ce-PrφNd
) is 31. Ovt%, CO is 10, Ovt%, B is 1.
Ovt%, balance Fe, was melted by high frequency heating in an argon atmosphere to obtain an alloy ingot.

次に、このインゴットをAr雰囲気中で高周波加熱によ
り再溶解した後、周速度が約35m/seeのCu製ロ
ールに噴射し、厚さ約20μm、幅約3II11の液体
急冷合金薄帯及び薄片を得た。
Next, this ingot was remelted by high-frequency heating in an Ar atmosphere, and then sprayed onto a Cu roll with a circumferential speed of about 35 m/see to form liquid quenched alloy ribbons and flakes with a thickness of about 20 μm and a width of about 3II11. Obtained.

次に、この液体急冷合金を、Ar雰囲気中600℃で2
時間保持した後、180μm以下に粉砕した。この粉末
を、無磁場中2Lon/c−の圧力で円盤状に成形した
。この圧粉試料の磁石粉末の占積率は約68vo1%で
あった。
Next, this liquid quenched alloy was heated at 600°C in an Ar atmosphere for 2 hours.
After holding for a period of time, it was ground to 180 μm or less. This powder was molded into a disk shape under a pressure of 2 Lon/c- in the absence of a magnetic field. The space factor of the magnet powder in this compacted powder sample was approximately 68 vol%.

次に、これら成形体を真空引き後、エポキシ樹脂、湿気
硬化型であるメチルシアノアクリレート及びシリコーン
ゴム系樹脂を含浸した後、80℃で5時間保持して硬化
させ、高分子複合磁石とした。
Next, these molded bodies were evacuated and impregnated with epoxy resin, moisture-curable methyl cyanoacrylate, and silicone rubber-based resin, and then held at 80° C. for 5 hours to harden to obtain a polymer composite magnet.

次に、この高分子複合磁石を温度的60℃で相対温度的
90%の恒温恒湿槽で1000時間保持した後、約30
KOeの磁場を印加して、磁石特性を測定した。その減
磁曲線(4πI−H曲線)を第3図に示す。エポキシ樹
脂を含浸硬化した試料に比べ、湿気硬化型のメチルシア
ノアクリレート及びシリコーンゴム系樹脂を含浸硬化し
た試料の方が、磁石特性の経時劣化が明らかに小さい傾
向を示している。これら試料の磁石特性を第3表に示す
Next, this polymer composite magnet was kept in a constant temperature and humidity chamber at a temperature of 60°C and a relative temperature of 90% for 1000 hours, and then
Magnetic properties were measured by applying a KOe magnetic field. The demagnetization curve (4πI-H curve) is shown in FIG. Compared to samples impregnated and cured with epoxy resin, samples impregnated and cured with moisture-curable methyl cyanoacrylate and silicone rubber-based resins show a tendency for the deterioration of magnetic properties over time to be clearly smaller. The magnetic properties of these samples are shown in Table 3.

以下余白 実施例4 純度97wt%以上のNd(残部はCe、Prを主体と
する希土類元素)、フェロボロン(B純分約20wt%
)、電解鉄を使用し、実施例3と同様にしてNdが32
.0wt%、Bが1.0wt%、残部がFeのインゴッ
トを得た後、液体急冷合金薄帯及び薄片を得た。
Below are blank spaces Example 4 Nd with a purity of 97 wt% or more (the remainder is rare earth elements mainly consisting of Ce and Pr), ferroboron (B purity about 20 wt%)
), electrolytic iron was used, and Nd was 32 in the same manner as in Example 3.
.. After obtaining an ingot containing 0 wt% B, 1.0 wt% B, and the balance Fe, liquid quenched alloy ribbons and flakes were obtained.

次に、この液体急冷合金を300μm以下に粗粉砕した
後、Ar雰囲気中、700℃、1 ton /C−の圧
力でホットプレスし、成形体を得た。この密度は約7.
 50gr/cmIであった。次に、この成形体を、A
r雰囲気中700℃、1..5ton/C−の圧力で一
軸方向に加圧し、加圧方向の一1法が約115になるよ
うに熱間塑性加工を施こした。
Next, this liquid rapidly solidified alloy was coarsely pulverized to 300 μm or less, and then hot pressed at 700° C. and a pressure of 1 ton/C− in an Ar atmosphere to obtain a molded body. This density is about 7.
It was 50gr/cmI. Next, this molded body was
700°C in r atmosphere, 1. .. Hot plastic working was performed by applying pressure in the uniaxial direction at a pressure of 5 ton/C- so that the 11 dimension in the pressing direction was approximately 115.

この加工成形体は、加圧方向に磁気異方性を白゛し、結
晶粒径が約0.3μmで厚さが約0.1μmの板状結晶
が積層してなっていた。
This processed molded product exhibited white magnetic anisotropy in the direction of pressure, and was composed of laminated plate-shaped crystals with a crystal grain size of about 0.3 μm and a thickness of about 0.1 μm.

次に、二の熱間加工成形体を300μm以下に粗粉砕し
た後、粉末に対し30 vol 96のエポキシ系樹脂
、湿気硬化型であるエチルシアノアクリレート及びポリ
ウレタン系樹脂を混合し、約20KOeの磁界中、1.
5ton/c−の圧力で磁場中成形した。この成形体を
80℃で10時間保持して硬化し、高分子複合磁石とし
た。
Next, after coarsely pulverizing the second hot-processed compact to 300 μm or less, 30 vol of 96 epoxy resin, moisture-curable ethyl cyanoacrylate, and polyurethane resin were mixed with the powder, and a magnetic field of about 20 KOe was applied. Medium, 1.
Molding was carried out in a magnetic field at a pressure of 5 tons/c-. This molded body was held at 80° C. for 10 hours and cured to form a polymer composite magnet.

次に、この磁石を、実施例3と同様にして、恒温高湿槽
に保持した後、磁石特性を測定した。その減磁曲線(4
πI−H曲線)を第4図に示す。
Next, this magnet was held in a constant temperature and high humidity bath in the same manner as in Example 3, and then the magnetic properties were measured. Its demagnetization curve (4
πI-H curve) is shown in FIG.

エポキシ系樹脂を混合硬化した試料に比べ、湿気硬化型
のエチルシアノアクリレート及びポリウレタン系樹脂を
混合硬化した試料の方が経時変化が明らかに小さい傾向
を示している。これら試料の磁石特性を第4表に示す。
Compared to the sample obtained by mixing and curing an epoxy resin, the sample obtained by mixing and curing a moisture-curable ethyl cyanoacrylate and polyurethane resin shows a tendency for the change over time to be clearly smaller. The magnetic properties of these samples are shown in Table 4.

以下余白 以上の実施例で示されたように、高分子複合型R,T1
4B系希土類磁石を.R,T14B系焼結体粉末と湿気
硬化型樹脂で構成することにより、磁石特性の経時劣化
を著しく改善できる。
As shown in the examples in the following margins, polymer composite type R, T1
4B rare earth magnet. By using the R, T14B sintered powder and the moisture curing resin, deterioration of magnetic properties over time can be significantly improved.

以上の実施例では、Ce−P r−Nd−Co −Fe
−B系、Nd−Fe−B系、Ce−Pr−Nd−Dy−
F e−B系、Nd−Fe−Co−Afi−B系につい
てのみ述べたが、Ndの一部をY及び他の希土類元素例
えばGd、Tb、Ho等で置換したり、Feの一部を他
の遷移金属例えばMn、Cr、Ni等で置換したり、B
の一部を他の半金属例えばSt、C等で置換しても、磁
石合金の組成がNd−Fe−Bを主成分の一部としてお
り、また磁石の化合物系でNd2Fe14B系で代表さ
れるようなR2T14B、あるいは同様に化学的活性な
化合物が磁性に寄与しているものであれば、本発明の効
果が十分に期待できるものであることは容易に推測でき
る。
In the above embodiments, Ce-P r-Nd-Co -Fe
-B system, Nd-Fe-B system, Ce-Pr-Nd-Dy-
Although only the Fe-B system and the Nd-Fe-Co-Afi-B system have been described, some of the Nd may be replaced with Y and other rare earth elements such as Gd, Tb, Ho, etc., or some of the Fe may be replaced with Substitution with other transition metals such as Mn, Cr, Ni, etc., or B
Even if a part of is replaced with other semi-metals such as St, C, etc., the composition of the magnet alloy will still have Nd-Fe-B as a main component, and the magnetic compound system will be represented by the Nd2Fe14B system. It can be easily inferred that the effects of the present invention can be fully expected if R2T14B such as R2T14B or a similarly chemically active compound contributes to magnetism.

また、本発明では、湿気硬化型樹脂として、メチルシア
7ノアクリレート、エチルシアノアクリレート、シリコ
ンゴム系、ポリウレタン系樹脂についてのみ述べたが、
本発明は水分と反応して樹脂の硬化が進行するのであれ
ば全てこの範囲に含まれることは容品に解釈できる。
Furthermore, in the present invention, only methyl cyanoacrylate, ethyl cyanoacrylate, silicone rubber-based, and polyurethane-based resins have been described as moisture-curable resins.
The present invention can be interpreted to include any product within this range as long as the curing of the resin progresses by reacting with moisture.

また、本実施例に示した高分子複合磁石化の製法につい
ては、成形体に樹脂を含浸する含浸型、粉末と樹脂とを
混合した後圧縮成形する圧縮成形型についてのみ述べた
が、他の成形法、例えば射出成形法、押出成形法等につ
いても適用できることは当業者であれば容易に想像でき
るものである。
In addition, regarding the manufacturing method of polymer composite magnetization shown in this example, only the impregnation type in which the molded body is impregnated with resin and the compression molding type in which powder and resin are mixed and then compression molded are described. Those skilled in the art can easily imagine that the present invention can also be applied to molding methods such as injection molding and extrusion molding.

[発明の効果コ 以上述べたことからもわかるように、本発明は、高分子
複合磁石を構成する磁石粉末の性状を変化させる必要も
なく、湿気硬化型樹脂を構成要素とするだけで、磁石特
性の経時劣化を著しく改善できるものであり、工業上、
非常に有益である。
[Effects of the Invention] As can be seen from the above description, the present invention does not require changing the properties of the magnet powder constituting the polymer composite magnet, and the magnet It can significantly improve the deterioration of characteristics over time, and is industrially useful.
Very informative.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例における高分子複合磁石の経時変化後の
減磁曲線(4πI−H曲線)であり、実線は樹脂にメチ
ルシアノアクリレート、−点鎖線はシリコーンゴム系、
点線はエポキシ系(比較例)を使用した試料を示す図で
ある。 第2図は、実施例2における高分子複合磁石の経時変化
後の減磁曲線(4πI−H曲線)であり、実線は樹脂に
エチルシアノアクリレート、−点鎖線はポリウレタン系
、点線はエポキシ系(比較例)を使用した試料を示す図
である。 第3図は、実施例3における高分子複合磁石の経時変化
後の減磁曲線(4πI−H曲線)であり、図中、実線は
樹脂にメチルシアノアクリレート、−点鎖線はシリコー
ンゴム系、点線はエポキシ系(比較例)を使用した試料
を示す図である。 第4図は、実施例4における高分子複合型磁石の経時変
化後の減磁曲線(4πl−14曲線)であり、図中、実
線は樹脂にエチルシアノアクリレート、−点鎖線はポリ
ウレタン系、点線はエポキシ系(比較例)を使用した試
料を示す図である。 第2図 H(にOe)
FIG. 1 is a demagnetization curve (4πI-H curve) after aging of the polymer composite magnet in Example, where the solid line is methyl cyanoacrylate resin, the dashed line is silicone rubber system, and the dashed line is silicone rubber system.
The dotted line is a diagram showing a sample using an epoxy system (comparative example). FIG. 2 shows the demagnetization curve (4πI-H curve) of the polymer composite magnet in Example 2 after aging, where the solid line is ethyl cyanoacrylate, the dashed line is polyurethane, and the dotted line is epoxy ( FIG. 3 is a diagram showing a sample using Comparative Example). FIG. 3 is a demagnetization curve (4πI-H curve) after aging of the polymer composite magnet in Example 3. In the figure, the solid line is methyl cyanoacrylate resin, the dashed line is silicone rubber system, and the dotted line is is a diagram showing a sample using an epoxy system (comparative example). FIG. 4 is a demagnetization curve (4πl-14 curve) after aging of the polymer composite magnet in Example 4. In the figure, the solid line is ethyl cyanoacrylate, the dashed line is polyurethane, and the dotted line is polyurethane. is a diagram showing a sample using an epoxy system (comparative example). Figure 2 H (in Oe)

Claims (3)

【特許請求の範囲】[Claims] 1.R_2T_1_4B系(RはYを含む希土類元素、
Tは遷移金属)希土類磁石粉末と高分子樹脂とからなる
高分子複合型希土類磁石において、上記高分子樹脂は、
湿気硬化型樹脂であることを特徴とする高分子複合型希
土類磁石。
1. R_2T_1_4B system (R is a rare earth element containing Y,
T is a transition metal) In a polymer composite rare earth magnet consisting of a rare earth magnet powder and a polymer resin, the polymer resin is
A polymer composite rare earth magnet characterized by being made of moisture-curing resin.
2.R_2T_1_4B系(RはYを含む希土類元素、
Tは遷移金属)希土類磁石粉末に、高分子樹脂を混合し
て、加圧成形し、硬化する高分子複合型希土類磁石の製
造方法において、上記高分子樹脂として湿気硬化型樹脂
を用いることを特徴とする高分子複合型希土類磁石の製
造方法。
2. R_2T_1_4B system (R is a rare earth element containing Y,
T is a transition metal) A method for producing a polymer composite rare earth magnet in which rare earth magnet powder is mixed with a polymer resin, pressure molded, and hardened, characterized in that a moisture-curable resin is used as the polymer resin. A method for manufacturing a polymer composite rare earth magnet.
3.R_2T_1_4B系(RはYを含む希土類元素、
Tは遷移金属)希土類磁石粉末を成形し、得られた成形
体に湿気硬化型樹脂を含浸することを特徴とする高分子
複合型希土類磁石の製造方法。
3. R_2T_1_4B system (R is a rare earth element containing Y,
A method for producing a polymer composite rare earth magnet, which comprises molding rare earth magnet powder (T is a transition metal) and impregnating the obtained molded body with a moisture-curing resin.
JP63231254A 1988-09-14 1988-09-14 Polymer composite type rare magnet and manufacture thereof Pending JPH0279404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231254A JPH0279404A (en) 1988-09-14 1988-09-14 Polymer composite type rare magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231254A JPH0279404A (en) 1988-09-14 1988-09-14 Polymer composite type rare magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0279404A true JPH0279404A (en) 1990-03-20

Family

ID=16920736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231254A Pending JPH0279404A (en) 1988-09-14 1988-09-14 Polymer composite type rare magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0279404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062981A (en) * 1989-06-27 1991-11-05 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Magnet and method for manufacturing the same
WO2003088279A1 (en) * 2002-04-09 2003-10-23 The Electrodyne Company, Inc. Bonded permanent magnets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062981A (en) * 1989-06-27 1991-11-05 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Magnet and method for manufacturing the same
WO2003088279A1 (en) * 2002-04-09 2003-10-23 The Electrodyne Company, Inc. Bonded permanent magnets
US6707361B2 (en) 2002-04-09 2004-03-16 The Electrodyne Company, Inc. Bonded permanent magnets

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
US5538565A (en) Rare earth cast alloy permanent magnets and methods of preparation
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS62198103A (en) Rare earth-iron permanent magnet
JPH04241402A (en) Permanent magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0278205A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPS61179801A (en) Alloy powder for bond magnet and its production
JPS62169403A (en) Manufacture of polymer composite type rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPS62261102A (en) Bonded magnet for starter motor
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JP2992808B2 (en) permanent magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy
JPH024942A (en) Permanent magnetic alloy
JP2000223305A (en) Rare-earth r-fe-co-b magnetic powder, its manufacturing method, and bonded magnet made of the powder
JPS6230847A (en) Production of permanent magnet material